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Abstract

We present an automated program analysis, called
Reach, to compute program inputs that cause evaluation of
explicitly-marked target expressions. Reach has a range of
applications including property refutation, assertion break-
ing, program crashing, program covering, program under-
standing, and the development of customised data genera-
tors. Reach is based on lazy narrowing, a symbolic evalua-
tion strategy from functional-logic programming.

We use Reach to analyse a range of programs, and find
it to be a useful tool with clear performance benefits over a
method based on exhaustive input generation. We also ex-
plore different methods for bounding the search space, the
selective use of breadth-first search to find the first solution
quickly, and techniques to avoid evaluation that is unnece-
sary to reach a target.

1. Introduction

A desirable goal when testing programs is total program
coverage, meaning that every expression in the program has
contributed to at least one correct test run. While automatic
approaches to testing, such as random and exhaustive test-
ing, are often able to cover large portions of a program, cer-
tain intricate program paths can be problematic. For ex-
ample, consider the following program fragment whose be-
haviour depends on whether two input lists x and y are both
sorted or not.

if sorted x && sorted y
then ...
else ...

The problem is that there are many values of x and y
that cover the else-branch of the conditional expression, and
relatively few that cover the then-branch. Using the analysis
that we develop in this paper, called Reach, we can insert a
special keyword target into the program as follows.

if sorted x && sorted y
then target (...)
else ...

By applying the Reach analysis to this modified pro-
gram, we obtain a set of values for x and y that cause evalu-
ation of the target, and hence evaluation of the then-branch.
The analysis is based on lazy narrowing, a symbolic evalu-
ation strategy from functional-logic programming [5].

The problem of finding inputs that cause evaluation of
marked target expressions in a program is quite a general
one. For example, Reach can be used to automatically re-
fute or satisfy arbitrary boolean expressions occurring in a
program, such as program properties and assertions. And by
placing targets at positions in the program where behaviour
is undefined, such as in non-exhaustive case expressions,
Reach can be used to find inputs that cause programs to
crash. Furthermore, Reach can be used to describe power-
ful input data generators simply by placing targets at suit-
able positions in the source program.

The source language that Reach operates on is a core
functional language with only a small number of syntac-
tic constructs. This lets us present and implement Reach
without getting bogged down in the technical details of any
specific language. However, the core language that we use
can be directly produced by the York Haskell Compiler [4],
so Reach can be applied to standard Haskell [11] programs
with only modest restrictions on a few primitive data types.

1.1. Road-map

In Section 2 we introduce and motivate Reach by apply-
ing it to part of a binary search-tree implementation, and
discuss how Reach fares on this example in comparison to
random and exhaustive testing. In Section 3, we precisely
define how the Reach analysis works along with the core
language that it operates on. In Section 4 we evaluate Reach
by applying it to several programs, and we quantify its per-
formance benefit in comparison to an approach based on ex-
haustive testing. In Section 5 we explore some extensions to



del a Empty = Empty
del a (Node b t0 t1)
| a < b = Node b (del a t0) t1
| a > b = Node b t0 (del a t1)
| otherwise = ext t0 t1

ext Empty t = t
ext (Node a t0 t1) t

= Node a t0 (ext t1 t)

Figure 1. Deletion from a binary search-tree

the analysis, in particular: (1) different methods of bound-
ing the search space; (2) using breadth-first search to find
the first solution sooner; and (3) methods to avoid analysing
expressions that can’t lead to the evaluation of a target. In
Section 6 we compare Reach with related work, and finally,
in Section 7, summarise our conclusions and discuss future
work.

2. An example application of Reach

Suppose that we wish to define the deletion operation of
a binary search-tree data structure, and then verify that it is
correct. In the functional language Haskell, a data type for
binary search trees can be defined as

data Tree a = Empty
| Node a (Tree a) (Tree a)

This declaration defines a tree of elements of type a to
be either the empty tree, or a node containing an element of
type a and two subtrees, each containing elements also of
type a. The deletion operation is defined by case-analysis
on the input tree, as shown in Figure 1. It behaves as fol-
lows:

• If the given tree is empty then del simply returns an
empty tree.

• If the element to be deleted is less than or greater than
the value at the root of the tree, then it is recursively
deleted from the tree’s left or right subtree respectively.

• If the element to be deleted is equal to the value at the
root, then the left subtree is returned, with its rightmost
Empty constructor replaced with the right subtree.

