
Improved Static Resolution of Dynamic Class Loading in Java∗

Jason Sawin Atanas Rountev
Ohio State University

{sawin,rountev}@cse.ohio-state.edu

Abstract

Modern applications are becoming increasingly more
dynamic and flexible. In Java software, one important
flexibility mechanism is dynamic class loading. Unfor-
tunately, the vast majority of static analyses for Java
handle this feature either unsoundly or overly conser-
vatively. We present a set of techniques for static reso-
lution of dynamic-class-loading sites in Java software.
Previous work has used static string analysis to achieve
this goal. However, a large number of such sites are
impossible to resolve with purely static techniques. We
present a novel semi-static approach, which combines
static string analysis with dynamically gathered infor-
mation about the execution environment. The key in-
sight behind this approach is the observation that dy-
namic class loading often depends on characteristics of
the execution environment that are encoded in various
environment variables. In addition, we propose gen-
eralizations of string analysis to increase the number
of sites that can be resolved purely statically, and to
track the names of environment variables. We present
an experimental evaluation on 10,238 classes from the
standard Java libraries. Our results show that a state-
of-the-art purely static approach resolves only 28% of
non-trivial sites, while our approach resolves more than
twice as many sites. This work is a step towards mak-
ing static analysis tools better equipped to handle the
dynamic features of Java.

1 Introduction

Modern software applications need to be highly
adaptable and flexible to stay competitive. Applica-
tions are expected to perform similarly on multiple
operating systems, under various execution environ-
ments. Software users are demanding the ability to
customize their applications to a degree that has never
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Science Foundation under grant CCF-0546040.

been seen before. To meet this demand, more and more
applications such as Eclipse and Tomcat support third-
party extensions. The use of extensions allow these
frameworks to stay current and relevant without re-
quiring them to absorb the resulting massive develop-
ment costs. To gauge the demand and success of such
extensions, one only has to take note of the number of
third-party extensions available for Eclipse.

This increased application flexibility limits what can
statically be determined about a program. One very
significant limitation is the lack of access to code for
program components (e.g., third-party extensions that
are not available at analysis time, or modules that have
yet to be developed). However, even if all code enti-
ties are available, most static analyses would not be
able to accurately analyze modern software systems.
This is because the language constructs that make this
unprecedented level of flexibility possible are largely
viewed as a nuisance by the static analysis commu-
nity. Prime examples of this situation are Java con-
structs that allow for dynamic class loading. These
powerful language features allow Java applications to
load classes into the JVM at run time, requiring only a
string representation of the class’ fully-qualified name.
Dynamic class loading is used extensively in applica-
tions such as Eclipse, Tomcat, EJB application servers,
etc. In the most general case, there is no way to deter-
mine which entities will be loaded until run time. As
a result, many static analyses either choose to ignore
dynamic class loading constructs, thus producing an
unsound result, or handle them in such a conservative
fashion as to render the end result useless.

Some recent work has employed static string analy-
sis to resolve instances of these dynamic features. Such
an approach statically attempts to determine the value
of the string that specifies the target class that is to
be loaded. For example, a call Class.forName(s) dy-
namically loads the class with the name represented
by the string expression s. If, through static string
analysis, the precise run-time value of s could be de-
termined, then the statement could be treated as a
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static initialization of the class specified by s. Current
string analysis approaches have two potential points of
failure when trying to determine the value of s: (1)
when the value of s is not a compile-time constant,
and truly depends on the run-time execution, and (2)
when the analysis is not powerful enough to model the
flow of the string value through the application. Un-
fortunately, the use of such truly-dynamic values and
complex string manipulations is fairly common when
designing a flexible application. For example, many ap-
plications will inspect environment variables, configu-
ration files or particular directories to determine which
extensions are available to be loaded. In such cases any
purely static analysis will fail to produce a precise re-
sult. Similarly, many applications use data structures
and perform string operations that are currently be-
yond the modeling capabilities of string analyses.

In this paper we present a novel semi-static ap-
proach, which combines static string analysis with dy-
namically gathered information about the execution
environment. The key insight behind this approach
is the observation that dynamic class loading often de-
pends on characteristics of the execution environment
that are encoded in various environment variables. Our
investigation of the Java libraries revealed that over
40% of the fully-contained instances of dynamic class
loading —i.e., ones that could not be affected directly
by client code — depend upon environment variables.
Though such variables are not static elements of an
application, they are different from other forms of dy-
namic input data in that their run-time values typically
remain the same across multiple execution of the appli-
cation. Our approach identifies dynamic-class-loading
sites that depend only on such variables, and resolves
them based on the current variable values. As part of
this approach, we also propose several generalizations
of static string analysis that improve the tracking of the
names of environment variables, as well as increase the
number of sites that can be resolved purely statically.

