
90% Perspiration: Engineering Static Analysis Techniques for Industrial
Applications

Paul Anderson
GrammaTech, Inc.
317 N. Aurora St.
Ithaca, NY 14850

paul@grammatech.com

Abstract

This article describes some of the engineering ap-
proaches that were taken during the development of Gram-
maTech’s static-analysis technology that have taken it from
a prototype system with poor performance and scalability
and with very limited applicability, to a much-more general-
purpose industrial-strength analysis infrastructure capable
of operating on millions of lines of code. A wide variety
of code bases are found in industry, and many extremes
of usage exist, from code size through use of unusual, or
non-standard features and dialects. Some of the problems
associated with handling these code-bases are described,
and the solutions that were used to address them, including
some that were ultimately unsuccessful, are discussed.

1. Introduction

GrammaTech has been in the software tools business for
almost twenty years. In 1999 CodeSurfer was introduced,
originally conceived as a slicing tool for ANSI C programs.
This was based on a prototype developed as a research ve-
hicle at the University of Wisconsin, Madison. At that time,
the limit of its applicability was approximately 30,000 lines
of ANSI C code.

Since that time, CodeSurfer has evolved into a general-
purpose static analysis platform for several languages, now
capable of analyzing tens of millions of lines of code, and
used directly and indirectly by many software development
organizations. This paper describes the path that this evolu-
tion took, including time that was wasted on dead ends.

The remainder of this paper is structured as follows.
Section 2 describes CodeSurfer as it exists today, includ-
ing a brief description of CodeSonar, a tool that uses the
CodeSurfer infrastructure to find programming errors in
source code. Section 3 discusses how CodeSurfer was en-

gineered to allow it to operate on very large programs. Sec-
tion 4 describes key decisions that were taken to expand
the reach of the tool beyond its original conception. Sec-
tion 5 discusses generalizations that were made to support
multiple languages. Section 6 describes the compromises to
principles that had to be made to be successful. Section 7
briefly describes anticipated improvements and new direc-
tions. Finally, Section 8 presents some conclusions.

2. CodeSurfer

CodeSurfer is a whole-program static analysis infras-
tructure. Given the source code of a program, it analyzes
the program and produces a set of representations, on which
static analysis applications can operate.

These intermediate representations (IRs) comprise the
following:

• Low level lexical information about tokens and their
locations in the source code files.

• Information about how the preprocessor was used to
transform the input to the parser.

• The abstract syntax tree (AST), including the symbol
table, as generated by the parser for each compilation
unit.

• The control-flow graph (CFG), where each node repre-
sents a program point such as an expression, a param-
eter, a call site, etc. An option for static single assign-
ment form is given.

• Each CFG node is associated with a normalized AST
fragment representing the computation at that point.

• The whole-program call graph.

• A whole-program points-to graph.

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.11

3

• Variable definition and use information for every pro-
gram point.

• The set of non-local variables used and potentially
modified by each procedure (GMOD).

• The system dependence graph (SDG), with both data-
dependence and control-dependence edges, as de-
scribed in [5].

• Summary edges, which capture the transitive depen-
dences of a call to a procedure at a call site [6].

CodeSurfer has a graphical user interface that allows a
user to navigate and query the program in terms of these
representations. A user can do forward and backward slic-
ing, or perform regular or truncated chops. Predecessor and
successor operations yield immediate neighbors in the de-
pendence graph. A set calculator can be used to combine
sets of program points using set-theoretic operations.

Figure 1 shows a simplification of the dependence graph
for a small program comprising two procedures. Only data
and control-dependence edges are shown.

An API provided in both Scheme and C provides access
to all of these representations.

Figure 2 shows a schematic of the architecture of
CodeSurfer. This illustrates how the IR can be generated
from many different source languages, and how various ap-
plications can be built on the API.

2.1. Path Inspector

The Path Inspector is a CodeSurfer add-on that allows
users to reason about paths through the code. It uses model-
checking techniques, where the model is the interprocedu-
ral control-flow graph. Users specify properties that should
hold, and the model checker attempts to prove that they do.
If a property does not hold, then the model checker delivers
a counter-example where the property is violated.

The properties are formulae in a temporal logic, but users
specify them as state machines, where the states are sets of
program points and transitions imply paths.

