
Statement-Level Cohesion Metrics and their Visualization

Jens Krinke
FernUniversität in Hagen

Hagen, Germany

Abstract

Slice-based metrics for cohesion have been defined and
examined for years. However, if a module with low cohe-
sion has been identified, the metrics cannot help the main-
tainer to restructure the module to improve the cohesion.
This work presents statement-level cohesion metrics based
on slices and chops. When visualized, the statement-level
cohesion metrics can show which parts of a module have
a low cohesion and thus help the maintainer to identify the
parts that should be restructured.

1. Introduction

An important principle for software development is that
modules should have high cohesion (inside modules) and
low coupling (to other modules). Cohesion is in most parts a
subjective measure, however, functional cohesion (the most
desirable of cohesion categories) can be measured based on
the dependences that can be identified in the source code.
Slice-based cohesion metrics exist for years now and have
been researched extensively [1, 5, 8, 18–22, 25]. These met-
rics only measure the cohesion of a complete module (i.e.
procedure, function, method, unit, class, ...), however, if a
module with low cohesion has been identified, the metrics
cannot help the user to restructure the module to improve its
cohesion.

Although the extraction of code from procedures with
low cohesion can be automated [9, 10, 12–15], there is still
need to identify the code’s regions that can be extracted to
improve the procedure’s cohesion. This work will present
a new approach for statement-level cohesion metrics based
on slices and chops. The metrics are based on the previ-
ous work on functional cohesion and the slice profiles used
therein. The approach computes a cohesiveness value for
every statement in a program and visualizes it by coloring
the source code. This visualization intuitively presents the
regions inside a procedure that are responsible for the low
overall cohesion of the procedure to a maintainer. The ap-
proach is even able to suggest independent regions in the

source code with low cohesion as candidates for extraction.
In the next section, the background on dependence

graphs, slicing, and cohesion metrics will be recapitulated.
Section 3 presents statement-level cohesion metrics and
how they are visualized. Section 4 discusses related work
and the last section concludes with the implementation’s
current status.

2. Slices and Metrics

Ottenstein and Ottenstein [23] were the first to suggest
the use of program dependence graphs to compute Weiser’s
slices. Program dependence graphs mainly consist of nodes
representing the program’s statements along with control
and data dependence edges:

• Control dependence between two statement nodes ex-
ists if one statement controls the execution of the other.

• Data dependence between two statement nodes exists
if a variable’s definition at one statement might reach
the same variable’s usage at another statement.

Slicing without procedures is trivial: Just find reachable
nodes in the PDG [3]. The underlying assumption is that all
paths are realizable. This means that a possible execution of
the program exists for any path that executes the statements
in the same order.

The (backward) slice S(n) of a PDG at node n consists
of all nodes on which n (transitively) depends:

S(n) = {m | m →? n}

The node n is called the slicing criterion.
In presence of procedures, slicing is no longer trivial

in PDGs. If the calling context is ignored, the analysis is
context-insensitive, as a called procedure may return to a
call site different to the site it has been called from. How-
ever, if the calling context is obeyed, the results will be
much more precise. Paths along transitive dependences
are now considered realizable only if they obey the call-
ing context. Thus, slicing is context-sensitive if only real-
izable paths are traversed. Context-sensitive slicing is solv-
able efficiently—one has to generate summary edges at call

c©2007 IEEE. To be published in the Proceedings Seventh IEEE International Working Conference on Source Code Analysis and Manipulation, 2007 in
Paris, France. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

sites [6]: Summary edges represent the transitive depen-
dences of called procedures at call sites.

Weiser proposed several metrics based on slices in his
thesis [25], called tightness, overlap, coverage, parallelism,
and clustering. Ott, Thuss, and Bieman [1, 20, 21] formal-
ized most of them and introduced various others. Their
studies showed that overlap, coverage, and tightness were
the most useful ones. Their formalization uses the follow-
ing sets based on a module M which can be a procedure or
method.

• VM is the set of variables used by M (occur in M).