Our approach produces results that are sound with
respect to the current execution environment, but do
not apply to all possible environments. For many
clients of static analyses this is both reasonable and de-
sirable. For example, consider program understanding
tools such as SHriMP [22] or Rigi [19]. Such tools have
the potential to overwhelm their users with too much
information [23]. If such tools tried to account for ev-
ery class that could potentially be loaded at dynamic-
class-loading sites for all possible combinations of envi-
ronment variable values, their usefulness may be com-
promised. Instead, using our approach, the user can
obtain information that is sound for her own local en-
vironment (i.e., for the specific environment variable

values that capture component configurations, operat-
ing system parameters, etc.).

This work makes the following contributions:

• We propose a fully automated semi-static ap-
proach that utilizes the system’s current config-
uration information to aid in the resolution of dy-
namic class loading in Java applications. This ap-
proach defines a useful and practical relaxation of
purely static approaches for handling of dynamic
class loading.

• We present several generalizations of string anal-
ysis that not only enable our approach to re-
solve more instances of environment-dependent in-
stances of dynamic class loading, but also allow for
a greater number of purely static instances to be
resolved.

• We describe an experimental study in which our
approach was applied to the entire Java 1.4 stan-
dard libraries. The results of this experiment in-
dicate that the approach is able to resolve more
than twice the number of client-independent sites
currently resolvable by the state-of-the-art static
string analysis. Through comprehensive man-
ual investigation we also determined that our ap-
proach identifies 86% of all sites that are in fact
truly static or environment-variable-dependent,
which implies very high analysis precision.

The proposed approach and the experimental results
define a significant improvement for the handling of dy-
namic class loading in static analysis, compared to cur-
rent techniques. Such improvement could be valuable
for a range of software tools that employ static analy-
ses to support software understanding, transformation,
verification, and optimization.

2 Background

This section provides a brief overview of the dynamic
class loading feature in Java, as well as a high-level de-
scription of the state of the art in Java string analysis.

2.1 Dynamic Class Loading in Java

The Java Virtual Machine (JVM) is one the defin-
ing components of the Java platform [14]. It interprets
Java bytecode, allowing Java applications to be plat-
form independent. It also supports dynamic class load-
ing, which is the ability to load classes at run time [13].
This is a very powerful mechanism that allows classes
to interface with software components that are speci-
fied at run time, and in fact do not even need to exist
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1 private static final String handlerPropName = "sun.awt.exception.handler";

2 private static String handlerClassName = null;

3
4 private boolean handleException(Throwable thrown) {

5 .....

6 /* Get the class name stored in environment

7 * variable sun.awt.exception.handler */

8 handlerClassName = (String) AccessController.doPrivileged(

9 new GetPropertyAction(handlerPropName));

10 .....

11 /* Load the class and instantiate it */

12 Object h;

13 Class c = Class.forName(handlerClassName,...);

14 h = c.newInstance();

15 .....

16 }

Figure 1. Sample code from the library class java.awt.EventDispatchThread.

at compile time. This feature is a key mechanism that
allows modern applications to achieve the desired level
of flexibility.

Loading classes into the JVM is the responsibility
of class loaders. At its simplest, a class loader takes a
string representation of the fully-qualified name of the
class that is to be loaded and then performs a hier-
archical search for the corresponding class file. Upon
finding the class file, the loader loads the bytecode into
the JVM and returns a Class object. This is a meta-
data object through which the program can access the
class (e.g., to create class instances).

� Example. Figure 1 illustrates the flexibility an
application can gain from the use of dynamic class load-
ing. We revisit this example several times throughout
the rest of the paper. The code is from the library class
java.awt.EventDispatchThread and allows custom-
defined event handlers to be loaded in a running appli-
cation. If a client wishes to use a custom event handler,
all she needs to do is create the appropriate class and
set the environment variable sun.awt.exception.handler
to the string value representing the fully-qualified
name of this class. Method handleException in
EventDispatchThread queries this environment vari-
able to retrieve the specified class name (lines 8 and 9)
and stores it in field handlerClassName. The custom
handler is then loaded at line 13 — method forName
is one of several methods in the Java libraries that can
be used to dynamically load classes at run time. A
call to newInstance is used to create a new object of
the class; this call has the same effect as calling the
no-arguments constructor of the class. �

Similar examples can be found throughout the en-
tire JDK code. Frameworks such as Eclipse heavily

use dynamic class loading features to implement their
component models; the same is true for EJB applica-
tion servers. The uses of these mechanisms will only
become more prevalent as the complexity of Java ap-
plications grows. It is critical that the static analysis
community begin to aggressively attack the problem of
handling such features.