To the user, the queries look like templates over paths.
For example, a query might be “There is no path from A
to C that does not go through B”, where A, B and C are
arbitrary sets of program points.

State machines can be specified with quantifications over
objects too. Thus a user can specify paths for particular ob-
jects. This is useful for asking about the state of a particular
variable. For example, “There is no path to points where F
is written to after F is closed”.

The path inspector uses weighted pushdown systems as
its underlying formalism [8]. As such, it was a more sound
model than is used in CodeSonar. Section 6.3 discusses why
CodeSonar uses different techniques.

2.2. CodeSonar

CodeSonar is the largest and most sophisticated applica-
tion built using the CodeSurfer infrastructure. It is designed
to find programming flaws in software. It uses symbolic ex-
ecution techniques to perform a path-sensitive analysis of
the subject software. It works bottom up on a version of the
call graph where cycles have been removed. Each proce-
dure is analyzed by exploring paths through the CFG while
maintaining information about the values of variables and
how they relate to each other. As anomalies that indicate
potential flaws are encountered, a report is issued. When
the analysis of a procedure is completed, summary infor-
mation is generated and used in the analysis of the clients
of that procedure.

CodeSonar was designed to be fast and scalable. As such
it could not rely on many of the more sophisticated repre-
sentations generated by CodeSurfer. As a bug finder (as
opposed to a program verifier), the analysis can afford to be
both unsound and incomplete.

Many of the changes to the CodeSurfer infrastructure
were driven by requirements imposed by the need to make
CodeSonar successful.

CodeSonar uses a surprisingly modest subset of the IR
that CodeSurfer generates: the call graph, the CFGs, and
the normalized ASTs are used. The unnormalized ASTs are
discarded, pointer analysis is not used, and neither control
or data dependence edges, including summary edges, are
generated.

3. Engineering for Scalability

This section describes how CodeSurfer was engineered
to improve its scalability.

3.1. Stratification

Not all clients of CodeSurfer need access to all of the
intermediate representations that it generates. For example,
summary edges are unnecessary if the user has no interest
in slicing or chopping in linear time. As these are among
the most expensive representations to compute and store, it
is useful to be able to turn their generation off.

Most of the intermediate representations are optional.
Those that are particularly expensive in terms of time and
space are the following.

• Unnormalized Abstract Syntax Trees in native
forms can be extremely expensive in terms of space.
One reason for this is there is usually a high degree
of redundancy between compilation units. Most front
ends are not designed to store this information effi-
ciently for whole programs.

4

Figure 1. A simplification of the SDG created by CodeSurfer for a small program.

• Pointer Analysis is discussed further in Section 6.2
below. It can be turned off entirely.

• GMOD is only usually useful if a pointer analysis
phase is used to compute aliases. With such aliases
it is very time-expensive.

• Summary Edges require time O(n3) in the number of
parameters to compute. Although aggressive factoring
is used to reduce their space consumption, the cost in
both time and space is very high.

These may all be suppressed or scaled back when build-
ing the program model.

3.2. Memory-mapped Input/Output

CodeSurfer operates by creating the IR and storing it to
disk such that a subsequent process can read it in and per-
form an analysis. Originally, CodeSurfer did this by storing
the information in a set of files in an ASCII format. Each
analysis process was required to parse these files to recreate
an in-memory representation of the IR. This was hopelessly

slow for all but the most trivial of applications. On-demand
reconstitution of the IR was not a significant improvement.

The first solution to this was to use memory-mapped IO.
Instead of allocating the in-memory objects on the heap us-
ing the standard malloc and free, a new memory allocation
library was used that provided a similar interface, but where
instead of using sbrk to request more memory from the op-
erating system, it used mmap instead. The effect of this was
that the internal representation of the IR was the same as the
external representation. The virtual memory layer of the op-
erating system took care of paging the contents in and out of
main memory. This approach resulted in the IO cost being
reduced to negligible quantities.

There were a few disadvantages to this approach, and
it has since been discarded. One was that the file had to be
mapped at the same virtual address every time it was read in.
Also, the address space used was required to be contiguous.
This meant that the choice of the base address of the file was
very important. It had to be chosen to leave enough space to
create very large structures, and also to not clash with other
addresses in use, including the normal heap.