An important property of deletion is that it preserves the
ordering of the input tree, i.e. assuming that the input tree
is ordered, then so too is the output tree.

prop_ordDel a t =
ord t ==> ord (del a t)

every p Empty = True
every p (Node a t0 t1) =
p a && every p t0 && every p t1

ord Empty = True
ord (Node a t0 t1) =
every (<= a) t0 && every (>= a) t1

Figure 2. Ordering predicate over trees

The operator ==> represents standard boolean implica-
tion. The ord function checks that the given tree is ordered,
as defined in Figure 2. It is defined in terms of the helper
function every which checks that some predicate p holds
on every value in the given tree.

To arrange for prop_ordDel to be verified by Reach,
we need to introduce the following function.

refute True = True
refute False = target False

It is just the identity function on booleans, but has the
False branch marked as the target. We underline the
target function here because it is specially recognised by
Reach. Now we just need to wrap prop_ordDel with a
call to refute.

main :: Int -> Tree Int -> Bool
main a t = refute (prop_ordDel a t)

Notice that we have given an explicit type signature for
main. This is because prop_ordDel is polymorphic
over the contents of the given tree, and we want main to
have concrete type so that we can actually run it. Applying
Reach to this program, we get a series of function applica-
tions that reach the target. The first is:

main 0 (Node 0 Empty (Node 3 Empty
(Node 2 Empty Empty)))

So, as the reader may have already noticed, our example
program is incorrect! The problem is that we forgot to make
ord recursively call itself on each subtree of the root node.

Before moving on to presenting Reach in full, we take
a brief diversion to see how well random and enumerative
testing are able to refute prop_ordDel.

2.1. Randomly testing the example

Random testing can be used to refute program proper-
ties in Haskell using the library QuickCheck [2]. However,
because random generation of recursive data types such as
trees can lead to very large values, even infinite ones, we



first need to bound the size of the generated trees. This can
be achieved by defining a custom generator function called
tree. Now main can suitably redefined for QuickCheck
testing as

main a = forAll tree $ \t ->
prop_ordDel a t

At an interactive Haskell prompt (denoted by >) we can
test the property.

> quickCheck main
OK, passed 100 tests.

In this particular test run a counter example has not been
found. In fact, the first time that we tried to refute the prop-
erty using QuickCheck, we required 14 runs of 100 tests
before finding a counter example. With a little thought, we
can see why random testing can be problematic, even on
such a small program:

• A counter-example must contain a tree where every el-
ement of the left subtree is less than the root, and every
element of the right subtree is greater than the root (as
required by the faulty ord predicate). Many trees do
not satisfy this predicate.

• Furthermore, the element to delete from the tree, also
being generated at random, independently of the tree,
must occur in the tree.

• Finally, deletion must result in a tree that no longer sat-
isfies the faulty ord predicate. There are many dele-
tions that will not break the ord invariant.

The performance of QuickCheck on this example can be
improved by writing a more sophisticated tree generator.
For example, it could be modified to generate ordered ran-
dom trees, but then we have an additional obligation to show
that the new generator can yield all and only trees satisfy-
ing ord. The motivation for Reach is to remove the need
for writing such generators, and to try and cover intricate
execution paths automatically.

2.2. Exhaustively testing the example

In related work we have developed our own library for
program testing, called SmallCheck [12]. SmallCheck is in-
spired by QuickCheck, but enumerates program inputs sys-
tematically in order of increasing size, by iterative deepen-
ing, up to a specified depth bound. Using SmallCheck, there
is no need to explicitly bound the size of the input trees, so
the tree generator is now easier to define. At an interac-
tive Haskell prompt we can test prop_ordDel:

> depthCheck 3 main
Depth 3: Failed test no. 851.
-2
Node (-2) Empty (Node (-1)

(Node 0 Empty Empty) Empty)

So exhaustive testing is able to reveal a counter example
after 851 tests. In Section 4 we will see that Reach is able
to cover the same input spaces as an exhaustive checker, but
often much more rapidly.

3. The Reach analysis

In this section, we present the Reach analysis. Given a
program with any number of marked target expressions, the
analysis computes inputs to a top-level source function, as
specified by the programmer, such that some target expres-
sion gets evaluated. The analysis can be easily extended
to find inputs such that all targets get evaluated. This is
achieved by sequentially composing the analysis accross
several instances of the program where each instance con-
tains only one target from the original.