2.2 Java String Analyzer

Most static analyses have taken two approaches for
the handling of the dynamic features in Java: ignore
them or treat them very conservatively. Ignoring these
features produces a result that is unsound and may
miss vital program entity interactions. Such an ap-
proach would render an analysis impractical for use
on modern Java applications; for example, there is
evidence [15] that significant portions of the program
call graph can be errantly omitted by disregarding dy-
namic features.Conversely, the conservative approach
assumes that any class can be loaded and instantiated.
However, the relevant information can be easily obfus-
cated by the number of infeasible interactions inferred
by this technique. Some analyses such as [15] and [28]
require that the user manually specify the interactions
which occur due to dynamic class loading. However,
this technique can be time consuming and error prone.
Yet others [15] utilize casting information to reduces
the number of classes that need to be considered. How-
ever, such an approach would fail for the code presented
in Figure 1, since no cast of the dynamically loaded
class is performed.

Since strings specify the classes that are to be loaded
at instances of dynamic class loading, a robust string
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analysis has the greatest potential to precisely resolve
such instances without requiring input from the user.
The work in [2, 15, 29] employs various forms of string
analysis in an attempt to determine the possible run-
time values of these target strings. The most powerful
string analysis currently available for Java is in the
Java String Analyzer (JSA) library [2].

The input to JSA is a set of Java classes and a set
of expressions (hotspots). JSA conservatively computes
the possible run-time string values at all instances of
those hotspots in the input classes. The analysis uti-
lizes the Soot analysis framework to generate and parse
the Jimple intermediate representation [29]. From this
representation, JSA builds a flow graph that models the
flow of string values and the operations that manipu-
late them. The nodes of the graph represent variables
and expressions; the edges are directed def-use edges
that represent the possible flow of data. The graph
contains five types of nodes: Init nodes represent the
initial construction of string values, Join nodes model
assignments and control join points, Concat nodes rep-
resent string concatenation, UnaryOp nodes represent
unary string operations such as reverse, and BinaryOp
nodes model binary string operations such as insert. In
essence, this graph is a static single assignment form
where the join nodes are analogous to φ functions.

From the flow graph JSA constructs a context-free
grammar. For each node n in the graph, a nonter-
minal An is added to the grammar along with a set
of productions corresponding to the incoming edges of
n. These productions are determined by the type of
n. For example, if n were a Concat node and nodes x
and y were predecessors of n, the following rule would
be added to the grammar: An → AxAy. The produc-
tion for an Init node n is An → reg where reg cor-
responds to a regular language. JSA then utilizes the
Mohri-Nederhof algorithm [18] to transform the gram-
mar into a strongly-regular context-free grammar. The
result can be accurately modeled by a finite state au-
tomaton. Such an automaton is created for each node
in the graph that represents a hotspot. The language
produced by the automaton is a superset of the possible
string values that can occur at that hotspot.

3 Generalizing JSA

String analyses such as the one presented in Sec-
tion 2.2 have two points of possible failure when at-
tempting to precisely determine the run-time values a
string-typed expression can assume:

1. The value of the expression depends upon values
that the analysis does not have access to (e.g., the
args[ ] array passed to a main method).

2. The analysis is not powerful enough to model the
flow and manipulation of the string values.

In this section we present several generalizations to
JSA. These generalizations increase both the number
of relevant string values available to the analysis, and
its overall modeling capabilities.

3.1 Semi-Static Analysis

Consider the example code shown in Figure 1. If
some JSA client specifies the invocation statement
forName(str,...) as a hotspot, JSA will attempt to
resolve the possible run-time values of parameter str.
However, in this example JSA will return the value
anystring for handlerClassName. This resulting value
indicates that under JSA’s model, the parameter could
potentially be any Unicode string. This occurs, in part,
due to the fact that JSA views environment variables
as run-time inputs to the program and thus assumes
that it has no access to the values stored in them.