• VO ⊆ VM is the set of output variables, i.e. variables
that are used after the module M is left. For example,
these include the return value or global variables.

• SLx is the slice for a variable x ∈ VO.

• SLint =
⋂

x∈VO
SLx is the intersection of all slices

for the output variables of M .

SLx is the backward slice for variable x at the end of the
module. When PDGs are used for computation, this is com-
puted by a backward slice from the node that represents the
variable x before it is passed back to the actual parameter at
the call site.

Based on the above defined sets, the following metrics
are defined:

Coverage is a comparison of the length of the slices to the
length of the module:

Coverage(M) =
1

|VO|
∑

x∈VO

|SLx|
length(M)

(1)

Overlap is the average ratio of the number of the state-
ments in the intersection of all slices to the size of each
slice:

Overlap(M) =
1

|VO|
∑

x∈VO

|SLint|
|SLx|

(2)

Tightness is the number of statements included in every
slice compared to the number of statements in the mod-
ule:

Tightness(M) =
|SLint|

length(M)
(3)

For all metrics, higher values represent better cohesion.
Ott, Thuss, and Bieman have used Slice Profiles to explain
the computation of the metrics. A slice profile shows a mod-
ule’s source code together with a column for each slice SLx

that marks the statements included in that slice. Figure 1
shows a running example that computes a sum, a product,

s p f
1 void compute(int a, int b,
2 int* s, int* p,
3 int[] f) {
4 int i;

| | | 5 if (a > b) {
| | | 6 int t = a;
| | 7 a = b;
| | | 8 b = t;

9 };
| 10 *s = 0;
| 11 *p = 1;

| | 12 for (i = a; i<=b; ++i) {
| 13 *s += i;
| 14 *p *= i;

15 };
| 16 f[0] = 1;
| 17 f[1] = 1;
| 18 for (i = 2; i<=b; ++i) {
| 19 f[i] = f[i-1] + f[i-2];

20 };
21 };

Figure 1. A slice profile

and Fibonacci numbers. Its slice profile is shown in the first
three columns that show the slice SLx for the three output
variables s, p, and f (VO = {s, p, f}). The computed met-
rics’ values for the example are: Coverage = 7

13 , Overlap
= 3

7 , and Tightness = 3
13 . It seems that the procedure’s co-

hesiveness is not very good because the numbers are low.
The metrics alone give no clue why this is the case.

Longworth [18] already noted some inconsistencies
when applying the metrics. To improve the usefulness, the
meaning of a slice SLx has been changed and the results
have been studied. Ott and Thuss [22] have used metric
slices, which are the union of forward and backward slices
for the output variables. In the example, there is no differ-
ence between normal and metric slices. Later, Bieman and
Ott have refined metric slices further to data slices, which
are based on tokens, i.e. variables and constant definitions
and references. Harman et al. also refined the slices to be
more fine-grained, for example by using the number of dis-
tinct variables in an expression [5].

All metrics are targeted to measure the cohesion of a
module (procedure, method, class, unit, etc.). However, all
previous work only has shown (small) examples and none
showed that the computed values really measure the cohe-
sion. Moreover, these metrics cannot help the user to re-
structure the module to improve its cohesion. Thus, the next
section will present statement-level cohesion that can guide
the restructuring of modules with low cohesion.

2

3. Statement-Level Cohesion

After a ‘suspicious’ value of a computed cohesion met-
ric has been identified for a module, the metrics cannot help
a software maintainer to improve the module’s structure.
However, the slice profiles can be used to explain the met-
rics. A slice profile like the one in Figure 1 can immediately
give an overall impression of every statement’s cohesive-
ness: the upper part seems to be very cohesive while the
lower part seems to have low cohesion. However, such a
visualization is not suitable for large modules with many
slices. Therefore, this section presents a new approach
which uses the idea of slice profiles to define Statement-
Level Cohesion. Later on, this will be used for visualiza-
tion and for identification of code regions with low cohesion
which can be extracted to improve the module’s cohesion.

