
An Integrated Crosscutting Concern Migration Strategy
and its Application to JHOTDRAW

Marius Marin
Delft University of Technology

The Netherlands
A.M.Marin@tudelft.nl

Leon Moonen
Delft University of Technology

The Netherlands
Leon.Moonen@computer.org

Arie van Deursen
Delft Univ. of Technology & CWI

The Netherlands
Arie.vanDeursen@tudelft.nl

Abstract
In this paper we propose a systematic strategy for migrat-
ing crosscutting concerns in existing object-oriented systems
to aspect-based solutions. The proposed strategy consists of
four steps: mining, exploration, documentation and refactor-
ing of crosscutting concerns. We discuss in detail a new ap-
proach to aspect refactoring that is fully integrated with our
strategy, and apply the whole strategy to an object-oriented
system, namely the JHOTDRAW framework. The result of this
migration is made available as an open-source project, which
is the largest aspect refactoring available to date. We report
on our experiences with conducting this case study and re-
flect on the success and challenges of the migration process,
as well as on the feasibility of automatic aspect refactoring.

1. Introduction
The tangling and scattering that results from implementing
crosscutting concerns in a software system using traditional
object-oriented programming is a known challenge to pro-
gram comprehension and software evolution. One approach
to mitigate these issues is to migrate the system to aspect-
oriented programming (AOP) and transform the crosscutting
concerns into aspects, a process known as aspect refactoring.

Despite significant research efforts on various parts of the
refactoring of crosscutting concerns from existing systems,
to date there exists no compelling show-case for such a com-
plete migration. One of the main causes for this void is the
fact that there is no clearly defined, coherent migration strat-
egy detailing the steps to be taken to perform this process.

Successful migration requires a strategy comprising steps
like identification of the concerns (i.e., aspect mining), de-
scription of the concerns to be refactored, and consistent
refactoring solutions to be applied. Moreover, such a strat-
egy requires integrated migration steps, so that aspect min-
ing results, for example, can be consistently mapped onto
concerns in code, and further refactored by general aspect so-
lutions. The present state of the art prevents developers and
practitioners from experimenting with a complete migration
process and assessing the benefits of migrating to AOP.

In this paper, we propose such an integrated strategy for
migrating crosscutting concerns to aspects, which consists of

four main steps: (1) idiom-driven identification of crosscut-
ting concerns in an existing system (aspect mining); (2) ex-
ploration of (the context of) the concerns identified in the
previous step; (3) query-based modeling and documentation
of crosscutting concerns in the system; (4) template-based
refactoring of the object-oriented idioms into AOP solutions.

Our strategy builds upon the classification and decom-
position of crosscutting concerns in so-called crosscutting
concern sorts that we proposed earlier [11, 13]. Each sort
describes the typical implementation idiom and relation of
crosscutting concerns. Sorts act as glue between the succes-
sive steps of the migration: The mining step in our strategy
uses the sort-specific idioms to define search-goals for iden-
tifying crosscutting concerns that belong to a specific sort
(i.e., sort instances). To support the exploration and docu-
mentation steps, we have formalized the concern sorts using
queries over source code and implemented these in a tool for
browsing and modeling crosscutting concerns [14].

While the first three steps of our approach have been cov-
ered in our earlier work, this paper focuses on the fourth step
and its connection with the three preceding steps. In particu-
lar, we define template solutions for the aspect refactoring of
our sorts (to AspectJ). Furthermore, we describe a case study
in which we apply the whole migration strategy to JHOT-
DRAW,1 an object-oriented application used in other aspect
mining and refactoring studies as well [10, 2, 12, 1]. The re-
sults of our migration are available under version control as
an open-source project on sourceforge called AJHOTDRAW,
which is also the largest aspect refactoring publicly available
to date that we are aware of.

The remainder of the paper is organized as follows. In
next section, we recall the notion of crosscutting concerns
sorts. We describe the migration strategy and elaborate on
the first three steps in Section 3. The sort-based aspect refac-
toring approach that we introduce for the fourth step is pre-
sented in Section 4. Section 5 covers our experiences with
migrating crosscutting concerns in JHOTDRAW to aspect so-
lutions. Section 6 discusses the results and outlines a number
of lessons learned. We conclude with an overview of related
work and recommendations for future research.

1 http://jhotdraw.org

1



2. Crosscutting concern sorts
A systematic migration strategy requires a consistent way to
address crosscutting concerns in source code. To this end, we
distinguish a number of atomic crosscutting concerns (i.e.,
concerns that cannot be split into smaller, still meaningful
concerns) that share properties like their implementation id-
ioms and relations. We group concerns that share such prop-
erties in categories called crosscutting concern sorts [11].
These sorts can be used on their own, but can also be com-
posed to construct more complex crosscutting designs, for
example, the Observer pattern, often used as a typical exam-
ple of crosscuttingness.

The first two columns of Table 1 describe the identi-
fied sorts and show several examples of instances (the other
columns will be introduced in later sections). Consistent be-
havior, for instance, groups concerns whose implementation
consists of scattered calls to a specific method implement-
ing the crosscutting functionality. Instances of this sort in-
clude, for example, a logging concern, a simple authenti-
cation or authorization concern implemented as a call to a
method checking credentials, or a mechanism for updating
observers using calls to a notification method.

Similarly, the idiom for implementation of secondary
roles, common in design patterns like Observer or Visitor,
as well as in mechanisms for persistence, is described by the
Role superimposition sort.