Unfortunately, applications that utilize dynamic
class loading often rely on string values that are not
statically contained in their own code. It is rare, how-
ever, that a needed string value flows from direct user
input (e.g., from stdin). A much more common case
is that such values flow from system environment vari-
ables, such as in the example above. Environment vari-
ables are key/value pairs that are stored in the exe-
cution environment and can be accessed by all pro-
grams. Under most common programming paradigms,
these variables provide the program with information
about the type of environment it is operating in. Hy-
pothetically, it is possible that the user could manip-
ulate these values between consecutive runs of an ap-
plication. This, however, is not the intent of many
of these variables. Consider the Java system prop-
erty marked by the key os.name; clearly, this prop-
erty is not meant to be modified by the user. More-
over, many of these variables will be consistent across
a large number of the host environments that the ap-
plication will be executed on, and certainly across mul-
tiple runs on the same host. For example, the library
class java.awt.print.PrinterJob queries an environ-
ment variable to determine which classes to load in or-
der to create a job that the current system’s printer will
recognize. Such a variable will be consistent across sys-
tems that have the same type of printer. It is rare that
a system frequently changes its printer, and therefore
for a given system the value will essentially be static.

We purpose a generalization to JSA that will allow it
to make use of the values stored in environment vari-
ables. Our approach requires only alterations to the
graph model that JSA builds to represent the flow of
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java.lang.System.getProperty (<string>)

java.lang.System.getProperty (<string>, <string>)

java.security.Security.getProperty (<string>)

sun.security.action.GetPropertyAction (<string>)

Figure 2. Some entry points for environment
variables.

string values. We present only the end alterations to
the graph; for brevity, the details of the intermediate
stages are not discussed.

Our approach is based on the set of Java library
methods that serve as entry points for the values of
environment variables; a subset of these methods is
shown in Figure 2. All of these methods take a key
string parameter which specifies the environment vari-
able that is to be accessed. In the example presented
in Figure 1, the constant field handlerPropName con-
tains the key "sun.awt.exception.handler". Several
of these methods take a second default string parame-
ter. These methods return the value stored in default
if the value of key does not specify an environment
variable with a set value. Since these parameters are
strings, we can add a special env-hotspot node to the
JSA graph for each encountered call to a method that
is an environment variable entry point. By leveraging
the existing techniques in JSA, it is often possible to
resolve the potential run-time values that both the key
and default parameters can assume.

If JSA is able to resolve the key and default param-
eters, our approach performs an analysis time look-up
of the key/value pair in the environment. This look-up
is achieved by executing the method call represented by
the env-hotspot node. We term this step to be semi-
static since, strictly speaking, it is a dynamic execution
of a slice from the application under analysis, but in
essence it is a look-up of a “static” entity. The out-
come of a look-up will result in one of three possible
modifications to the graph, as presented below.

Single value return. The most straightforward
case occurs when both the key and default (if it ex-
ists) parameters for an env-hotspot resolve to a sin-
gle value. In such situations it is guaranteed that the
look-up step will return a single string value: if the
key/value pair exists it will return the value, and if
the pair does not exist it will return the value specified
in default or null.1 In such cases our approach re-
places the env-hotspot node with an Init node. The
value associated with this Init node is the result of
the environment variable look-up. Due to this change
of the flow graph, all strings that were dependent upon

1JSA does provide treatment of null string values.

the original method call are now dependent upon the
looked-up value.

Multiple value return. Of course, more than one
string value may flow to key, to default, or to both.
In such situations the look-up executes the env-hotspot
method for every possible pair of a key value and a
default value. Every value that the look-up step dis-
covers, including all defaults when applicable, is as-
signed to a new artificial Init node. The env-hotspot
node is then replaced by a Join node and an edge is
added from every new Init node to this new Join.
Since Join nodes are analogous to φ functions (see Sec-
tion 2.2), this has the effect of unioning all the returned
look-up values. Thus, all entities that were originally
dependent upon the method invocation are now de-
pendent upon the set of possible values that could be
returned at run time.

Variable corruption. It is entirely possible that
for some env-hotspot JSA will not be able to resolve
the key parameter, the default parameter, or both.
If the key value is unresolvable there is no precise way
to determine the appropriate environment variable to
look up. Thus, our approach replaces the env-hotspot
node with an Init node assigned the anystring value.
This is also the action taken if the default parameter
is unresolvable and one of the key parameter values
is an environment variable which is not set (i.e., does
not have a key/value pair in the environment). This
has the affect of “corrupting” all other strings that are
dependent upon the original method call.