We define the cohesiveness of a statement s ∈ M as the
number of slices in which it is included in comparison to
the total number of slices:

(Simple)CohesivenessSL(s) =
|{x | s ∈ SLx}|

|VO|
(4)

The higher the computed value for a statement, the more
cohesive is the statement to other statements of the module.
At the statement level, there is no clear distinction between
cohesion and coupling: a cohesive region consists of cou-
pled statements. Thus, from now on we will only use the
term cohesion (or cohesiveness). Figure 2 shows the com-
puted cohesiveness for each statement of the example. This
clearly shows that the upper part which swaps a and b is
very cohesive while the lower part is not (two independent
computations are performed there).

The first definition of cohesiveness in Equation 4 does
not consider the slices’ size. However, this can produce
misleading results as Figure 3 shows. The procedure in the
figure has the metric values Coverage = 1

2 , Overlap = 0,
and Tightness = 0, which suggests that the procedure has
low cohesion. Here, all statements have a cohesiveness of 1

2
(shown in the first column) but most of the procedure is in-
deed cohesive. The values arise because a single statement
that is unrelated to the rest of the procedure exists. How-
ever, none of the metrics is able to identify that this is the
case let alone which statement is responsible.

The improved metric includes the size of the slices:

CohesivenessSL(s) =

∑
x|s∈SLx

|SLx|∑
x∈VO

|SLx|
(5)

This is basically the ratio of the size of all slices to which
the statement belongs and the size of all slices in the mod-
ule. The last column in Figure 3 shows the improved metric:
it is now obvious that only the line ‘*p = 1’ is not cohe-
sive to the rest of the procedure. The metrics’ values for

x
3

1 void compute(int a, int b,
2 int* s, int* p,
3 int[] f) {
4 int i;

3 5 if (a > b) {
3 6 int t = a;
2 7 a = b;
3 8 b = t;

9 };
1 10 *s = 0;
1 11 *p = 1;
2 12 for (i = a; i<=b; ++i) {
1 13 *s += i;
1 14 *p *= i;

15 };
1 16 f[0] = 1;
1 17 f[1] = 1;
1 18 for (i = 2; i<=b; ++i) {
1 19 f[i] = f[i-1] + f[i-2];

20 };
21 };

Figure 2. Cohesiveness of the statements

x
2

x
8

1 void compute(int a, int b,
2 int* s, int* p,
3 int[] f) {
4 int i;

1 5 if (a > b) { 7
1 6 int t = a; 7
1 7 a = b; 7
1 8 b = t; 7

9 };
1 10 *s = 0; 7
1 11 *p = 1; 1
1 12 for (i = a; i<=b; ++i) { 7
1 13 *s += i; 7

14 };
15 };

Figure 3. (Un)weighted Cohesiveness

3

a b f a b f a b f a b f x
9

x
35

s p f s s s p p p f f f
void compute(int a, int b,

int* s, int* p,
int[] f) {

int i;
| | | | | | | | | | | 6 34 if (a > b) {
| | | | | | | | | | | 6 34 int t = a;
| | | | | | | | | 4 24 a = b;
| | | | | | | | | | | 6 34 b = t;

};
| 0 0 *s = 0;
| 0 0 *p = 1;

| | | | | | | | 4 23 for (i = a; i<=b; ++i) {
| | | | | 2 11 *s += i;
| | | | | 2 12 *p *= i;

};
| 0 0 f[0] = 1;
| 0 0 f[1] = 1;

| | | | | 2 11 for (i = 2; i<=b; ++i) {
| | | | | | | 3 12 f[i] = f[i-1] + f[i-2];

};
};

Figure 4. A chop profile

the example in Figure 2 are the same as before, because the
three slices have the same size of seven elements, but this is
just incidental.