Composite crosscutting designs exhibit multiple sort in-
stances in their implementation: the aforementioned Ob-
server pattern, for example, comprises two instances of Role
superimposition, for the Subject and the Observer role re-
spectively. Furthermore, it comprises instances of Consistent
behavior, like the concern for notification of observers, or
the one for observers registration. Instances of our sorts are
therefore building blocks for modeling and describing cross-
cutting functionality.

3. An integrated migration strategy
In this section, we define an integrated strategy for migrat-
ing crosscutting concerns in existing systems to aspect-based
solutions. The strategy consists of four steps:
Step 1. Idiom-driven crosscutting concern identification

(also known as aspect mining).

Step 2. Concern exploration.

Step 3. Query-based concern modeling and documentation.

Step 4. Sort-based aspect refactoring.
The remainder of this section discusses the first three steps in
more detail and the next section presents the fourth step. We
show how the steps are integrated via crosscutting concern
sorts using examples from our JHOTDRAW to AJHOTDRAW
migration experience.

3.1. Aspect mining
In our earlier work we have proposed and implemented an
idiom-driven approach to aspect mining based on crosscut-
ting concern sorts [12]. The approach supports the design of
aspect mining techniques that target instances of a specific
sort by searching for the sort’s implementation idiom.

The third column in Table 1 shows the implementation id-
ioms associated with each of the sorts. Consider for example
the commands in a drawing application, like JHOTDRAW,
that carry out tasks in response to user actions. Each com-
mand concludes its execution with a call to the checkDamage
method in the drawing view, which updates the view with
changes triggered by the command. The notification concern
is an instance of Consistent behavior whose implementation
idiom is invocation of a specific method from a (large) set of
methods. Aspect mining techniques such as Fan-in analysis
[10] or Grouped calls analysis [12] exploit idioms such as
this one in their search process.

We have implemented the two mining techniques men-
tioned above and an additional technique that targets in-
stances of Redirection layer in our aspect mining tool FINT2

[10, 12]. The results of applying FINT to JHOTDRAW are
the starting point of our migration case study.

Like the notification mechanism above, we have found the
Consistent behavior idiom in multiple concerns implement-
ing support for commands and undo operations. Examples
include consistently checking the reference to the active view
before execution of each command, consistent initialization
of Command objects by means of super calls, or consistent
checks implemented by all actions to undo a command. Our
search for idioms of the Redirection layer pointed us to wrap-
per objects for undo-able commands: methods in the wrapper
delegate calls to their wrapped command object.

3.2. Concern exploration
Aspect mining often does not yield complete crosscutting
concern instances, but just concern seeds: (possibly incom-
plete) sets of program elements that belong to a particular
crosscutting concern.

The second step of our strategy, concern exploration, aims
at expanding mining results (i.e., concern seeds) to the com-
plete implementation of the associated concerns. In this step,
we start from the discovered seeds and use the specific re-
lation of the sort for the seed’s concern to identify all the
participants in the concern implementation.

In our Consistent behavior example, this means looking at
all call relations directed to the method checkDamage (or an-
other method, depending on the particular concern targeted).
As it turns out, not all of the 28 calls to this method that
we found are part of the concern of interest, but around two-
thirds of them, namely those from Command classes. Sim-
ilarly, the Grouped calls mining technique, which applies

2 Available from http://swerl.tudelft.nl/view/AMR/FINT

2



Sort and Intent Examples Idiom Template aspect solution
(Method) Consistent Behavior
(CB): A set of methods consis-
tently invoke a specific action as
a step in their execution.

Logging of exception
events in system; Wrap-
ping business service ex-
ceptions and re-throwing
them as new exception
type [10]; Notification of
Figure change events.

Method invocations
from set of methods.

Pointcut and advice mechanisms.
around(..) : callersContext(..){

invokeCB(..); //before
proceed();
// or after: invokeCB(..);

}

Redirection Layer (RL): A type
acts as a front-end interface hav-
ing its methods responsible for
receiving calls and redirecting
them to dedicated methods of a
specific reference, optionally ex-
ecuting additional functionality.

Border decorations for
Figure elements (Deco-
rator pattern); Command
wrapper for undo support.

Redirector type
whose methods
consistently for-
ward calls to pair
methods in receiver.

Pointcut and around advice to replace each redirection.
around(..) : call Receiver.m(..) &&

filteredCallers(..) {
addBehavior1();
proceed(..); //redirection
addBehavior2();

}
Expose Context (EC): Context
Passing: Methods in a call
chain consistently use parame-
ter(s) to propagate context infor-
mation along the chain.

Transaction manage-
ment [8]; Credentials
passing for authorization;
Progress monitor for
long-running operations.

Method in chain
passes parameter as
argument to callee.

Pointcut and advice, where the point cut collects the context to
be passed - Wormhole [8]
around(<caller context>, <callee context>):

cflow(callerSpace(<caller context>)) &&
calleeSpace(<callee context>){
// ... advice body

}
Role Superimposition (RSI):
Types extend their core function-
ality through the implementation
of a secondary role.

Figure elements observed
by views for changes
(Subject role); Visitable
elements (Visitor pat-
tern); Storable figures
(Persistence) [10].

Set of types (declare
and) implement
member roles
(which are possi-
bly declared by a
distinct interface).

Introduction mechanisms.
declare parents :

Type implements SecondaryRole;
Modifiers Type Type.roleField;
Modifiers Type Type.roleMethod(..){

...//original implementation
};

Support Classes for Role Super-
imposition (SC): Types imple-
ment secondary roles by enclos-
ing nested support classes. The
nesting enforces (and explicates)
the relation between the enclos-
ing and the support class.

Undo support for Com-
mand elements; Event dis-
patcher for observers’ no-
tification.