We define how Reach operates on a first-order core func-
tional language. In practice, Reach operates on a higher-
order language with the restriction that it cannot synthesise
function values as top-level program inputs. With this re-
striction, dealing with higher-order functions is straightfor-
ward, so the details are omitted here.

The core language contains standard functional pro-
gramming constructs: (possibly recursive) function defini-
tions; function application; let-expressions for sharing the
results of computations; data constructors for creating tree-
shaped values; and case-expressions for inspecting the root
and obtaining the children of such values. Full Haskell
programs can be translated to the core language, with the
exception of built-in data types and functions. Currently,
Reach does not support such primitives, but it deals with in-
tegers by unary-encoding them using normal data construc-
tors.

The analysis respects lazy evaluation, meaning that any
input it generates will reach the target if the program is eval-
uated lazily. Lazy evaluation means that expressions in the
program are evaluated at most once and only if necessary to
compute the program’s result.

3.1. Syntax

The syntax of expressions in the core language is de-
fined in Figure 3. The meta-variable v ranges over variable
names, f over function names, and c over data constructor
names. Sequences of meta-variables are denoted with an
overhead arrow, e.g. ~e denotes a sequence of expressions.
In the analysis, we assume the availability of a relation ∈



a ::= c ~v 7→ e (case alternative)
b ::= v = e (let binding)
e ::= v (variable)

| f ~e (function application)
| c ~e (data construction)
| case e of ~a (case expression)
| let ~b in e (let expression)
| {|e|} (target)

Figure 3. Syntax of expressions

d ::= f ~v = e (function definition)
p ::= ~d (program)

Figure 4. Syntax of programs

such that x ∈ ~x holds if x is a member of the sequence ~x.
Finally, note that the {|e|} construction in the syntax defini-
tion represents a target expression.

The syntax of core programs is defined in Figure 4. Re-
garding such programs, we assume the availability of a
function fresh such that fresh(f) returns a new function
definition, defined exactly like f , except that all variables it
contains are renamed to be unique within the context of the
entire program. Knowing that all variables in the program
are unique simplifies the presentation as scoping issues such
as variable capture can be ignored.

3.2. Overview of the analysis

The analysis is based on a symbolic evaluation strat-
egy from functional-logic programming called lazy narrow-
ing. Analysis proceeds by evaluating the source function
with unbound variables as inputs. If case-inspection is per-
formed on an unbound variable, then the evaluator non-
deterministically forks into several branches, one for each
alternative in the case expression. In each branch, the vari-
able is bound to the pattern of the corresponding case alter-
native. If the analysis encounters a target expression then
it succeeds by returning it, and forks off an analysis of the
expression inside the target, since it may lead to evaluation
of another target.

Forking is implemented by backtracking in Reach, al-
though we discuss how breadth-first disjunction can be used
selectively to good effect in Section 5.2. Furthermore, sym-
bolic evaluation of expressions with recursive function calls
can easily lead to non-termination, so in Sections 3.6 and
5.1 we discuss methods for bounding the analysis.

3.3. The analysis relation

Operationally, the analysis works by repeated applica-
tions of a unit-evaluator. The unit-evaluator attempts to re-
duce an expression by the smallest perceivable amount. It
either results in a data constructor with unevaluated chil-
dren, representing the root of the expression result, or the
target if its value is demanded for evaluation to continue, or
an unbound variable.

We define this unit-evaluator as a big-step transition re-
lation, →, between initial and final states. Initial and final
states are of the same type: a pair of the form 〈s, e〉 con-
taining an expression e and a substitution function s that
partially maps variables to expressions. So the value of a
variable v that is contained in e is s v, provided that v is ac-
tually bound, i.e. v ∈ dom(s). We use the notation s[v = e]
to extend the substitution s with the mapping of v to e.