This was successful enough that it was the main IO for-

5

Figure 2. The architecture of CodeSurfer.

mat used by CodeSurfer for many years. However, it was
eventually discarded because of a fundamental limitation:
address space. On most machines with a 32-bit address
space, the maximum amount of addressible memory is 2Gb,
and in practice because of the need to avoid clashes, and
the requirement for contiguity, the actual amount available
is much less. This imposed a hard limit on the amount of
space available for CodeSurfer IR storage, which was unac-
ceptable.

3.3. Object Store

The storage mechanism that replaced the memory-
mapped IO was designed and implemented entirely in
house. Several third-party options were evaluated, but none
satisfied all our requirements.

This object store allows a user to create fine-grained ob-
jects in memory, and then have these automatically paged in
and out of memory to backing store as necessary. Object-
store “addresses” are a full 64 bits, so address space is no
longer an issue. Multiple object stores can be used simul-
taneously, so embedded in each of these is an identifier that

specifies the specific store it refers to.
Cache analysis tools were built and used to analyze and

optimize the object store for its use in CodeSonar.

4. Engineering for Usability

This section describes strategies taken to improve the us-
ability and general applicability of the infrastructure.

4.1. C/C++ Language Usage

There are a large number of compilers in use in industry,
especially for embedded systems development, and they all
behave differently in key ways:

• The location of default or system header files.

• The set of preprocessor or other symbols that are im-
plicitly defined.

• The set of command-line arguments accepted and how
they are interpreted.

6

• The way in which they mangle exported names.

• The definition of the language they are prepared to ac-
cept as input.

The last point is particularly important. No C compiler
is purely ANSI C, and even if the program being compiled
is pure ANSI C, the standard header files never are. Most
compilers implement non-standard extensions. New key-
words are most common. This is especially true for com-
pilers for embedded systems, as vendors like to provide lin-
guistic means for accessing low-level hardware features.

Some examples of this are the following:

• There are many different syntaxes for specifying inline
assembly.

• The Keil compiler allows the declaration of a variable
such as x, and occurrences of x are then considered
uses of that variable.

• A large network hardware company uses a custom ver-
sion of gcc based on a long-obsolete public version.
This version accepts string literals that span multiple
lines without closing quotes.

• The Microsoft C/C++ compiler implements a
#import preprocessor directive. This incorporates
symbolic information from a proprietary type library.

• Although non-standard keywords can often be ignored
by using preprocessor definitions, some compiler ven-
dors have insisted on introducing new syntax that can-
not be handled in this way. The IAR compiler allows
declarations of the form int x @ 16;, indicating
that x should be at address 16. Multiple variables can
be aliased in this way.

CodeSurfer must also be able to recognize all of these
compilers, and be able to interpret their command-line ar-
guments and adjust accordingly. CodeSurfer uses the EDG
front end for C and C++ parsing [3], extended with modes
that allow it to correctly parse these different dialects. Com-
piler models are used to determine which mode to use.
These are also responsible for translating command line
flags for particular compilers into flags that can be inter-
preted by the modified EDG front end.

Many compilers document their extensions very poorly,
and often accept as legal a superset of what the documenta-
tion specifies. It is difficult to anticipate these in advance,
so the EDG parser has been modified so that if it encoun-
ters something unexpected, it will issue an error message,
recover at a suitable restarting point, and keep parsing.

In addition to this, extreme usage of language features
is commonplace. Some examples we have encountered are
the following:

• The Boost library [1] uses template metaprogramming
techniques heavily. A Boost component implement-
ing a parser has an identifier name whose templated
expansion is over 12,000 characters long. When man-
gled without compression, this yields an identifier over
60,000 characters in length. All such mangled identi-
fiers require in excess of 8Gb to store.

• Automatically-generated static initializers of extreme
lengths, sometimes with hundreds of thousands of ele-
ments on the same line.

• A source file, which when expanded by the preproces-
sor was over four million lines long.

These extremes are also difficult to anticipate, so the gen-
eration of the intermediate representations has been engi-
neered to be somewhat fault tolerant.

Finally, there are unusual usage circumstances. Some
users wish to analyze code but cannot even compile the code
because they do not have access to the original compiler
or its header files. This is common in organizations that
provide verification and validation services for clients, or
for those who are doing investigations of software after it
has failed in the field, as described in [7].