Set of types (in hi-
erarchy) implement
Role using nested
classes.

The desired solution, introduction for nested classes, is not sup-
ported by AspectJ. Our solution is to move the support classes
to the aspect.

Exception Propagation (EP):
methods in call chain consis-
tently (re-)throw exceptions
from their callees in the absence
of an appropriate answer.

IOException thrown if
Figure elements recovery
fails; Checked SQLExcep-
tion thrown from methods
in the JDBC API.

Method in call chain
re-throws exception
to caller.

Softening exceptions mechanisms.
declare soft : ExceptionType :

(call(* rootException(..)
throws ExceptionType));

Capture SoftException at top of the call chain.

Table 1. Crosscutting concern sorts.

a more conservative search, covers only partially the set of
calls participating in the concern.

A number of tools provide (partial) support for exploring
seeds and expanding them to full concerns, and for querying
source code for concern sort relations: FINT, the Eclipse
IDE, the Concern Manipulation Environment (CME) [18],
FEAT [16], JQuery [7], CodeQuest [4], or SOQUET [14].
The same tools can be used to further understand the context
enclosing the discovered crosscutting concern. At this step,
we can see, for example, how the identified sort instances in
command and undo support relate to each other: commands
that can be undone enclose a specialized UndoActivity class
that knows how to revert the effects of the command’s execu-
tion. Two of our mined sort instances cover the key methods
of the two classes: the execute method in a command, and
the undo one in the enclosed undo activity.

3.3. Concern modeling and documentation
Most approaches to concern modeling and their tool support
do not enforce consistency across the representation of cross-
cutting concerns. The decision of what is crosscutting in a
system, and how to best represent that, lies with the user of
such concern modeling tools. Such a concern model can con-
tain ad-hoc collections of program elements, like methods
and classes, that participate in a concern’s implementation.

However, to ensure generally applicable solutions for con-
cern migration, we need a coherent way to describe similar
concerns and their common properties. To this end, we have
defined queries for each of our crosscutting concern sorts
which search for the sort’s specific relation between source
code elements. For more information on these sort queries,
we refer to our earlier work [13], which formalizes these

3



queries using relation calculus over source models extracted
from the system’s source code.

We have implemented support for this third migration step
in our concern modeling tool SoQueT3 [14]. Figure 1 shows
two of the main views of the tool. The Concern model
view allows us to organize concerns hierarchically, with sort
instances and their associated queries as leaf-elements and
composite concerns describing more complex crosscutting
designs as parents. The user can select a sort instance in
the concern model and execute its query; The results of the
query are displayed in the Search (Sorts Result) view, from
where they can be navigated to their source code implemen-
tation. To add a new sort instance to the model, the user
launches the dialog providing the query templates for each
sort, and parameterizes the query for a given crosscutting
concern. For example, to document our Consistent behav-
ior instance for notification of views, we use the knowledge
gained at the previous steps and search for all the calls to the
checkDamage method from methods in the Command hierar-
chy. The method and the hierarchy are our input parameters
to the query. The instances can then be added to the model
from the results view.

A part of the concern model built to document concerns
in JHOTDRAW is shown in Figure 1. The model is available
for download at the same web-site as the tool and covers over
100 sort instances.3 In Section 5, we use this documentation
to guide our refactoring and configure the aspect solutions.

4. Aspect refactoring
We employ a sort-based, idiom-driven approach to aspect
refactoring that allows for consistent integration with the pre-
vious steps of our migration strategy. Furthermore, we define
template aspect solutions for each of our concern sorts that
we can instantiate to refactor an occurrence of that sort. Like
the previous steps, the refactoring approach addresses cross-
cuttingness at the level of atomic concerns, which provides
the optimal trade-off between complexity of the refactoring
and comprehensibility of the refactored element.

The template aspect refactorings for each sort are sum-
marized in the last column of Table 1. A solution basically
consist of one aspect language mechanism. At the moment,
however, some sorts do not have an equivalent mechanism
in AspectJ (or any other aspect language existing at this mo-
ment). Support classes, for example, cannot be introduced
similarly to role members, although, as we shall see in Sec-
tion 6, this would be a desired refactoring.

To refactor a sort instance, we start from its query-based
documentation (in SOQUET). The query points us to the el-
ements participating in the concern, which we use to config-
ure the template aspect solution. For example, the query for a
Consistent behavior instance indicates the callers to be cap-

3 Available from http://swerl.tudelft.nl/view/AMR/SoQueT

tured by a pointcut definition (the source context) and the ac-
tion to be introduced by the advice (the target context). Other
configurable elements, such as the type of advice to introduce
the crosscutting call (e.g., before, after, after throwing, etc.),
are decided at the refactoring time.

The solution described in Table 1 for the Redirection layer
sort is a common approach to refactoring implementations of
the Decorator pattern [5, 9]. This consists of replacing the
redirector class by an aspect that intercepts (relevant) calls
to the methods receiving the redirection, and then adds the
redirector’s functionality by means of an advice.

The aspect solution for Expose context instances is dis-
cussed by Laddad as the Wormhole pattern [8]: the extra pa-
rameter used to pass context is replaced by using a pointcut
to obtain the context from the caller and an advice that makes
the context available to the caller’s control flow.

Solutions for static crosscutting, like introduction and de-
clare soft mechanisms in AspectJ, apply to two of the sorts
in the list, Role Superimposition and Exception propagation
respectively. The elements to instantiate these aspect tem-
plates are again available through the sort-based documenta-
tion of the concerns: they indicate the members of a type’s
secondary role to be moved to and then introduced from an
aspect, or the checked exception to be turned into an AspectJ
soft exception. Soft exceptions, unlike checked ones, do not
need to be caught or re-thrown. This allows us to remove
the throws clauses from the (transitive) callers of the method
initiating the exception propagation. The method at the top
of the call chain that deals with the exception has now to
catch the soft exception that wraps the original checked one.
The top method assumes knowledge of the wrapped excep-
tion that it has to extract and cast. The code to handle the
(cast) exception requires no modifications.