We now define the transition relation as a number of sep-
arate rules, each dealing with a different syntactic construct.
Since the unit evaluator stops once it has reduced an expres-
sion to a constructor, we have:

〈s, c ~e〉 → 〈s, c ~e〉 (Constr)

The unit-evaluator also stops upon demanding the value
of a target expression:

〈s, {|e|}〉 → 〈s, {|e|}〉 (Targ1)

In addition, analysis continues on the expression con-
tained in the target, since its value may be required to eval-
uate another target:

〈s, e〉 → 〈s′, e′〉
〈s, {|e|}〉 → 〈s′, e′〉

(Targ2)

Notice that the previous two rules overlap, capturing the
non-deterministic nature of the analysis. The third construct
on which the evaluator stops is an unbound variable:

〈s, v〉 → 〈s, v〉 if v /∈ dom(s) (Var1)

Alternatively, if a variable is bound then its value is re-
trieved from the substitution, and evaluated:

〈s, s v〉 → 〈s′, e〉
〈s, v〉 → 〈s′[v = e], e〉

if v ∈ dom(s) (Var2)

Notice in the final substitution that the variable is
mapped to the result of evaluating the expression it is bound
to, thus avoiding repeated computation. The rules for func-
tion application and let-expressions are quite straightfor-
ward and are defined in Figure 5.

The final construct to consider is the case-expression. To
evaluate a case expression as a whole it is first necessary to
evaluate the case subject:



〈s[~v = ~e], e〉 → 〈s′, e′〉
〈s, f ~e〉 → 〈s′, e′〉

(App)

Where (f ′ ~v = e) = fresh(f)

〈s[~b], e〉 → 〈s′, e′〉
〈s, let ~b in e〉 → 〈s′, e′〉

(Let)

Figure 5. Application and Let Rules

(c ~v 7→ e) ∈ ~a, 〈s[~v = ~e], e〉 → 〈s′, e′〉
〈s, c ~e,~a〉 ⇒ 〈s′, e′〉

(Match)

(c ~v 7→ e) ∈ ~a, 〈s[v = c ~v], e〉 → 〈s′, e′〉
〈s, v,~a〉 ⇒ 〈s′, e′〉

(Narrow)

Figure 6. Match and Narrow Rules

〈s, e〉 → 〈s0, e0〉, 〈s0, e0,~a〉 ⇒ 〈s1, e1〉
〈s, case e of ~a〉 → 〈s1, e1〉

(Case)

Depending on the result of evaluating the case subject, a
number of different transitions can be made. These transi-
tions are defined by a new relation, ⇒, similar to →, except
that the initial state additionally contains a list of case alter-
natives.

There are three cases for ⇒ to consider. First, if the
case subject evaluates to a target expression, then ⇒ de-
fines that target to be the result of evaluating the whole case
expression, since evaluation now demands the target’s value
to proceed. This rule can be thought of as “propagating” the
target:

〈s, {|e|},~a〉 ⇒ 〈s, {|e|}〉 (TargProp)

Secondly, if the case subject evaluates to a construc-
tor, then evaluation continues on the case alternative that
matches that constructor. The Match rule is defined in Fig-
ure 6.

Thirdly, if the case subject evaluates to an unbound vari-
able, then evaluation non-deterministically forks for each
case alternative. In each branch, the unbound variable is
bound to the pattern of the corresponding case alternative.
The Narrow rule is also defined in Figure 6. Notice, in the
Narrow rule, that the non-determinism is captured by the
assertion (c ~v 7→ e) ∈ ~a where c is an unconstrained con-
structor. In contrast, in the Match rule, the constructor c is
constrained so evaluation is deterministic.

3.4. Fully-demanding analysis

The → relation analyses the program by demanding
evaluation of the source function to a value that is just one
constructor deep (the root of the tree-shaped result value).
To demand full evaluation of the source function, the →
relation is applied recursively to the root’s children in a left-
to-right, depth-first order, corresponding with standard lazy
evaluation.

3.5. A note on failure

One common built-in primitive that Reach does support,
and which we have not mentioned above, is fail. Under
normal execution, fail causes a crash, perhaps with an er-
ror message. In Reach, executing fail fits naturally along-
side non-determinism, and corresponds to triggering back-
tracking. Calls to fail are often introduced in translating
Haskell programs to core programs because case expres-
sions in Haskell programs are allowed to be non-exhaustive.
Indeed, Reach can be used to crash programs simply by
marking all calls to fail as targets.

By fully supporting recursive let expressions, our anal-
ysis also allows definition of cyclic (conceptually infinite)
data structures. However recursive lets can also cause a pro-
gram to crash, e.g. let x = x in x. Such expressions
are called black holes. With a very minor modification of
the Var2 rule, Reach can detect black holes and treat them in
the same way as fail. The other means of program failure,
non-termination, famously can’t be detected, but it can be
avoided, as discussed in the Section 5.1.