Note that metric slices have been used in the above def-
initions. The specific kind of the used slice is changeable.
To compute the slices SLx one can use traditional slices,
metric slices, data slices, etc. Another kind of slice seems
to be valuable in this context: Jackson and Rollins [7] in-
troduced Chopping, which reveals the statements involved
in a transitive dependence from one specific statement (the
source criterion) to another (the target criterion). For the
purpose of cohesion metrics, the slices are now replaced by
chops between the input and the output variables. Let VI

be the set of input variables, i.e. procedure arguments and
global variables (VI ⊆ VM) and let CHx,y be the chop from
x ∈ VI at the start of the module to y ∈ VO at the end of
the module.

The cohesiveness of a statement s ∈ M is then the num-
ber of chops in which it is included in comparison to the
number of all chops:

(Simple)CohesivenessCH(s) =
|{(y, x) | s ∈ CHy,x}|

|VI ||VO|
(6)

Again, inclusion of the chops’ sizes leads to a better and
more expressive metric:

CohesivenessCH(s) =

∑
(y,x)|s∈CHy,x

|CHy,x|∑
(y,x)|y∈VI ,x∈VO

|CHy,x|
(7)

Figure 4 shows a chop profile for the example. Remem-
ber that the output variables are VO = {s,p,f}. We require
that the underlying analysis can clearly identify the input
variables [4, 11, 17], thus VI = {a,b,f}. Note that the ar-
ray is an input variable because it is only partially modified
(only the first b array elements are overwritten and the rest
could be used after the procedure returns). Because a chop
inside a procedure is just the intersection of a forward and a
backward slice, the figure shows the forward slice profile for
the input variables in the first three columns and the back-
ward slice profile in the next three columns. Nine chops
have to be computed and the next nine columns show the
chop profile. The columns x

9 and x
35 show both versions of

CohesivenessCH , which only slightly differ.
The chop-based cohesiveness has different values to the

slice-based cohesiveness and a very interesting property:
The statements which assign a constant to the variables s,
p, and f all have a zero cohesiveness. They all have nei-
ther a data dependence to an input variable nor a control
dependence, and thus, they cannot be part of any chop.

Again, the specific kind of chop can be changed (tra-
ditional or token-based), however, a metric chop does not
make sense.

4

void compute(int a, int b,
int* s, int* p,
int[] f) {

int i;
if (a > b) {
int t = a;
a = b;
b = t;

};

*s = 0;

*p = 1;
for (i = a; i<=b; ++i) {

*s += i;

*p *= i;
};
f[0] = 1;
f[1] = 1;
for (i = 2; i<=b; ++i) {
f[i] = f[i-1] + f[i-2];

};
};

Figure 5. Visualization of the Cohesiveness

Visualization

A statement-level metric is of no use without an appro-
priate visualization, because of the amount of data. We have
implemented such a visualization inside our slicing system.
This visualization basically colorizes the source code based
on the computed cohesiveness values for all statements.
Figure 5 shows the visualization for the example.

The visualization can be used in positive and in negative
mode: In positive mode, the source code with higher cohe-
siveness is darker and in negative mode, it is lighter. We
have found the negative mode to be more useful as it high-
lights the parts of the source code with low cohesiveness.
Figure 6 shows the same visualization in negative mode and
it is obvious that the procedure’s larger part has a low cohe-
sion and should be restructured.

What cannot be shown here is a green/red visualization:
This visualization uses a color scale that moves from green
to red instead of light to dark. With this visualization, state-
ments with high cohesion are colored green and statement
with low cohesion are colored red.

Although only the visualization in the source code is
shown, this type of visualization can be used in a Seesoft [2]
visualization, where each line of code is mapped into a thin
colored row and each file is mapped into a small column.

In the following, the visualization will not be used in the
figures because of clearer presentation. Instead, the numer-
ical values of the metrics will be shown.

void compute(int a, int b,
int* s, int* p,
int[] f) {

int i;
if (a > b) {
int t = a;
a = b;
b = t;

};

*s = 0;

*p = 1;
for (i = a; i<=b; ++i) {

*s += i;

*p *= i;
};
f[0] = 1;
f[1] = 1;
for (i = 2; i<=b; ++i) {
f[i] = f[i-1] + f[i-2];

};
};

Figure 6. Visualization in negative mode

Suggestions for Restructuring

The visualization alone is able to show areas inside a
procedure which are not very cohesive. However, if such
areas exist it is desirable to suggest to the maintainer how
they can be removed to improve the procedure’s cohesion.
The following shows how this can be achieved.