The result of this generalization is a solution that is
sound with respect to all possible run-time executions
during which the configuration values are the same as
the values that were observed during the analysis. This
semi-static approach differs from both a completely
static analysis (which produces a solution describing
all possible run-time executions) and a completely dy-
namic analysis (which produces a solution describing
the specific observed run-time execution). While this
paper employs this technique to resolve dynamic class
loading, other static analyses may benefit from the
same idea (e.g., by performing partial redundancy elim-
ination based on looked-up values).

3.2 Modeling Generalizations

Even with the addition of the semi-static technique
described above, the current publicly available version
of JSA would still not be able to determine the possi-
ble run-time values of handlerClassName at line 13 in
the running example (Figure 1). This is due to JSA’s
inability to accurately model all possible flows of string
values. For example, JSA currently does not precisely
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track the flow of string values to/from fields. All string
values that flow from fields are corrupted (i.e., assigned
the anystring value).

We propose a more precise handling of fields. Our
technique models fields similarly to the manner that
JSA handles method invocations in that both are
treated in a context-insensitive manner. Currently, we
are only considering fields of type String and in some
special cases, arrays with a base type of String. The
approach first identifies all accesses to a given field x in
the input classes. It then unions all values that flow to
instances of x. In the final flow graph this is modeled
by adding edges from every Join node that represents
an assignment to x, to a newly synthesized Join node.
An edge from this synthesized node is then added to
the node representing the field. Consequently all sites
that read the value of x will be modeled as potentially
receiving all possible values that could be assumed by
every instance of x. This approach of modeling fields
is similar to that of [3] and [24]. Note that in the open-
world versions of the analysis (described in Section 4),
anystring is propagated to fields that could be accessed
by code outside of the input classes.

During our manual investigation of the Java li-
braries, described in the next section, we discovered
several instances of dynamic class loading that de-
pended on string values defined in static final array
fields, as illustrated by the following example:
private static final String[ ] codecClassNames =

{"com.sun.media.sound.UlawCodec",
"com.sun.media.sound.AlawCode"}

This structure encapsulates the strings specifying the
two possible SunCodec classes that could be loaded
at run time by class com.sun.media.sound.SunCodec.
For such cases, our approach treats the array as a sin-
gle String field. Synthesized Init nodes are created
for each statically defined array entry. These values are
unioned together in the fashion described above.

Even after increasing JSA’s ability to model fields,
it would still not be able to resolve the possible
run-time values of handlerClassName from the run-
ning example. This is due to the limited num-
ber of variables types modeled by JSA. In its
original form JSA only models variables of type
String, StringBuffer, StringBuilder and arrays
with a base type of String. However, in the
code displayed in Figure 1, the look-up of envi-
ronment variable sun.awt.exception.handler is accom-
plished by creating an instance of the library class
sun.security.action.GetPropertyAction (line 9).
This is a convenience class that implements inter-
face java.security.PrivilegedAction. Instances of
PrivilegedAction are typically passed to invocations

of AccessController.doPrivileged. This results in
the execution of PrivilegedAction.run with privi-
leges enabled. In the case of class GetPropertyAction,
the run method simply wraps an invocation of method
System.getProperty. The problem is that the return
type of PrivilegedAction.run is java.lang.Object.
Even though String is a subclass of Object, JSA is not
powerful enough to model objects with a compile-time
type of Object that are actually of type String.

It is a very common practice to wrap accesses to
environment variables in a PrivilegedAction. Thus,
it is paramount for the success of our semi-static
approach that JSA be able to properly model such
occurrences. We propose a generalization through
which JSA can conservatively determine variables with
compile-time types of Object that are actually of type
String. To achieve this, we augment JSA to also
consider variables of type Object. Suppose that the
only actions performed on such a variable in the input
classes are (1) assignment to another variable of type
Object, (2) assignment from a variable with a compile-
time type of Object that is actually of type String,
(3) cast to a String variable, and (4) assignment from
a String variable or a string literal. If this is the case,
we direct JSA to treat the variable as a String. If
any action outside of those specified above occurs, the
variable is conservatively corrupted, and, transitively,
all string values dependent upon it. This approach is
quite conservative and more powerful type inferencing
techniques could reveal more instances of Object vari-
ables which are really of type String. Still, our exper-
imental results show that this approach is sufficient to
model the flow of most string values which are utilized
at dynamic class loading sites in the Java libraries.