3.6. Bounding the search space

In the presence of recursive functions, our analysis is
quite likely to get stuck down one particular path of exe-
cution, never managing to backtrack far enough to explore
alternative paths. For a backtracking (depth-first) analysis
to be useful, the search space must somehow be bounded.
We limit the tree-depth of input data that can be generated,
and fail if the limit is exceeded. This method has the attrac-
tive property that the programmer can clearly identify the
portion of a program’s input space that Reach’s results are
valid for. For example, if Reach returns no results, then it
is a fact that no inputs exist that reach a target, up to the
specified depth.

4. Evaluating Reach

In this section, we use Reach to analyse several example
programs and compare it with an approach to target-finding
based on exhaustive test-data generation, which we refer to



as BlindReach. Both approaches bound the maximum tree-
depth of input data that can be generated.

We first introduce the example programs, and then apply
Reach and BlindReach to each. All of the example pro-
grams, and implementations of Reach and BlindReach, are
available on the web at http://www.cs.york.ac.
uk/fp/scam07/.

A binary search-tree library The first example program
is a binary search-tree library written by Hinze [6]. This
library contains functions very similar to those defined in
Section 2, and we have added our faulty ord predicate
from Figure 2. Reach is used to check two properties of
the library. First, BST.prop1, which is the same property
as prop_ordDel from Section 2. Second, BST.prop3,
which is defined as:

prop3 x t = ord t && not (member x t)
==> member x (insert x t)

We also try to generate inputs that cause the equal-
ity branch of the deletion function to be reached
(BST.ReachDel), by placing a target in the suitable posi-
tion.

A Countdown solver The second program, written by
Hutton [7], solves instances of the “Countdown” problem.
Given a integer n and a sequence of integers ~n, the Count-
down problem is to find an arithmetic expression which
refers to each number in ~n at most once, and which eval-
uates to n. Hutton proves that several desirable properties
of his program hold. For example, CD.lemma7 states that
Hutton’s optimised algorithm computes the same result as a
simple brute-force implementation:

lemma7 ns n =
solutions ns n == solutions’ ns n

We also use Reach to find countdown problem instances
that have at least one valid solution (CD.gen):

gen ns n =
refute (null (solutions ns n))

Finally we try to find inputs that cause Hutton’s program
to divide by zero by using a specially-placed target expres-
sion in Hutton’s apply function:

apply Div x y =
targetWhen (y == 0) (x ‘div‘ y)

Here, targetWhen is a useful abstraction on target,
defined as:

targetWhen True x = target x
targetWhen False x = x

A library of digital circuits The third example program
is taken from the circuit library of the Reduceron project [9].
The Reduceron is an FPGA-based reduction machine for
executing Haskell programs, written in Haskell. We apply
Reach to three properties of the circuit library. One prop-
erty, Circs.prop2, relates the addition of bit-vectors
(/+/) with standard Haskell addition (+) using a conver-
sion function (num) from bit-vectors to Haskell numbers:

prop2 a b =
num (a /+/ b) == num a + num b

This property does not hold in general, as /+/
throws away its final carry output. The second property,
Circs.prop3, relates bit-vector equality with number
equality in a similar style to prop2:

prop3 a b = length a == length b
==> (a /=/ b) == (num a == num b)

The final property relates a binary multiplexor
(binMux) with the list indexing operator (!!), again
using num conversion:

prop1 s xs =
length xs == 2ˆlength s && rect xs
==> (binMux s xs == xs !! num s)

The antecedent of this property is very constraining: the
length of input list xsmust be two to the power of the length
of the bit-vector s, and further, all the bit-vectors in xsmust
have the same length.

A checkmate finder The fourth example program, taken
from [10], takes chess end-game scenarios as input and gen-
erates a sequence of moves that forces checkmate, if such
a sequence exists. Using the program’s isCheckmate
predicate that takes a chess board and a colour represent-
ing who is to move next, we use Reach to generate chess
boards in which one side is checkmated:

gen c b =
isValidBoard b && isCheckmate c b

The isValidBoard predicate introduces several con-
straints, such as “each side must have one king” and “no
more than one piece is allowed on each square”. Further-
more to increase difficulty, we add the constraint that no
pieces are allowed to be placed on the rim of the board.