The first step is to remove all interprocedural
nodes (i.e. actual-in, -out, and entry nodes) and edges
(i.e. parameter-in, -out, and call edges) from the PDG be-
cause only areas inside a procedure are to be removed or
restructured. The next step is to remove all nodes (and in-
cident edges) from the PDG that correspond to statements
with a high cohesiveness. This requires that the maintainer
specifies a limit c for cohesiveness. After all nodes corre-
sponding to statements s with Cohesiveness(s) > c have
been removed, the remaining graph consists of a set of iso-
lated regions, i.e. components that are not connected by a
control or data dependence edge. The isolated components
are regions with low cohesion and each of the components
is a candidate for extraction into a new module. The extrac-
tion not only improves the restructured module’s cohesion
but also ensures a high cohesion of the new modules.

When applied to the example in Figure 2, the removal
of all interprocedural nodes and edges results in the PDG
shown in Figure 7, where the gray nodes have a cohesive-
ness higher than c = 1

3 . The second step, the removal of all
nodes (resp. statements) with a high cohesiveness (the gray

5

1 void compute(int a, int b,
2 int* s, int* p,
3 int[] f) {
4 int i;
5 if (a > b) {
6 int t = a;
7 a = b;
8 b = t;
9 };

10 *s = 0; *s = 0;
11 *p = 1; *p = 1;
12 for (i = a; i<=b; ++i) {
13 *s += i; *s += i;
14 *p *= i; *p *= i;
15 };
16 f[0] = 1; f[0] = 1;
17 f[1] = 1; f[1] = 1;
18 for (i = 2; i<=b; ++i) { for (i = 2; i<=b; ++i) {
19 f[i] = f[i-1] + f[i-2]; f[i] = f[i-1] + f[i-2];
20 };
21 };

(a) removal of statements (b) component 1 (c) component 2 (d) component 3

Figure 8. Components after removal of highly cohesive statements

Figure 7. PDG for the example

nodes) together with the incident edges results in three iso-
lated regions that are not connected by a dependence edge:
(1) nodes 10 and 13, (2) nodes 11 and 14, and (3) nodes
16 – 19. When visualized in the source code, only the
highlighted areas in Figure 8 are not removed. The three
connected components can be shown independently to the
maintainer (b, c, and d); each of the component reveals
a more or less independent computation. The maintainer
can then decide that only component (d) is to be extracted.
Figure 9 shows the example after restructuring; component
(d) has been extracted to the new procedure fibonacci,
where all statements are now fully cohesive. The statements
in the now smaller procedure compute have at least a co-
hesiveness of 1

2 . That compute’s cohesion has improved
is also visible in the new metrics’ better values: Cover-
age = 7

9 , Overlap = 5
7 , and Tightness = 5

9 . Because
fibonacci has one single output variable, its metrics’
values are all 1. This restructuring has replaced a procedure
with low cohesion by two procedures with high cohesion.

The maintainer could also extract components (b) and
(c), which would require the duplication and extraction of
the for-statement in line 12. This restructuring would re-
sult in four procedures, each with a single task. All four
procedures would have fully cohesive statements and full
coverage, overlap, and tightness. However, he also might
not want to do this, because components (b) and (c) have a
low functional cohesion but a high logical cohesion.