4.2. Identification of Code

With any code analysis tool, it is a challenge to deter-
mine what source code must be analyzed, as well as how it
should be parsed. In the original CodeSurfer, the user did
this by simply identifying the files by name, and by speci-
fying preprocessor flags on the command line. In practice,
this interface was a barrier to usage for all but the smallest
and most simple of programs.

The best approach to this problem is to observe the build
system to identify the code to analyze. Unfortunately build
systems are notoriously ad-hoc. Some are controlled by
IDEs, some use make, or similar systems, and some are
just shell scripts. Some build systems create a single exe-
cutable, and others create several executables. Executables
are typically constructed from object files, and these may
have been moved, renamed, or collated into archives, so
the association with the original source file may be obscure.
Often some of the code is generated by the build system
as it proceeds. Finally, the precise treatment of a partic-
ular source file depends strongly on the compiler used, as
different compilers specify different preprocessor symbols
and built-ins.

The traditional approach to this problem is to replace the
actual compiler with the front end used by the analysis, then
invoke the build system. When the build system is com-
plete, the files that have been seen by the front end are those
that should somehow be incorporated into the analysis.

The replacement of the compiler allows CodeSurfer to:

7

• Interpret the remainder of the command line to deter-
mine what file to parse, and what preprocessor flags to
use to parse it.

• Parse the file and create temporary files containing the
transitional IR.

• Optionally determine which object files are produced,
and to record the association between those object files
and the source files.

• Optionally invoke the real compiler. This may be nec-
essary in cases where a program is compiled, then ex-
ecuted to create more code.

There are two approaches to this:
Wrapping the Compiler. The first approach involves

changing the build system to change the specification of the
compiler name. CodeSurfer simply requires that the string
csurf be prepended to the command. For example, if the
original build commands were:

gcc -c foo.c
gcc -o foo foo.o

then changing this to

csurf gcc -c foo.c
csurf gcc -o foo foo.o

is sufficient to create a CodeSurfer project named foo com-
prising a single compilation unit foo.c. When CodeSurfer
is then invoked, it sees the exact command line, including
the name of the compiler that was invoked, which allows it
to select the appropriate compiler model.

While this approach is usually feasible, it is often a bar-
rier to acceptance because it requires that the build system
be changed, something which users are very reluctant to do.
Many build systems are highly fragile and are not amenable
to this kind of change. For example, we have seen build
systems where different C compilers are used for different
components, and where there are dozens of different loca-
tions where the name of the compiler is specified.

Process Interception. The second approach avoids the
need to change the build system in most cases. With this
approach, the user invokes the build system as normal, but
in a context where CodeSurfer can observe the process in
action. If the process invokes a compiler, then CodeSurfer
then intercepts that invocation and steps in and replaces it.
On the Windows platforms, this is done by a device driver.
On other platforms it is done by manipulating how the pro-
cess finds its dynamically loaded libraries.

4.3. API

The CodeSurfer internals are all written in C, but the
original CodeSurfer API was exclusively Scheme. Scheme

was chosen because it was considered to be easy to learn
and to program, and because we had experience with STk,
a robust open-source implementation with a windowing
toolkit [2]. The entire user interface is written in Scheme
using this API.

The Scheme implementation was extended with prim-
itive types to represent the IR, such as PDG vertices
and edges. Each of these new Scheme primitive types
corresponds to an underlying type in C, so creating a
Scheme value involves wrapping the underlying C value
with Scheme cell information.

There were technical disadvantages to Scheme, of which
performance was the most significant. In terms of speed,
there were two expensive costs. The first is that every time
a value is exposed in Scheme, memory must be allocated for
the Scheme wrapper. As the IR consists of very fine-grained
objects, this expense is non-trivial.

The second cost is with garbage collection. The imple-
mentation of Scheme used does a mark-sweep garbage col-
lection of the heap. When the heap is full, and a new cell is
needed, then a garbage collection is initiated, which scans
the entire heap. This means that as the heap grows mono-
tonically there is an inherent quadratic cost to scan it.

The combination of these costs was a performance bot-
tleneck for CodeSonar, and hence a barrier to usage, so a
C API was introduced. This is potentially more difficult
to use, and garbage collection is the responsibility of the
client, but it avoids all the performance problems.