4 Experimental Evaluation

We implemented our proposed generalizations of
JSA and evaluated the enhanced version’s ability to re-
solve instances of dynamic class loading in the 10,238
classes from the Java 1.4 standard libraries. We iden-
tified 13 library methods that are used to dynami-
cally load classes into the JVM; some examples are
shown in Figure 3. These methods were used as the
hotspots input to JSA. A site was considered resolved
if JSA returned a finite number of possible string val-
ues for the <string> parameter representing the fully-
qualified name of the class to be loaded; we will refer
to this parameter as the target string.

Manual investigation. To establish a “perfect
baseline” for our results, we performed a manual
investigation of the input classes. During the investi-
gation we examined all potential hotspots as defined
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java.lang.Class.forName(<string>)

java.lang.ClassLoader.loadClass(<string>)

java.lang.ClassLoader.defineClass(<string>,...)

java.lang.ClassLoader.findClass(<string>)

java.lang.ClassLoader.findSystemClass(<string>)

java.lang.ClassLoader.findLoadedClass(<string>)

Figure 3. Some library methods used for dy-
namic class loading.

above. Not considered were occurrences where the
target string was a constant string literal. For exam-
ple, a call to Class.forName with the string literal
"com.sun.media.sound.JavaSoundAudioClip" was
not included in the set of interesting hotspots, since it
is trivial to resolve statically.2

Since our investigation was of the Java libraries, it
was not possible to use a closed-world assumption. In-
stead, we present results under three different open-
world assumption. Under such assumptions, it is im-
possible to determine the run-time values of certain
method parameters and field variables due to potential
future interactions with unknown client code. No anal-
ysis technique can resolve such client-dependent sites
in the absence of client code. Thus, we focused our
investigation on the client-independent sites for which
the run-time behavior could be completely determined
by examining only the library code. Each such site was
placed into one of three categories:

1. Static dependent (SD)
2. Environment variable dependent (EVD)
3. Dynamic dependent (DD)

Call sites that were categorized as static dependent
(SD) had a target string whose values were statically
determinable (i.e., depended only on compile-time con-
stants). As mentioned earlier, the values of many tar-
get strings flow from methods which access the sys-
tem’s environment variables; call sites that were de-
pendent on such strings were categorized as environ-
ment variable dependent (EVD). The remaining sites,
which were labeled (DD), depended on string values
that were not statically contained in the library code
nor in environment variables but yet were not directly
derived from client code. For example, a site whose
target string’s value flowed from a file read would have
been classified as DD.

2This example is from class sun.applet.AppletAudioClip,
where the call is used to determine if the system has the Java
Sound extension installed. If the call fails, a default component
is used. In general, checking for the existence of extensions is a
common use of dynamic class loading in the Java libraries.

Assumptions SD EVD DD TOTAL
Assumption 1 40 33 15 88
Assumption 2 33 33 12 78
Assumption 3 18 30 3 51

Table 1. Results from manual investigation.

It is important to emphasize that this classification
was performed using human intelligence. The results
of this manual classification represent the best pos-
sible solution that any purely-static or environment-
variable-aware analysis could hope to achieve. By using
these results as a baseline, we can judge how well our
analysis performs in absolute terms, instead of simply
measuring the improvement over the original JSA.

Table 1 shows the results of our manual investiga-
tion. Assumption 1 assumed that client code could
only affect the values of target strings through invo-
cations of public methods and manipulations of public
fields; further, it was assumed that none of the target
string values were affected by the use of reflection ei-
ther in client code or library code. Under this assump-
tion there were 88 instances of dynamic class loading
sites present in the library code that could not be af-
fected by a client. Assumption 2 was a much more
natural assumption for the Java libraries: it assumed
that client code and reflection could affect public and
protected entities. Under this assumption 78 dynamic
class loading sites could not be directly manipulated by
outside code. Assumption 3 was a fully open-world as-
sumption. That is, it assumed that through the use of
reflection all methods and fields could be manipulated
by client code, potentially breaking encapsulation for
private and package entities. Under this very conser-
vative assumption only 51 dynamic class loading sites
were fully contained within the library code.

The results of this investigation indicate several key
characteristic of dynamic class loading in the Java li-
braries. First, dynamic class loading that derives the
value of the target string from environment variables
is usually closed. By this we mean that all entities
other than the actual value of the environment vari-
able, including the key and default parameters, can
be determined completely statically and in no way can
be affected directly by client code. This is indicated by
the fact that between the most restrictive Assumption
1 to the most open Assumption 3, only 10% of the
instances originally classified as EVD become client-
dependent, as opposed to 55% of those classified SD
and 80% for DD. This as a strong indication that such
instances are meant to be static for most invocations.
The second characteristic is that a large number of
client-independent sites are indeed dependent on en-
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vironment variables — those classified as EVD. Under
the most natural Assumption 2, over 40% of dynamic
class loading sites were classified as EVD. Such sites
cannot be resolved by any purely static analysis. To
our knowledge, our approach is currently the only anal-
ysis that leverages these characteristics.