5. Aspect Refactoring of JHOTDRAW

We have used the sort-based migration strategy to refactor
a number of crosscutting concerns in JHOTDRAW towards
an aspect-oriented solution. Based on these experiments, we
would like to obtain answers to the following questions:

1. Are the template aspect solutions proposed in Section 4
applicable in practice?

2. What are the risks and benefits of adopting refactoring
strategy that is sort-based?

3. What level of automation of all four steps and the fourth
refactoring step in particular is feasible?

4. Do the refactorings carried out lead to a better separa-
tion of concerns?

In the present section, we report our observations and
experiences regarding the migration of specific crosscutting
concerns towards aspects in JHOTDRAW. In the next sec-
tion, we return to our questions, and try to formulate answers
to them based on the findings presented here.

4



Figure 1. SOQUET documentation of the concerns for Command support in JHOTDRAW.

5.1. AJHOTDRAW

We share the refactored version of JHOTDRAW as an open-
source project on sourceforge4: AJHOTDRAW is, to our
knowledge, the largest migration to aspects available to date.
A transparent, gradual migration process is important for
building confidence in the aspect-oriented solution. There-
fore, our refactorings aim at maintaining the conceptual in-
tegrity and stay close to the original design. In addition, by
publishing the refactoring steps in a versioned repository, we
provide insight in the migration process and enable traceabil-
ity, making the refactored system easier to understand.

Our next discussion focuses on the refactoring of sort in-
stances contained in the implementation of the command and
undo functionality, which we also used in Section 3 to ex-
plain the first three steps of the approach. We use the or-
ganization of concerns in the concern model initiating the
refactoring to design the package and type structure of our
aspect solutions. The solutions discussed below have been
integrated with the source code available on the public repos-
itory.

5.2. Consistent behavior in Command
JHOTDRAW makes use of the Command design pattern in or-
der to separate the user interface from the underlying model,
and to support such features as undoing and redoing user
commands. Each command has to realize the Command in-

4 http://sourceforge.net/projects/ajhotdraw/

terface, for which a default implementation is provided in the
AbstractCommand class. The key method is execute, which
takes care of actually carrying out the command (such as
pasting text, duplicating a figure, inserting an image, etc.).

A typical implementation of a command is highly cross-
cutting, with the Command top interface defining three dif-
ferent roles: besides their core functionality, commands are
undo-able as well as observable elements. The support for
the secondary roles counts for half of the Command’s mem-
bers. Similarly, the execute method in a typical concrete
command implements multiple concerns.

Each execute method should start with a consistency
check verifying that the underlying “view” exists. Therefore,
each concrete implementation of execute starts with a call

public class AbstractCommand implements Command {
...
public void execute() {

if (view() == null) {
throw new JHotDrawRuntimeException(

"execute should NOT be getting called when" +
"view() == null");

} } }

public class PasteCommand extends AbtractCommand {
...
public void execute() {

super.execute();
...

} }

Figure 2. Consistent check - super method idiom.

5



pointcut cmdExecute(AbstractCommand aCommand) :
this(aCommand)
&& execution(void AbstractCommand+.execute())
&& !within(*..DrawApplication.*);

before(AbstractCommand aCommand) : cmdExecute(aCommand) {
if (aCommand.view() == null) {

throw new JHotDrawRuntimeException("...");
} }

Figure 3. Enforcing consistency using advice.

to the execute implementation in the superclass, which is al-
ways the one from the AbstractCommand. This is illustrated
in Figure 2.

We apply a Consistent behavior refactoring template from
the last column in Table 1 using a pointcut capturing all
execute methods, and putting the check itself in the advice.
Observe that mimicking the implementation where the check
is in a super method is not possible in AspectJ: super methods
cannot be accessed when advising a method. The resulting
solution is shown in Figure 3.

The only surprise in this code may be the within clause
in the pointcut. In the exploration step, we learned that
anonymous subclasses of AbstractCommand do not imple-
ment the consistency check. Such classes are used for sim-
ple commands like printing, saving, and exiting the applica-
tion. Since AspectJ does not provide a direct way to exclude
anonymous classes in a pointcut, we used the within opera-
tor to exclude executions occurring in the context of the top
level object creating the full user interface. One can also ar-
gue that the anonymous classes should include this check (in
which case the exclusion can be omitted from the pointcut),
but, as stated before, we focus on keeping the behavior as it
was, not on modifying it.

Besides the separation of the consistency check from the
core logic of the commands, another benefit of the aspect ap-
proach is that consistency checks cannot be forgotten. This is
illustrated by a number of the anonymous classes, but also by
one non-anonymous command,5 which does not extend the
AbstractCommand default implementation. Consequently, it
cannot reuse the consistency check using a supercall. Inspec-
tion of the execute implementation, however, clearly shows
that the code exits with a null pointer exception in case the
check fails. This suggests that the aspect that we are looking
for should implement the check not only for the Abstract-
Command class, but for all the Command implementations.

5.3. Undo Functionality
Support for “undo” functionality was added in JHOTDRAW
version 5.4. As can be imagined, it is a concern that cuts
across many different classes. More than 30 elements of
the JHOTDRAW framework, comprising commands, tools
and handles, have associated undo constructs to revert the

5Namely, the UndoableCommand.

changes spawned by their underlying activities. The com-
mands group is the largest in terms of defined undo activities.