6

x
2

1 void compute(int a, int b,
2 int* s, int* p) {
3 int i;

2 4 if (a > b) {
2 5 int t = a;
2 6 a = b;
2 7 b = t;

8 };
1 9 *s = 0;
1 10 *p = 1;
2 11 for (i = a; i<=b; ++i) {
1 12 *s += i;
1 13 *p *= i;

14 };
15 };

x
1

1 void fibonacci(int b, int[] f) {
2 int i;

1 3 f[0] = 1;
1 4 f[1] = 1;
1 5 for (i = 2; i<=b; ++i) {
1 6 f[i] = f[i-1] + f[i-2];

7 };
8 };

Figure 9. Cohesiveness after restructuring

Examples

We now present three examples taken from Bieman and
Ott’s article [1] to illustrate the slice-based metrics and com-
pare metric slices to normal backward slices. Figures 10,
11, and 12 show two modules decode and lookup which
are ‘merged’ to a third one. To the left of the source code,
the profile based on metric slices is shown together with
the cohesiveness of each statement as computed by the pre-
sented approach. To the right of the source code the same
data is given based on normal backward slices. Each of the
figures also give the values for coverage, overlap, and tight-
ness (based on the metric slices). It can be seen that the
three metrics have high values for the first two examples. In
the merged version, coverage is still very high, but overlap
and tightness are not. The low value for tightness indicates
the presence of a low cohesive area.

When the statements’ cohesiveness is examined, there
are differences between metric and backward slices. The
backward slices in Figure 10 reveal that the computations
for v and s are more or less independent (which is true;
however, they are logically cohesive). In contrast, the met-
ric slices result in different, but higher cohesiveness values
for the assignments to v and s. In Figure 11, the case is a

little bit different: the backward slices result in lower val-
ues for two statements in comparison to the values resulting
from metric slices.

A similar behavior can be observed in the merged proce-
dure shown in Figure 12. Because of the merge, the tight-
ness of this procedure has dropped. From the computed co-
hesiveness values for the statements, it is immediately vis-
ible which statements are responsible for the drop. For the
backward slices, the set of statements with low cohesion is
even larger than for metric slices.

Moreover, while the overall metrics for coverage, over-
lap, and tightness are all still above 1

2 , the statement level
cohesion metrics reveal that the statements merged from
decode are a region of low cohesion.

4. Related Work

Weiser proposed several metrics based on slices in his
thesis [25] which he has implemented and evaluated in a
prototype. Longworth [18] investigated the slices and found
that several of them are related to cohesion. Ott and Thuss
[21] studied this relationship based on the processing ele-
ment flow graph. Though this is related to the program de-
pendence graph, they use Weiser’s slicing. Later, the same
authors resolved some problems identified by Longworth
with the introduction of metric slices [22]. Further improve-
ments have been introduced by Bieman and Ott [1] by using
token-based slices instead of statement-based slices. Har-
man et al. also refined the slices to be more fine-grained,
for example by using the number of distinct variables in an
expression [5]. The token-based metrics have later been ex-
tended to object-oriented languages [20].

The first empirical study by Karstu [8] was limited be-
cause of a limited slicer. The only large scale empirical
study has been done by Meyers and Binkley [19].

After low cohesive areas have been identified by the pre-
sented approach, the extraction or restructuring of the areas
can be automated with approaches also based on slicing.
Lakhotia and Deprez [12, 13] specifically target restructur-
ing of procedures with low cohesion. Similar automated
approaches to extract code regions from procedures have
been researched by Lanubile [14, 15] and Komondoor and
Horwitz [9, 10].

Pan et al. [24] introduced 13 simple metrics based on
program slicing and examined if the metrics can predict that
a file or procedure contains bugs. The presented metrics
have a slightly higher precision and recall in comparison to
traditional metrics.

Closely related to cohesion metrics are metrics that mea-
sure coupling. Li et al. [16] examined some slice-based con-
ditions that are necessary for coupling as an initial step for
slice-based coupling metrics.