A second reason for the introduction of the C API was
the surprising resistance by users to the use of Scheme as a
scripting language.

5. Engineering for Generality

CodeSurfer is best known as an infrastructure for ana-
lyzing C and C++ programs. However, it has been used
to analyze other languages. Languages that have been sup-
ported include Jimple (a three-address form of Java byte-
codes), Ada 95, SWRL (Semantic Web Rules Language),
and x86 machine code. (The only other language currently
fully supported is x86 machine code.) For each of these lan-
guages, the infrastructure was capable of generating most or
all of the intermediate representations, including the system
dependence graphs.

At the SDG level, the representation is mostly indepen-
dent of the source language, with the exception of the gram-
mar of the abstract-syntax trees, so it is possible to create
an SDG that correctly models a program built from compo-
nents in different languages.

This generality is enabled through the use of separate
parsers for each language, and language modules, which
are responsible for providing language-specific services to
the component that builds the SDG.

8

The responsibility of the parser is to create the abstract
syntax tree for the file being parsed, and a set of preliminary
intermediate representations, mainly comprising a control-
flow graph annotated with variable usage information.

When the dependence-graph builder creates the whole-
program model, it then relies on the language module to
provide the following services:

• The grammar of the abstract syntax trees.

• Accessor functions that allow retrieval and deconstruc-
tion of abstract syntax tree nodes.

• A map between abstract syntax tree nodes and the
source code positions of the constructs that gave rise
to them.

• The creation of a database of ASTs that represent types
used in the program.

A separate module provides an interface for the deman-
gling of names.

Because the grammar and the management of abstract
syntax trees is the entire responsibility of the front ends and
their associated language modules, it is possible to use an
existing language front ends that have their own native stor-
age mechanisms. CodeSurfer/C originally used the EDG
front end, employing the native file format for storage, and
CodeSurfer/Ada used the ASIS interface for abstract syntax
trees.

6. Compromising on Principles

In the research community, often a great deal of empha-
sis is put on correctness of implementation. In industry, we
have found that for both CodeSurfer and CodeSonar, cor-
rectness is much less important to users than usefulness.
The cost of correctness is usually poor performance or poor
scalability, both of which are detrimental to utility. As a
result we have had to retreat from correctness on several
fronts. This section describes some of these.

6.1. Soundness in General

An analysis that is sound will never have a false nega-
tive result. With CodeSurfer, a false negative might mean
a missing dependence edge where one ought to be, and for
CodeSonar it may mean failure to find a real flaw. It is of
course easy to achieve perfect soundness, but only at the
cost of extremely poor precision.

In some domains, such as compiler optimization, sound-
ness of analysis is a requirement, because without it there is
a risk of introducing a bug. For this reason, sound analyses
are usually restricted to a fairly limited scope. Many such
analyses are intraprocedural for example.

Both CodeSurfer and CodeSonar are much more ambi-
tious in scope: they attempt whole-program interprocedural
analyses. We believe that soundness of this kind of analysis
is a mirage.

The single most prominent reason for this is there is too
much that is unknown.

When an analysis encounters a call to a procedure whose
body is not available to the analysis, then it must make an
assumption about what that procedure does. The problem
is that a fully conservative assumption would be that the
procedure can read or write any variable that is in scope,
or reachable by pointer indirection; or that it could call any
other procedure in scope, including those of the operating
system. It may even throw an exception or abort the pro-
gram. The truly conservative thing to do must be to assume
it could do all of these things. Unfortunately this is unlikely
to be useful as it would give rise to far too many false posi-
tives.

Both CodeSurfer and CodeSonar make some simple
assumptions about undefined procedures: CodeSurfer as-
sumes only that the output parameters depend on the values
of the input parameters. CodeSonar assumes even less: that
the procedure does nothing with the input parameters and
the output parameters’ values are unknowable.

6.2. Pointer Analysis

CodeSurfer uses a version of the Andersen flow-
insensitive pointer analysis [4] that has been extended to
handle structure fields and to have a measure of context-
sensitivity through inlining. Pointer analysis is another of
these techniques which, if soundness is attempted, ends up
being so imprecise that it is of limited use.