The participants of the “Undo” functionality have the fol-
lowing responsibilities:
• Each command is associated with one undo activity,

whose method undo can be invoked to revert the com-
mand. The undo activity is implemented in a nested
class of the command, which is instantiated using a fac-
tory method called createUndoActivity.

• Prior to the execution of the command’s core logic, the
command saves a reference to its associated undo activ-
ity, by calling a dedicated setter method.

• The primary abstraction in the undo activity is the list of
affected figures: when the command’s execute method
is invoked, the relevant state of the affected figures is
stored in the undo activity.

• Undo activities are maintained on a stack by the undo
manager.

5.3.1. Support classes for role superimposition

The refactoring that we propose for Undo consists of as-
sociating a dedicated undo-aspect to each undo-able com-
mand. The aspect implements the entire undo functionality
for the given command, while the associated command class
remains oblivious to its secondary (undo) concern.

We use naming conventions to relate the aspect to its sup-
ported command class. In a successive step, we refactor each
of the sort instances in the undo support. The command’s
nested UndoActivity class belongs to a Support classes in-
stance. In the absence of introduction mechanisms for nested
classes in AspectJ, our aspect solution consists of moving the
UndoActivity class into the aspect.

The factory methods for the undo activities
(createUndoActivity()), as well as the members for
managing the reference to the command’s undo activity
belong to an instance of Role superimposition. The role
members move to the aspect, from where they are introduced
back into the associated command classes using inter-type
declarations. The design, however, suffers modifications as
the visibility of the undo factory methods has been altered:
ASPECTJ cannot be used to introduce the required factory
method as protected.

5.3.2. Consistent behavior

The invocations in the execute method that are responsible
for setting up the undo activity implement Consistent behav-
ior concerns: the calls are taken out of the execute method,
and woven into it by means of advice. In some cases the
corresponding pointcut simply needs to capture all execute
method calls. However, in other cases the pointcut is more
complex, depending on the way the undo code is mixed with
the regular code.

6



public class PasteCommand extends FigureTransferCommand {
public void execute() {

...
FigureSelection selection = (FigureSelection)

Clipboard.getClipboard().getContents();
if (selection != null) {

setUndoActivity(createUndoActivity());
... //core command logic and other undo setup
FigureEnumeration fe = insertFigures(...);
getUndoActivity().setAffectedFigures(fe);
...

} } }

Figure 4. The original PasteCommand class.

As an example to illustrate that automating such refac-
torings is not at all straightforward, consider the paste-
command, whose execute method consists of retrieving the
selected figures from the clipboard, inserting them into the
current view, and clearing the clipboard. All this is done in
a single method, using local variables and if-then-else state-
ments to deal with situations like pasting from an empty clip-
board. The undo aspect will require the same conditional
logic, and access to the same data in the same order. The
following alternatives are possible for aspect refactoring:
• if all getters are side effect free, an approach is to setup

the undo activity in a simple before advice. In JHOT-
DRAW, however, this is not the case, for example be-
cause of figure enumerators that have an internal state.

• an alternative is to intercept relevant getters, keep track
of the data locally in the advice as well, and inject advice
after all data has been collected. This is the approach
we follow, but some of the pointcuts are somewhat arti-
ficial. Figure 5 shows such a pointcut in the undo aspect
for the PasteCommand, refactored from Figure 4. The
clipboardGetContents() pointcut captures the call that
sets the reference to be checked by both the command’s
core logic and the undo functionality in the aspect.

• The last possibility is to refactor the long execute
method into smaller steps using non-private methods.
The extra method calls can be intercepted allowing
smooth extension with setting up the undo activity, at
the cost of creating a larger interface and breaking en-
capsulation. Moreover, we would still introduce artifi-
cial pointcuts, as our intention is to enhance the behavior
of the execute method, and not of various steps created
for supporting advice introduction.

5.3.3. Redirection layer

The design of undo in JHOTDRAW uses wrapper objects to
associate undo-able commands to menu items and buttons in
the user interface (UI). The wrappers share their top level
interface with regular commands, so they can connect to UI
elements and receive user actions. While most commands
are undo-able and wrapped by an UndoableCommand object,
there are a few exceptions, such as, CopyCommand.

public aspect PasteCommandUndo {
//store the Clipboard’s contents - common condition
FigureSelection selection;

pointcut clipboardGetContents() :
call(Object Clipboard.getContents()) &&
withincode(void PasteCommand.execute());

after() returning(Object select):clipboardGetContents(){
selection = (FigureSelection)select;

}
...

pointcut executePasteCommand(PasteCommand cmd) :
this(cmd) && execution(void PasteCommand.execute());

// Execute undo setup
void after(PasteCommand cmd): executePasteCommand(cmd) {

// the same condition as in the advised method
if(selection != null) {

cmd.setUndoActivity(cmd.createUndoActivity());
...
cmd.getUndoActivity().setAffectedFigures(...);

} } }

Figure 5. The undo aspect for PasteCommand.

Wrappers are instances of Redirection layer. The refac-
toring of such instances raises several important issues: first,
we need to identify those commands that are wrapped by an
UndoableCommand object and accessed through this object;
second, we need to check if all clients of a command access
its functionality via the wrapper. Only those calls from com-
mand clients that are received by a wrapper in the original
implementation need to be captured by the aspect solution to
attach the wrapper’s functionality by means of advice.

