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The problem that REACH solves

a program with some top-level 
functions marked as sources and 
some expressions marked as targets

for each source the simplest
applications that entail evaluation of 
one or more targets
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Simple example of REACH

smaller xs ys =
if   sum xs < sum ys
then target xs
else ys

smaller [] [1]
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Application 1: Refuting Properties

• Properties with conditions often arise when testing – e.g. 
deletion from a binary search tree should satisfy

prop_ordDel x t =
ordered t ==> ordered (delete x t)

condition

• Such properties can be very difficult to test
– Condition must be satisfied if a counter example is to be found
– Many inputs do not satisfy the condition
– Blind test generators cannot see the condition



Refuting Conditional Properties with REACH

cond ==> x  =  if   cond && not x
then target False
else True

• Define implication as

• Time taken to find all counter-examples with a depth 
bound of four:
– Reach: 272 seconds
– Exhaustive testing:  2523 seconds

• The more restrictive the condition, the bigger the benefit 
of using REACH over exhaustive testing



What is REACH doing?

• Sources are evaluated with uninstantiated inputs
– Inputs are progressively instantiated as evaluation proceeds

• This partial input tree represents many concrete trees
• But it is not ordered, no matter what x and y are
• So a whole set of trees is pruned from the search space
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Application 2: Property Coverage

prop_comp p = interp p == exec (comp p)

• Congruence properties are also common – e.g. a 
compiler for an imperative language should satisfy

virtual machine
bytecode compilersemantics

• Pruning is only possible when interp p and exec 
(comp p) return for partially instantiated p

• But comp requires whole program before returning
– No search space pruned; smaller benefit in refuting using REACH



• But REACH can help obtain coverage

• For example, a coverage tool reported this expression as 
unreached after a random testing

run (While c p) env =
case eval c env of
True  -> …
False -> …

• Random testing did not check the property for programs 
containing while loops that iterate at least once

good place to insert target



Other Applications

head [] = target (error “no head of []”)
head (x:xs) = x

• Crashing Programs – put target before calls to error

program crashes on error

• Assertion Breaking – redefine assert as:
assert c x = if c then x else target x

• Program Understanding – e.g. find the simplest binary 
tree that involves the most complex rebalancing rotations



Restrictions

• Programs may contain higher-order functions but only 
first-order functions can be REACH sources

• Requires algebraic data types; primitive numeric types 
are redefined accordingly – e.g. integers as signed unary
data Nat = Zero | Succ Nat

• Search is bounded by two parameters
– Maximum construction depth of source arguments

• Know what class of inputs have been tested (bounded verification)
– Maximum recursion depth of function calls

• Always terminates



Conclusion and Future Work
• REACH is a simple analysis with many useful applications

– Has a concise, clearly correct, operational semantics
– Applications: property and assertion refutation, program 

coverage, crashing, and understanding
– Demonstrated on several published programs (some multi-

module, several hundred lines long)
– Up to 2 orders of magnitude speed-up observed over exhaustive 

testing when refuting a range of properties at small depths

• Sometimes REACH explores computational branches that 
can be avoided if function-call-graph is known
– Semantics extended with 3 pruning rules 
– Order of magnitude speed-up observed on some examples
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