A silicon compiler The fifth and final example program,
taken from [3], is a silicon compiler (and simulator) for an
Esterel-like [1] programming language called Flash. We use
Reach to investigate the validity of the following property.



prop1 p q =
sameDuration (p :>> q) (q :>> p)

Given two programs, p and q, this property asserts that
the time take to execute p followed by q is the same as the
time to execute q followed by p. We also use Reach to gen-
erate Flash programs containing while loops that execute
their bodies at least once:

circuit (While cond p) start =
targetWhen (or (cond <&> start)) (..)

Here, we pass the condition and the start signal (which
triggers execution of the while loop) through a conceptual
and-gate, and require that the output of this gate is true on at
least one clock cycle. We were motivated to try this exam-
ple after noticing that randomly generated Flash programs
often contain while loops that never execute. This is be-
cause the clock cycles on which the condition is true must
coincide with those on which the start signal is true. It is
therefore pleasing to see how such a data generator can be
described so easily using Reach. Furthermore, by strength-
ening the condition passed to targetWhen, we can also
easily constrain the while loops to be terminating.

4.1. Results

The times taken to find all program inputs that reach the
target, at varying data-depth bounds, using both Reach and
BlindReach, are shown in Tables 1 and 2.

The parenthesised numbers beside the timings represent
how many inputs were found. Note that sometimes the
parenthesised number will be smaller when using Reach be-
cause Reach-generated inputs may be partially instantiated,
representing several concrete inputs as one.

Comparison of Reach and BlindReach on the Flash com-
piler has not been carried out because it is a potentially non-
terminating program, even for depth-bounded inputs. We
overcome this problem in the Section 5.1.

4.2. Conclusions

In all cases Reach explores the space of possible inputs in
shorter time than BlindReach does. In some cases, such as
Circs.prop1 and BST.prop3, Reach can cover the in-
put space 2-3 orders of magnitude faster than BlindReach.
And at larger depth-bounds one can expect the benefit of
Reach to be even greater. The more rapidly that we can
explore the input space, the more chance of finding a target-
reaching input such as a counter-example to a property. The
Mate.gen example illustrates this point very clearly: us-
ing Reach we can find a target-reaching input in reasonable
time (14s), but using BlindReach we gave up (after 1800s)
without finding any inputs.

The results suggest that Reach’s benefit is greatest
when stringent constraints are placed on the input data
very early in evaluation, such as in the antecedent (see
Circs.prop1) or conjunct (see Mate.gen) of a prop-
erty. However, Reach’s benefit is less significant on congru-
ence properties such as Circs.prop2 and CD.lemma7.
The likely reason for this is that standard Haskell equality
(==) between terms that depend on the top-level inputs will
cause the inputs to become fully instantiated, eliminating
the possibility that parts of the input space can be pruned.
Of course, Reach will not perform the repeated computation
that a testing-based approach such as BlindReach will, but
this does appear to have as significant an impact on search
time.

5. Extensions to the basic analysis

In this section we explore some consequences of using a
recursion bound instead of a data bound, and also the selec-
tive use of breadth-first search to find the first input sooner.
We also discuss ongoing work that aims to avoid evaluation
of expressions that is unnecessary to reach a target.

5.1. Recursion Bound

Instead of bounding the depth of input data, Reach could
bound the recursion depth of each function call, with the
advantage that the analysis always terminates, even on pos-
sibly non-terminating input programs. However, when us-
ing such a recursion bound, the input-space that is actually
covered by Reach is no longer very clear, and there is no
guarantee of a simple relationship between the inputs ex-
plored and the recursion depth.

Furthermore it seems that the covered input space can
sometimes be quite different, depending on which bounding
method is used. For example, Table 1 shows that the first so-
lution found by Mate.gen under a data depth bound is at
depth 9 and contains 3 chess pieces, whereas under a recur-
sion bound, is at depth 4 and contains 5 chess pieces. The
solution with 5 pieces has a data depth greater than 9, so
lies outside the set of inputs covered when using the small-
est data depth bound that contains a solution.