Further complications that limit feasibility of automated
refactoring have to do with the multiple roles in Un-
doableCommand: since the aspect solution completely re-
places the wrapper class, this means that introduction of roles
is no longer possible. Some of the original roles in the system
are implemented by the wrapper only to comply with the top
interface of the wrapped element and add no specific func-
tionality, such as the Observable role of Commands. The as-
pect solution can safely omit these roles. For other roles how-
ever, this is not desired and refactoring requires customized
redirector solutions.

6. Discussion
Applicability in practice The proposed template aspect
solutions proved suitable for refactoring concrete sort in-
stances in the JHOTDRAW case and for separating the cross-
cutting code from the core system. However, the difficulty of
implementing the aspect solution and the quality of the result
will vary from case to case. One of the issues is pointcut defi-
nitions: Ideally, we would like to use pointcut definitions that
describe a set of elements by formalizing a common property
instead of a brittle enumeration of the elements in the set. In
practice, such definitions will not always be feasible, either

7



Sort Limitations and risks
Consistent Behavior Advice constructs in a privileged aspect can break encapsulation; High degree of tangling might prevent (au-

tomatic) refactoring; Anonymous classes cannot be referred to consistently, preventing generic pointcuts; Calls
to super class functionality cannot be migrated into advice; Modular reasoning affected by need to keep track
of data set in the advised method; Check required that omissions are not on purpose; Sophisticated pointcuts
needed to intercept all relevant state modifications in the advised methods; Check required that precedence does
not change due to new advice;

Redirection layer The repetitive logic of redirection for the redirector’s methods is not eliminated – the aspect solution addresses
the redirection at method level and not at type level; New redirector methods are not (automatically) covered
by the solution; The aspect solution is not dynamic (dynamic reordering of redirectors) [5]; The aspect solution
replaces the redirector (wrapper) and hence changes the public interface of the application to test against; The
calls (to the receiver) to be advised for redirection need to be detected;

Role superimposition Visibility affected since protected (/non-public) methods cannot be introduced.
Support classes for role superimposition Not supported; Nesting the support class in the aspect breaks dependencies (thus forcing the enclosing class to

make more of its interface public) and weakens the relation with the enclosing class;
Exception propagation Type of thrown exception is lost; Refactoring throws clauses in inheritance hierarchy.

Table 2. Risks and possible limitations of the aspect solution.

because of limitations in the aspect language, or due to irreg-
ularities in the code under investigation.

Desired functionality included for example a pointcut to
capture calls from “all Command classes, except all anony-
mous classes”, or a pointcut for “all objects interested in
command events”. Irregularity in the code might require
that for certain methods the advice executes only if a spe-
cific condition holds. This is the case for a few commands
in JHOTDRAW that send notifications of their execution only
if the clipboard’s content is not empty. In such a situation,
one has to make a trade-off between a generic pointcut defi-
nition that captures all commands, but ignores the particular
condition, and a definition that enumerates all appropriate el-
ements. The former solution would execute the code in the
advice in spite of its void effect; however, the latter pointcut
definition needs to be updated (manually) for every new ele-
ment added to the set of interest (i.e., every new command).

Similar observations can be made about the definition of
advices: sometimes we need to modify the original control
flow of a method-to-be-migrated in order to introduce an ac-
tion to it by means of advice. Although the refactoring may
have no effect on the observable behavior of the method, the
original flow could be more natural or comprehensible.
Benefits and risks In comparison with refactoring ap-
proaches proposed by others, our sort-based migration strat-
egy gives a clear definition of the input required for refac-
toring (i.e., an atomic concern) and describes it consistently
using queries. This allows for the definition of reusable solu-
tions and improves comprehension of refactoring by address-
ing meaningful concerns instead of code fragments [1, 15].
Moreover, the concern queries allow us to describe the con-
text cut across by a concern, and hence the concern’s intent.
This gives a better insight into the concern and its aspect
solution than the simple enumeration of joinpoints common
with most previous refactoring approaches. We believe that
a clearly specified input for a refactoring solution is a neces-
sary condition for ensuring consistent migration of concerns.

Among the main risks of refactoring, we identify the high
level of coupling and complex dependencies between the
base code and the crosscutting concern. We anticipate that
any non-trivial aspect refactoring will require object-oriented
refactorings, before the crosscutting concern can be taken out
of the available system.

The issue with coupling is that, before migration, concern
code can freely access certain parts of the core code that may
have limited visibility after the migration. Possible risks in
such a case are weakening the visibility restrictions of those
members or violating encapsulation by declaring the aspect
privileged. Other risks include code duplication in advice
and the advised method or definition of artificial pointcuts to
capture return values of calls from the advised method; this
could be the case when some control logic is required by both
aspect and the advised method.

We encountered several complex dependencies while
refactoring instances of Exception propagation in JHOT-
DRAW. One example is the propagation of the IOException
rooted in the set of methods to read drawings from file. The
methods in the call chain re-throwing the exception override
other methods, whose declared thrown exceptions might only
serve for compliance with the method to be refactored. In this
case, we also need to address their throws clause within our
refactoring. Moreover, the overriding elements of a method
in the chain that throw the same exception need to be refac-
tored too, as their exception declaration is no longer allowed.

Table 2 summarizes the above risks and limitations in
refactoring to aspects. Note that many of these limitations
are independent of the strategy employed for refactoring. In
spite of that, we are not aware of other papers in the area of
refactoring to aspects that discuss these limitations.
Automation The refactoring step in our strategy currently
has the least automation of all steps in our approach. How-
ever, the other (tool supported) steps give us many of the el-
ements needed for refactoring, such as the crosscutting ele-
ment and the context it cuts across which are captured in the

8



concern documentation as repeatable queries. Moreover, the
description of these elements by the sort-queries is similar to
the definition of pointcuts for a possible aspect solution.