Evaluation of the proposed approach. Table 2
shows the results of four versions of JSA applied to the
Java 1.4 libraries. These implementations operate un-
der Assumption 2, thus a total of 78 dynamic class
loading sites where considered (Table 1). Of these,
the approaches we investigated could only resolve sites
that had target string values which could be statically
or semi-statically determined — i.e. those which were
manually classified as SD or EVD, of which there were
66. Row SD shows how many of the manually-classified
SD sites were in fact identified by the analysis as being
SD. Similarly, row EVD shows the number of manually-
classified EVD sites that were reported by the analysis
as being EVD. Row TOTAL shows the total number of
sites that were resolved by the analysis, either as SD
or as EVD. The percentages in this row are relative to
the 66 manually-classified SD/EVD sites from Table 1.

The first version was JSA in its original form.3 The
corresponding results are shown in column JSA1. Since
this version did not incorporate our semi-static en-
hancement, it was able to resolve only call sites whose
values were completely statically determinable. Thus,
this state-of-the-art approach could resolve only 22 of
the 78 total SD/EVD/DD sites, which is 33% of the 66
SD/EVD sites. Column JSA2 shows the gains from en-
hancing JSA with the semi-static technique from Sec-
tion 3.1. This addition enables JSA2 to resolve 64%
more sites than JSA in its native form. The version
from column JSA3 added the type generalization out-
lined in Section 3.2. Although this version did not in-
crease the number of resolved SD instances, it nearly
doubled the number of resolved EVD sites, by allowing
more precise tracking of string values that flow from en-
vironment variables (e.g., as illustrated by the call to
doPrivileged in Figure 1). The final version, shown
in column JSA4, added the more precise treatment of
fields described in Section 3.2. As a result, the analysis
was able to resolve 22% more SD sites and 15% more
EVD sites than JSA3.

Overall, the most general version JSA4 resolved 73%
of all client-independent sites (SD/EVD/DD) and 86%
of all SD/EVD sites; for the original version of JSA, the
corresponding percentages were 28% and 33%. JSA4
was unable to resolve nine instances that our manual
investigation classified as SD or EVD. This was due

3With minor error fixes, and some alterations to accommo-
date the open-world assumption.

Version JSA1 JSA2 JSA3 JSA4

SD 22 22 22 27

EVD 0 14 26 30

TOTAL 22(33%) 36(55%) 48(73%) 57 (86%)

Table 2. Number of resolved sites.

to some deficiencies in JSA’s ability to model the flow
of string values. Several of these instances relied on
complex data structures, such as HashMap, which JSA
is currently unequipped to model. The remaining val-
ues passed through operations that were beyond the
modeling abilities of JSA, such as being parsed by a
StringTokenizer.

Summary. A manual investigation of the Java
libraries determined that over 40% of the client-
independent instances of dynamic class loading depend
on values stored in environment variables, and there-
fore are impossible to resolve by any purely static anal-
ysis. Our experiments show that augmenting the cur-
rent publicly available implementation of JSA with the
generalizations proposed in this paper increases the
number of resolved sites by 259% and successfully iden-
tifies 86% of all sites manually-classified as being de-
pendent upon only static or semi-static (those flowing
from environment variables) string values — i.e., SD
and EVD sites.

5 Related Work

Many static analyses attempt to resolve instances of
dynamic class loading in Java applications using tech-
niques of various sophistication. In this section we
present a few of the most relevant along with brief de-
scription of other analyses employing the JSA library.

Jax [28] is a Java application compression tool. It
performs a variety of code transformations that reduce
the overall size of an application. To preserve program
semantics the user must document, in a configuration
file, all instances of dynamic class loading and reflec-
tion in the application. Our work presents a fully au-
tomated approach.

The class hierarchy analysis (CHA) call graph con-
struction in the Soot analysis framework [29] employs
a simple string analysis technique that resolves calls
to Class.forName(<string>) only if <string> is a
string literal. Our work employs a far more powerful
string analysis. Spark [12] is a points-to analysis en-
gine implemented in Soot; it provides a hand-compiled
list of call sites using reflection inside the standard li-
braries. These possible targets are automatically ac-
counted for in the analysis. However, such a solution
is only compatible with the library version and system
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configuration that the original manual check was per-
formed on.

