
Finding inputs that REACH a target expression

Matthew Naylor
(joint work with Colin Runciman)

The problem that REACH solves

a program with some top-level
functions marked as sources and
some expressions marked as targets

for each source the simplest
applications that entail evaluation of
one or more targets

GIVEN

FIND

Simple example of REACH

smaller xs ys =
if sum xs < sum ys
then target xs
else ys

smaller [] [1]

GIVEN

FINDS

source

target

simplest application

Application 1: Refuting Properties

• Properties with conditions often arise when testing – e.g.
deletion from a binary search tree should satisfy

prop_ordDel x t =
ordered t ==> ordered (delete x t)

condition

• Such properties can be very difficult to test
– Condition must be satisfied if a counter example is to be found
– Many inputs do not satisfy the condition
– Blind test generators cannot see the condition

Refuting Conditional Properties with REACH

cond ==> x = if cond && not x
then target False
else True

• Define implication as

• Time taken to find all counter-examples with a depth
bound of four:
– Reach: 272 seconds
– Exhaustive testing: 2523 seconds

• The more restrictive the condition, the bigger the benefit
of using REACH over exhaustive testing

What is REACH doing?

• Sources are evaluated with uninstantiated inputs
– Inputs are progressively instantiated as evaluation proceeds

• This partial input tree represents many concrete trees
• But it is not ordered, no matter what x and y are
• So a whole set of trees is pruned from the search space

uninstantiated variables

x y

1

2

0
binary tree

Application 2: Property Coverage

prop_comp p = interp p == exec (comp p)

• Congruence properties are also common – e.g. a
compiler for an imperative language should satisfy

virtual machine
bytecode compilersemantics

• Pruning is only possible when interp p and exec
(comp p) return for partially instantiated p

• But comp requires whole program before returning
– No search space pruned; smaller benefit in refuting using REACH

• But REACH can help obtain coverage

• For example, a coverage tool reported this expression as
unreached after a random testing

run (While c p) env =
case eval c env of
True -> …
False -> …

• Random testing did not check the property for programs
containing while loops that iterate at least once

good place to insert target

Other Applications

head [] = target (error “no head of []”)
head (x:xs) = x

• Crashing Programs – put target before calls to error

program crashes on error

• Assertion Breaking – redefine assert as:
assert c x = if c then x else target x

• Program Understanding – e.g. find the simplest binary
tree that involves the most complex rebalancing rotations

Restrictions

• Programs may contain higher-order functions but only
first-order functions can be REACH sources

• Requires algebraic data types; primitive numeric types
are redefined accordingly – e.g. integers as signed unary
data Nat = Zero | Succ Nat

• Search is bounded by two parameters
– Maximum construction depth of source arguments

• Know what class of inputs have been tested (bounded verification)
– Maximum recursion depth of function calls

• Always terminates

Conclusion and Future Work
• REACH is a simple analysis with many useful applications

– Has a concise, clearly correct, operational semantics
– Applications: property and assertion refutation, program

coverage, crashing, and understanding
– Demonstrated on several published programs (some multi-

module, several hundred lines long)
– Up to 2 orders of magnitude speed-up observed over exhaustive

testing when refuting a range of properties at small depths

• Sometimes REACH explores computational branches that
can be avoided if function-call-graph is known
– Semantics extended with 3 pruning rules
– Order of magnitude speed-up observed on some examples

	Finding inputs that REACH a target expression
	The problem that REACH solves
	Simple example of REACH
	Application 1: Refuting Properties
	Refuting Conditional Properties with REACH
	What is REACH doing?
	Application 2: Property Coverage
	Other Applications
	Restrictions
	Conclusion and Future Work