We believe that the case study presented in this paper is
a required step before setting out to design (automated) as-
pect refactoring tooling. The study gives us insight into the
complexity of each refactoring and the trade-offs to be made.
The challenges and limitations discussed in the previous sec-
tions also indicate that completely automated aspect refactor-
ing is unfeasible in any practical situation, since the process
requires a significant level of interaction with the users to
guide the system through the right decisions.

A particularly challenging automatic refactoring would be
the one for Redirection layer instances: the original, dynamic
solution uses a common interface for both redirectors and po-
tential receivers. This interface hides the identity of the ob-
ject for which a call is made; However, the refactoring of
redirectors requires to know which calls are meant for a redi-
rector and so need to be attached an advice introducing the
functionality of the refactored redirector.
Separation of concerns Our case study had a satisfactory
outcome in achieving a better separation and modularization
of concerns in the targeted application. As we were able
to notice, the crosscutting code is an important part of the
refactored elements, in some cases, such as the Command
elements, over 50%. We appreciate that the core code is eas-
ier to understand in the absence of the migrated crosscutting
concerns. To understand the aspect code, on the other hand,
one typically also needs to understand the base code that it
advises. This is exaggerated further by (high) coupling be-
tween the aspect and the base code, like for aspects that inter-
cept calls from advised methods to reuse the values returned
by such calls.

While refactored, crosscutting-free code is easier to com-
prehend, modifications to such code would still require
awareness of the advice that applies to it. For instance, as-
pects might assume a certain order of the calls from an ad-
vised method, which has to be preserved to correctly intro-
duce additional behavior.

Keeping track of the order of different advice in an as-
pect solution and preventing accidental changes might prove
difficult, particularly when the number of aspects increases.
The support from present development environments would
not provide much insight into violations of such ordering, or
into the ordering itself. This becomes more of an issue when
the order is set using name-based wildcards, and new aspects
match an existing rule for aspect precedence that should not
apply to them. A similar situation might occur when chang-
ing an aspect solution that is already covered by a prece-
dence rule, and the changes would not be compliant with
that rule. Changing the position of an advice definition in an
aspect could also modify precedence, if multiple advices in
the aspect apply to the same joinpoints. Unspecified prece-
dence could also lead to interference between new advices

introduced by refactoring and existing ones [17]. Automatic
refactoring needs to be aware of these issues.

Some concerns might be crosscutting for advices, sim-
ilarly to the way they are crosscutting for methods. For
instance, the re-use of specialized enumerations in JHOT-
DRAW requires to reset them after each iteration. Such enu-
merations are used by some advices in the aspect solutions.
Applying aspect solutions to aspects might prove challenging
for both tool support and comprehensibility.

7. Related work
While each step in the migration of crosscutting concerns has
been addressed by related research, we are not aware of an
integrated strategy like the one proposed in this paper.

The present approaches to aspect refactoring can generally
be distinguished by their granularity. Laddad’s set of refac-
torings cover both low level ones, such as extract method
calls into aspects or extract interface implementation, as well
as more complex refactorings, like design patterns, transac-
tions management, or business rules [8]. Although the latter
subset typically involves multiple concerns to be refactored,
there is no categorization of these concerns or refactorings.

Hannemann et al. propose an approach to the aspect
refactoring of design patterns based on a library of abstract
roles [6, 5]. The role-based refactoring requires one to map a
pattern’s implementation onto the predefined roles describing
the pattern, and then applies a set of instructions to refactor
the implementation to aspects. The approach is a step fur-
ther towards generic, abstract solutions to typical problems
that involve crosscutting functionality. However, as we have
already seen, these patterns typically have a complex (and
variable) structure in source code, which exhibits multiple
(atomic) crosscutting concerns. The refactoring of a whole
pattern in one step might prevent the comprehension of the
concerns involved. Moreover, our experience suggests that
pattern implementations can vary significantly from a stan-
dard description and one-step refactoring could be hampered
by complex dependencies. We cannot make a full assessment
of this approach as the implementation and the experimental
results are not available, but we believe that all the limitations
discussed in this paper would equally apply to it.

Finer-grained refactorings have been proposed in the form
of code transformations catalogs [15] and AspectJ laws [3].
These transformations can occur as steps in the aspect refac-
toring of an (atomic) crosscutting concern, but remain obliv-
ious to the refactored concern. They describe the mechanics
of migrating Java specific units to AspectJ ones (e.g., Ex-
tract Fragment into Advice, Move Method/Field from Class
to Inter-type). Such small step transformations might benefit
the implementation of automatic refactorings by preventing
complex dependencies and ensuring behavior preservation as
discussed by Cole and Borba [3]. However, more effort is re-
quired to assess their general applicability: for example, the

9



case-study used for the refactoring in [15], is an Observer
pattern implemented in a demonstrative application, which
lacks the complexity of a real system like JHOTDRAW.

In comparison to the work on fine-grained refactorings,
the sort-based approach presented in this paper emphasizes
concerns and identifies common properties at a consistent
granularity level. This allows us to design a complete migra-
tion strategy, where the refactoring is integrated with steps
for concern identification and comprehension.

Similar observations also apply to the comparison with
the refactoring approach by Binkley et al. [1]. Their empha-
sis is on full automation, and they offer an Eclipse plugin for
conducting six elementary refactorings. They focus on our
fourth step only, and assume aspect mining has resulted in
@begin-aspect and @end-aspect annotations in the code.
As an example, one of their six refactorings moves individ-
ual calls to separate aspects, after which a (non-trivial) point-
cut abstraction step is needed to merge the results. Our ap-
proach eliminates the need for this complex abstraction step,
thanks to the sort-based integration between aspect mining
and refactoring (refactoring is based on a full concern model
in our case). Like us, they use JHOTDRAW as one of their
case studies. Somewhat surprisingly, they do not report any
of the limitations that we identified, although their results ex-
hibit the same limitations.