Our analysis builds upon the powerful string anal-
ysis presented in [2]. Christensen et al. recognized
that their analysis could be used to resolved instances
of dynamic class loading. They present a small case
study that investigates their ability to resolve calls to
Class.forName. Our work considers a much wider
range of dynamic class loading methods, and their use
in the entire Java library. Also, our generalizations
greatly increase JSA’s ability to resolve instances of
dynamic class loading, as shown in Section 4.

The work of Braux and Noye [1] extends classic par-
tial evaluation techniques [5, 10] to apply it to the Java
reflection API. Their work aims to replace invocations
of the reflection API with conventional object-oriented
syntax. This specialization relies on type constraints
which must be completed by hand. Conceivably, a sim-
ilar approach could be coupled with our work to create
system configuration specific compilations of applica-
tions in a much more automated fashion.

The work of Livshits et al. [15] proposes a tiered
approach to the resolution of dynamic class loading
and reflection. They present a static analysis algo-
rithm that uses points-to information to determine the
objects that could be loaded dynamically. Their al-
gorithm tracks constant string values that flow to in-
stances of dynamic class loading and reflection. For
instances where they are unable to resolve the target
string’s value, they utilized casting information. If such
information is not present, or a precise solution is re-
quired, their approach relies on user specifications. Our
work could enhance the automation and precision of
their analysis. We employ a more advanced string anal-
ysis and incorporate information that currently has to
be manually provided to their analysis by the user.

The static analyses listed above are not able to auto-
matically and accurately resolve instances of dynamic
class loading that depend on environment variables.
Our work shows that such instances constitute a large
number of sites in the Java libraries. The proposed
semi-static approach was shown to be able to resolve
many of these instances.

Some existing work [9, 21, 20, 25] circumvents the
typical shortcomings of static analyses by developing
online algorithms. This approach typically requires
modifications to the JVM services that handle dynamic
class loading and reflection. These alterations allow the
analyses to observe the actual execution of an applica-
tion, which can be used to resolve any ambiguity intro-
duced by the use of dynamic class loading. However,
as with any purely-dynamic analysis, the results are
unsound and represent only properties of the observed

execution, not of all possible executions. users’ Conse-
quently, the results of such analyses are not practical
for use by some static analysis such as those employed
for program transformations.

Many other analyses utilize the JSA library. The
creators of JSA have employed it in several tools [3, 11]
related to Java web technologies and XML documents.
The JDBC-Checker tool [7, 6] builds upon JSA to ver-
ify the correctness of dynamically generated SQL query
string. Similarly, the AMNESIA tool [8] uses JSA to
identify all possible string values of SQL queries to aid
in the detection and prevention of SQL-injection at-
tacks. The work in [4] extends JSA in the implementa-
tion of their static analysis that recovers possible val-
ues of C-style strings in x86 executables. In [16], the
JSA library is utilized in the implementation of an ap-
proach to understand software application interfaces
through string analysis. To the best of our knowledge,
no analysis other than [2] has employed JSA to resolve
instances of dynamic class loading, nor have we been
able to identify any that augment JSA with the gener-
alizations proposed in our work.

There are other forms of string anlaysis that have
been studied (e.g., [26, 27, 17]). We based our ap-
proach on JSA because it provides an open-source, well
documented, library that directly applies to Java appli-
cations. It is also widely accepted and heavily utilized,
as described above.

6 Conclusions and Future Work

This paper presents a semi-static approach that uti-
lizes configuration information to aid in the resolution
of dynamic class loading in Java applications. This
technique produces results that are tailored to the sys-
tem under analysis, by relaxing the restrictive and
sometimes impractical constraints assumed by most
purely static analyses. We also present generalizations
of string analysis that allow better tracking of class
names and environment variable names. Our approach
increases by a factor of 2.6 the ability of a state-of-the-
art string analysis to resolve dynamic class loading.

In the future we plan to extend our approach to
incorporate other sources of system configuration in-
formation, such as configuration files. Various gen-
eralizations of string analysis could also be pursued,
for issues such as context sensitivity and the handling
of containers (e.g., sets, maps, and lists). It would
also be interesting to investigate other forms of static
analysis that can benefit from a similar semi-static
environment-aware approach, by employing techniques
such as redundancy elimination or partial evaluation.
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