It is therefore interesting to know if one bounding
method is ever preferable to the other, and if so, under what
circumstances. During our experiments we found one ex-
ample where the chosen bounding method seems very im-
portant. When using Reach to check prop1 of the Flash
compiler, 544 counter examples are found in 14.8s at recur-
sion bound 2. The smallest of these counter examples has a
data depth of 3:

(Ifte (True:False:_) Skip Wait) Wait



Table 1. Comparing Reach with BlindReach.
Data Depth

Problem Method 3 4 5

BST.prop1
Reach 0.7s (31) 272s (9268)
BlindReach 1.5s (31) 2523s (9268)

BST.prop3
Reach 0.5s (0) 78s (0)
BlindReach 1.3s (0) 2340s (0)

BST.ReachDel
Reach 0.1s (4) 0.1s (6)
BlindReach 0.8s (456) >1800s

CD.lemma7
Reach 0.4s (0) 14.7s (0)
BlindReach 0.5s (0) 52.7s (0)

CD.DivBy0
Reach 0.2s (0) 2.4s (0) 173s (0)
BlindReach 0.2s (0) 9.6s (0) 872s (0)

CD.gen
Reach 0.2s (3) 1.6s (26) 88s (215)
BlindReach 0.2s (3) 8.7s (47) 758s (715)

Circs.prop1
Reach 0.2s (0) 0.2s (0)
BlindReach 2.4s (0) 107s (0)

Circs.prop2
Reach 0.5s (93) 2.6s (451) 17s (1977)
BlindReach 0.5s (93) 3.3s (451) 21s (1977)

Circs.prop3
Reach 0.2s (0) 0.6s (0) 3s (0)
BlindReach 0.3s (0) 1.3s (0) 7.2s (0)

Table 2. Comparing Reach with BlindReach, and data bound with recursion bound.
Data Depth Recursion Depth

Problem Method 5 6 9 2 3 4

Mate.gen
Reach 0.1s (0) 0.1s (0) 13.9s (1st) 0.1s (0) 32.1s (0) 44.2s (1st)
BlindReach 0.2s (0) 1140s (0) >1800s (0)

Table 3. Comparing data bound with recursion bound.
Data Depth Recursion Depth

Problem Method 2 3 1 2
Flash.prop1 Reach 9.5s (0) >300s (0) 0.1s (0) 14.8s (544)

Table 4. The effect of breadth-first conjunction (1).
Conjunct Ordering

Problem Method 1-2-3 2-1-3 2-3-1 3-2-1 3-1-2 1-3-2
BST.prop4 Standard Reach 29s 0.05s 2.2s >300s >300s 26s
BST.prop4 Using Breadth-First Conjuncts 0.14s 0.3s 0.31s 0.3s 0.35s 0.17s

Table 5. The effect of breadth-first conjunction (2).
Conjunct Ordering

Problem Method 1-2 2-1
Mate.gen Standard Reach 14s >300s
Mate.gen Using Breadth-First Conjuncts 27s 27s



However, finding a counter example in reasonable time,
using a data-depth bound of 3, seems difficult, as suggested
by Table 3 (note that for the purpose of this example, Flash
has been modified to always terminate). The reason for this
difficulty is that there are over 180 million Flash programs
at data depth 3, whereas there are under 64 thousand at re-
cursion depth 2. The above counter example can be found at
recursion depth 2 because different functions are construct-
ing different parts of the input. So the choice of bounding
method certainly matters, and is an important avenue for
future experimentation.

5.2. Breadth-first search

In Haskell, evaluation of the expression p && q will
sequentially evaluate p followed if necessary by q. This
has the consequence for Reach that the order of conjuncts in
a boolean expression affects the order in which the search
space is explored, and thus can have a significant impact
on the time taken to find a target-reaching input. This is
slightly unsatisfying since the programmer should not be
concerned about such operational issues.

To illustrate, Table 5 shows that flipping the two con-
juncts in the function Mate.gen causes Reach to take
much longer to find an example input. Another example
is a property from the binary search-tree library:

prop4 a t0 t1 =
ord t0 && ord t1 && member a t0
==> member a (join t0 t1)

Table 4 shows the wide variation in times to first solu-
tion for different conjunct orders. In an attempt to over-
come this problem, we added a breadth-first disjunction op-
erator, |||, to Reach. The idea is that a ||| b causes
Reach to fairly evaluate a and b in parallel, completely in-
dependently of each other. Using this operator, breadth-first
conjunction can be defined as follows:

a |&| b = (a && b) ||| (b && a)

Now, by using |&| instead of && in the above examples,
the time taken to find the first solution becomes proportional
to the minimum time taken by all the permutations of the
conjuncts. This illustrated in Tables 4 and 5.

5.3. Avoiding unnecessary evaluation

In some cases it is possible to determine that evaluation
of a particular expression cannot cause evaluation of a tar-
get. Let us call such an expression dead, and define it to be
an expression that doesn’t contain a target or call a function
that is on the call-path to a target-containing function. The

possibility now arises to discard dead expressions in order
to avoid unnecessary evaluation.