7

metric backward
v s x

8 v s x
6

void decode(int* v, int* s) {
5 3 8 if (v < 5000) { 3 3 6
5 5 *v = *v * 8 % 10; 3 3
5 3 8 *s = 1; 3 3

} else {
5 5 *v = *v % 10; 3 3
5 3 8 *s = 0; 3 3

}
};

Coverage = 4
5 , Overlap = 4

5 , Tightness = 3
5

Figure 10. Procedure Decode

metric backward
s p a x

22 s p a x
20

void lookup(table A[], int size, keytype key,
int* s, int* p, char** a) {

8 7 7 22 int i = 1; 6 7 7 20
8 7 7 22 *s = 0; 6 7 7 20
8 7 7 22 while ((*s == 0) && (i < size)) { 6 7 7 20
8 7 7 22 if (A[i].name == key) { 6 7 7 20
8 7 7 22 *s = 1; 6 7 7 20
8 7 15 *p = A[i].value; 7 7
8 7 15 *a = A[i].address; 7 7

} else {
8 7 7 22 ++i; 6 7 7 20

}
}

};

Coverage = 11
12 , Overlap = 23

24 , Tightness = 7
8

Figure 11. Procedure Lookup

5. Conclusions and Further Work

We have presented a technique to measure the cohesive-
ness on the level of statements based on previous work on
slice profiles and cohesion metrics that are computed by
slicing. Unlike the previous cohesion metrics that only mea-
sure the cohesion of a module (procedure), the presented
approach is able to identify areas with low cohesion inside
procedures. This enables the maintainer to identify the pro-
cedure’s regions that should be extracted to improve the pro-
cedure’s cohesion. The presented approach supports this
task by visualizing the cohesiveness by coloring the source
code and by suggesting connected components with low co-
hesion. If the suggested components are extracted, the mod-
ule cohesion improves and the new modules made from the
extracted components have a high cohesion. It is important

to note that although we have only focused on procedures as
modules, it is straight-forward to apply the same approach
to larger units, for example classes or packages.

The approach presented here has been partially imple-
mented inside our slicing system. Currently, the slice-based
and the chop-based cohesiveness can be computed and vi-
sualized: The system generates the PDG from the source
code of a program to be analyzed. After the cohesiveness is
computed for every statement, the source code is presented
with the source code colored according to the statements’
cohesiveness. The implementation of the technique for the
suggestion of connected components with low cohesion is
underway. As soon as the implementation is complete, the
system will enable software maintainers to rapidly identify
code areas that should be extracted if the goal is to im-
prove the procedures’ cohesion. This will not only enable

8

metric backward
s p a x

30 s p a x
27

void lookup2(table A[], int size, keytype key,
int* s, int* p, char** a) {

11 12 7 30 int i = 1; 10 10 7 27
11 12 7 30 *s = 0; 10 10 7 27
11 12 7 30 while ((*s == 0) && (i < size)) { 10 10 7 27
11 12 7 30 if (A[i].name == key) { 10 10 7 27
11 12 7 30 *s = 1; 10 10 7 27
11 12 23 *p = A[i].value; 10 10 20
11 7 18 *a = A[i].address; 7 7

} else {
11 12 7 30 ++i; 10 10 7 27

}
}

11 12 23 if (*p < 5000) { 10 10 20
12 12 *p = *p * 8 % 10; 10 10

11 12 23 *s = 1; 10 10
} else {

12 12 *p = *p % 10; 10 10
11 12 23 *s = 0; 10 10

}
};

Coverage = 10
13 , Overlap = 293

462 , Tightness = 6
13

Figure 12. Procedure Lookup2

the maintainer to constantly monitor the cohesion of proce-
dures during a software’s evolution but also allows for fast
countermeasures if cohesion degrades.

References

[1] J. M. Bieman and L. M. Ott. Measuring functional
cohesion. IEEE Trans. Softw. Eng., 20(8):644–657,
Aug. 1994.

[2] S. Eick, J. Steffen, and E. S. Jr. Seesoft - a tool for vi-
sualizing line oriented software statistics. IEEE Trans.
Softw. Eng., 18(11):957–968, 1992.

[3] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Trans. Prog. Lang. Syst., 9(3):319–349,
July 1987.

[4] I. Forgcs and T. Gyimthy. An efficient interprocedu-
ral slicing method for large programs. In Proceedings
of SEKE’97, the 9th International Conference on Soft-
ware Engineering & Knowledge Engineering, pages
279–287, 1997.