8. Concluding remarks
In this paper, we proposed an integrated strategy for migrat-
ing crosscutting concerns to aspect-oriented programming.
We presented in detail the refactoring step of our strategy, and
applied the entire migration process to concerns in an open-
source application. Furthermore, we discussed the chal-
lenges of refactoring crosscutting concerns to aspects and
how these could impact the design and implementation of
automatic aspect refactoring.

The contributions of this work can be summarized as:
• An integrated strategy for migrating crosscutting con-

cerns to AOP solutions;
• An aspect refactoring approach based on crosscutting

concern sorts and a set of refactoring templates;
• A report on our experience with migrating concerns in a

real system to aspects and the challenges of this process.
This report is useful for assessing the present support for
refactoring and the feasibility of automatic aspect refac-
toring for various categories (that is, sorts) of crosscut-
ting concerns.

• AJHOTDRAW, a show-case for aspect refactoring in an
open-source implementation that can be further used by
researchers and practitioners to evaluate aspect-based
solutions to crosscutting concerns.

AJHOTDRAW provides a code base for related research
to measure code improvements due to aspect code. Further-
more, this work provides us with the hands-on experience

for designing and implementing sort-based aspect refactor-
ing. We plan to extend our tool support for concern docu-
mentation, SOQUET, with aspect refactoring options. The
refactoring would apply to each query documenting a sort in-
stance, and hence benefit from the description of the concerns
available by the query results. We appreciate that a signifi-
cant effort would go into the design and implementation of
wizards to deal with the various reported challenges.

References
[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Tool-supported

refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering, 32(9):698–717, 2006.

[2] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. Ap-
plying and combining three different aspect mining techniques. Software Quality
Journal, 14(3):209–231, 2006.

[3] L. Cole and P. Borba. Deriving refactorings for AspectJ. In Proc. 4th Intl. Conf.
on Aspect-Oriented Software Development (AOSD), pages 123–134. ACM, 2005.

[4] E. Hajiyev, M. Verbaere, and Oege de Moor. Codequest: Scalable source code
queries with datalog. In Proc. 20th European Conf. on Object-Oriented Program-
ming (ECOOP), pages 2–27, 2006.

[5] J. Hannemann and G. Kiczales. Design pattern implementation in Java and As-
pectJ. In Proc. 17th Conf. on OO Programming, Systems, Languages & Applica-
tions (OOPSLA), pages 161–173. ACM Press, 2002.

[6] J. Hannemann, G.C. Murphy, and G. Kiczales. Role-based refactoring of cross-
cutting concerns. In Proc. 4th Intl. Conf. on Aspect-Oriented Software Develop-
ment (AOSD), pages 135–146. ACM Press, 2005.

[7] D. Janzen and K. De Volder. Navigating and querying code without getting lost.
In Proc. 2nd Intl. Conf. on Aspect-Oriented Software Development (AOSD), pages
178–187. ACM Press, 2003.

[8] R. Laddad. AspectJ in Action - Practical Aspect Oriented Programming. Man-
ning Publications Co., 2003.

[9] N. Lesiecki. Aop@work: Enhance design patterns with AspectJ. www-128.ibm.
com/developerworks, May 2005.

[10] M. Marin, A. van Deursen, and L. Moonen. Identifying crosscutting concerns
using fan-in analysis. ACM Transactions on Software Engineering and Method-
ology, 2007.

[11] M. Marin, L.Moonen, and A. van Deursen. A classification of crosscutting con-
cerns. In Proc. 21st Intl. Conf. on Software Maintenance (ICSM), pages 673–677.
IEEE Computer Society, 2005.

[12] M. Marin, L. Moonen, and A. van Deursen. A common framework for aspect
mining based on crosscutting concern sorts. In Proc. 13th Working Conf. on
Reverse Engineering (WCRE), pages 29–38. IEEE Computer Society, 2006.

[13] M. Marin, L. Moonen, and A. van Deursen. Documenting typical crosscutting
concerns. Technical Report TUD-SERG-2007-010, Delft University of Technol-
ogy, 2007.

[14] M. Marin, L. Moonen, and A. van Deursen. SoQueT: Query-based documenta-
tion of crosscutting concerns. In Proc. 29th Intl. Conf. on Software Engineering
(ICSE). IEEE Computer Society, 2007.

[15] M.P. Monteiro and J.M. Fernandes. Towards a catalog of aspect-oriented refactor-
ings. In Proc. 4th Intl. Conf. on Aspect-Oriented Software Development (AOSD),
pages 111–122. ACM Press, 2005.

[16] M.P. Robillard and G.C. Murphy. Concern graphs: finding and describing con-
cerns using structural program dependencies. In Proc. 24th Intl. Conf. on Soft-
ware Engineering (ICSE), pages 406–416. ACM Press, 2002.

[17] M. Storzer and F. Forster. Detecting precedence-related advice interference. In
Proc. 21st Int. Conf. on Automated Software Engineering (ASE), pages 317–322.
IEEE Computer Society, 2006.

[18] P. Tarr, W. Harrison, and H. Ossher. Pervasive query support in the concern ma-
nipulation environment. Technical Report RC23343, IBM TJ Watson Research
Center, Yorktown Heights, NY, 2004.

10