However, avoiding the evaluation of any expression may
consequently avoid failing, hence Reach could generate in-
puts which actually cause the program to crash rather than
reach a target. A promising solution to this problem is to
save discarded expressions and evaluate them only if a tar-
get is actually found. One suitable place in the analysis
where dead expressions can be discarded in this way is in
the fully-demanding evaluator (see Section 3.4). However,
work in this area is ongoing and we are not yet ready to
present results.

We are also working on a backwards analysis that starts
from the target and repeatedly lifts it up through the pro-
gram, introducing equational constraints along the way, un-
til it reaches the top-level source function. The equational
constraints are solved by symbolic evaluation, like in the
current analysis. In this approach, parts of the program that
are irrelevant to reaching the target are never considered.
We have a prototype implementation, but our experiments
are still ongoing.

6. Related work

Libraries such as QuickCheck [2] and SmallCheck [12]
allow arbitrary functions in a program to be tested auto-
matically, vastly alleviating the problem of having to write
test-data generators by hand. The big advantage of these
approaches is their simplicity: no source-code analysis is
required, and hence they work seamlessly with experimen-
tal language features and advanced libraries. However, they
generate data blindly, so the programmer must often resort
to writing custom data generators to obtain the desired cov-
erage of the program.

This problem has been addressed very recently by Lind-
blad [8] who describes a method for taking program prop-
erties written in a functional language and generating test
data, guided by the definition of the property. Like Reach,
Lindblad’s method uses techniques similar to functional-
logic programming. In addition, Lindblad introduces a par-
allel conjunction operator >&< whereby an expression of
the form p x >&< q x evaluates p x and q x in par-
allel. So, if at any stage a partially instantiated x falsi-
fies p or q then the conjunction immediately evaluates to
false. Lindblad shows that parallel conjunction reduces the
need to tweak the order of conjuncts in properties. So the
goal is similar to our breadth-first conjunction operator, but
the means is quite different: Lindblad’s operator evaluates
both conjuncts under the same environment, whereas ours
evaluates them independently. Whereas Lindblad’s method
is only helpful when the conjuncts are dependent on each
other, ours can always help, but has the disadvantage of du-
plicating work.



Lindblad also compares his method against exhaustive
test data generation, giving measured timings over a num-
ber of benchmarks. The results seem to be quite similar to
ours, showing in some cases a speed improvement of 2-3
orders of magnitude. Indeed, this should not be too surpris-
ing as there there are many similarities between Lindblad’s
method and ours, although the two have been developed in-
dependently. One of the main differences, however, is that
Reach solves a more general problem, of which property-
directed data generation is just a special case. Lindblad
states that not having to explicitly write custom test-data
generators is one of the big benefits of his approach. Instead
the programmer can simply state the property and have rel-
evant data generated automatically. We have seen that, in
Reach, the potential benefit is even greater: powerful data
generators can be developed without even writing a prop-
erty, simply by placing targets at suitable points in the ex-
isting program (for example, the Flash program generator
from Section 4). Furthermore, Reach seems to have a wider
variety of applications, such as assertion breaking, program
covering, program crashing and program understanding, al-
though we have yet to fully explore these possibilities.

7. Conclusions and Future Work

We have presented an analysis, called Reach, that solves
the problem of finding inputs that reach any or all of a set
of marked target expressions in a program. Reach has been
applied to a range of programs and found to be a useful tool
with clear performance benefits over a naive solution based
on exhaustive input generation. We explored two methods
of bounding the search space, one by a data depth bound
and the other by a recursion depth bound, and found that
the choice of which to use can sometimes be vital to finding
a solution in reasonable time. We also found the selective
use of breadth-first search useful to avoid the need to tweak
the order of conjuncts in program properties.

We are currently exploring how Reach can be extended
to avoid evaluation of expressions that cannot lead to a tar-
get, including the use of our backwards analysis method, as
discussed in 5.3. In future work we would like to explore
other possible applications of Reach, to investigate the use
of a basic integer constraint solver (so that larger numbers
can be handled), and to synthesise function values as inputs.

Apart from the very recent work by Lindblad, we are
not aware of other applications of functional-logic program-
ming techniques to the analysis of functional programs.
Reach suggests that this combination could be a very fruit-
ful avenue for future research.
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