[5] M. Harman, S. Danicic, B. Sivagurunathan, B. Jones,
and Y. Sivagurunathan. Cohesion metrics. In 8th In-
ternational Quality Week, May 1995.

[6] S. B. Horwitz, T. W. Reps, and D. Binkley. Interpro-
cedural slicing using dependence graphs. ACM Trans.
Prog. Lang. Syst., 12(1):26–60, Jan. 1990.

[7] D. Jackson and E. J. Rollins. A new model of program
dependences for reverse engineering. In Proceedings
of the second ACM SIGSOFT Symposium on Founda-
tions of Software Engineering, pages 2–10, 1994.

[8] S. Karstu. An examination of the behavior of slice
based cohesion measures. Master’s thesis, Depart-
ment of Computer Science, Michigan Technological
University, 1994.

[9] R. Komondoor and S. Horwitz. Semantics-preserving
procedure extraction. In Proc. of 27th ACM Symp. on
Principles of Programming Languages (POPL), 2000.

[10] R. Komondoor and S. Horwitz. Effective, automatic
procedure extraction. In Proc. of 11th Int. Workshop
on Program Comprehension (IWPC), 2003.

9

[11] J. Krinke. Advanced Slicing of Sequential and Con-
current Programs. PhD thesis, Universität Passau,
Apr. 2003.

[12] A. Lakhotia and J.-C. Deprez. Restructuring programs
by tucking statements into functions. Information and
Software Technology, 40(11–12):677–690, 1998.

[13] A. Lakhotia and J.-C. Deprez. Restructuring functions
with low cohesion. In Working Conference on Reverse
Engineering, pages 36–46, 1999.

[14] F. Lanubile and G. Visaggio. Function recovery based
on program slicing. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages
396–405, 1993.

[15] F. Lanubile and G. Visaggio. Extracting reusable func-
tions by flow graph-based program slicing. IEEE
Trans. Softw. Eng., 23(4):246–259, Apr. 1997.

[16] B. Li, Y. Zhou, J. Mo, and Y. Wang. Analyzing the
conditions of coupling existence based on program
slicing and some abstract information-flow. In Pro-
ceedings of the 6th ACIS International Conference
on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD
2005), pages 96–101, 2005.

[17] P. Livadas and S. Croll. A new algorithm for the calcu-
lation of transitive dependences. Journal of Software
Maintenance, 6:100–127, 1994.

[18] H. D. Longworth. Slice based program metrics. Mas-
ter’s thesis, Michigan Technological University, 1985.

[19] T. Meyers and D. W. Binkley. Slice-based cohe-
sion metrics and software intervention. In 11th IEEE
Working Conference on Reverse Engineering (WCRE
2004), pages 256–266, Los Alamitos, California,
USA, nov 2004. IEEE Computer Society Press.

[20] L. M. Ott and J. M. Bieman. Program slices as an ab-
straction for cohesion measurement. Information and
Software Technology, 40(11-12):691–700, 1998.

[21] L. M. Ott and J. J. Thuss. The relationship between
slices and module cohesion. In Proceedings of the
11th ACM conference on Software Engineering, pages
198–204, 1989.

[22] L. M. Ott and J. J. Thuss. Slice based metrics for es-
timating cohesion. In Proceedings of the IEEE-CS In-
ternational Metrics Symposium, pages 71–81, 1993.

[23] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in a software development environ-
ment. In Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Soft-
ware Development Environments, volume 19(5) of
ACM SIGPLAN Notices, pages 177–184, 1984.

[24] K. Pan, S. Kim, and J. E. James Whitehead. Bug
classification using program slicing metrics. In Pro-
ceedings of the Sixth IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM
2006), pages 31–40, 2006.

[25] M. Weiser. Program slices: formal, psychological,
and practical investigations of an automatic program
abstraction method. PhD thesis, University of Michi-
gan, Ann Arbor, 1979.

10