To address this, the pointer analysis algorithm has been
extended with options that reduce its soundness, but which
eliminate sources of imprecision. For example, one option
allows the analysis to assume that a pointer value cannot be
stored in a type whose size is smaller than a pointer. This
can be done by chopping a pointer value up into bytes and
storing each byte in a character-typed variable. However al-
lowing the pointer analysis algorithm to eliminate this pos-
sibility does eliminate a good deal of imprecision.

The disadvantage of these options is that it takes experi-
ence and skill to find the settings that are best for a particular
program. However, effort on this is richly rewarded as this
has the most profound effect on the quality of the analysis.
Imprecision in the pointer analysis has a ripple effect on
the rest of the analysis. The more imprecise a pointer anal-
ysis is, the larger are the points-to sets, which means that
the results of subsequent phases are also less precise, and
take more time. Consequently, an imprecise pointer analy-
sis may terminate quickly, but may cause subsequent phases
to take much longer.

9

Despite these options, pointer analysis remains the
biggest bottleneck and barrier to large-scale analyses. At
the time of writing, with the most precise options, it is
most often incapable of completing on programs in excess
of 100,000 lines of code.

6.3. The Path Inspector

The path inspector was originally conceived as the un-
derlying infrastructure that would allow us to build a
general-purpose defect detection tool. Much effort was ex-
pended on this, and several queries were formulated, includ-
ing one to find null pointer dereferences. However, this ef-
fort ultimately failed because we could not make it scale to
large programs, and because the rate of false positives was
unacceptably high. The approach now used in CodeSonar
was developed as the alternative.

6.4. Library Models

As mentioned above, CodeSurfer makes a simple as-
sumption about procedures for which source code is not
available. For most standard library functions, these as-
sumptions yield a weak model of the program. For example,
for the function strlen, this assumption means that the anal-
ysis would miss the fact that the function dereferences its
parameter.

To avoid this, a large number of library models have been
developed. These are stubs of the functions that are written
to model the real semantics of the function. In some cases,
the models are in fact full implementations of the library
functions, as is the case with several of the string manipula-
tion functions. However, with functions that eventually call
the operating system, it is not feasible to do this completely.
These are also sources of unsoundness and imprecision.

For example, a slightly simplified version of the model
for the open function is shown in Figure 3.

The identifiers beginning with CSM are macros that pro-
vide a simple abstraction layer helpful for writing models.
CSM DEPENDENCES3 returns an undetermined value that
is computed from the values of the three parameters. The
net effect of the if statement is to model the fact that path
variable is dereferenced, and that the result is control depen-
dent on that value and the values of the remaining parame-
ters.

This model does not capture the fact that a call to open
may change the state of the file system. Most functions
that manipulate the file system may change its state. To be
sound, models for these functions would have to take into
account a potential flow of information between all such
functions. In some cases this is acceptable, but it is very
rarely what users really want, as the cost in imprecision is
too high.

int open(const char *path,
int oflag, ...) {

int rv;
va_list ap;
mode_t dot_dot_dot;

va_start (ap, oflag);
dot_dot_dot = va_arg (ap, mode_t);

if (CSM_DEPENDENCES3(*path, oflag,
(int) dot_dot_dot))

{
CSM_SETS_ERRNO_TO_NONZERO();
return -1;

}
CSM_ALLOCATE_FILEDESCRIPTOR(rv);
return rv;

}

Figure 3. The CodeSurfer model for the open
library function.

CodeSurfer does provide an option to model the file sys-
tem as a monolithic entity, but this is not the default, and is
rarely if ever used.

Library models have other problems too. Because they
are approximations, they may not be good for all potential
analyses. A model that is good for data dependences may
be wrong for control dependences.

6.5. CodeSonar Limitations

CodeSonar was designed from the ground up to be scal-
able, have a low false positive rate, and have good perfor-
mance. As such, compromises on the scope of the analysis
were made. It was never envisaged as a program verifier,
but as a bug “hunter”. As such, retaining soundness was not
a requirement. In order to keep the false positive rate low,
it was decided to only report warnings if the analysis had
a high confidence that warnings are indeed true positives.
Users expect analysis tools to be approximately linear in
the size of the program being analyzed, and to complete in
a small multiple of the time it would take to compile the
program, so reasonable close-to-linear performance was a
requirement too.

The most fundamental design decision was to make the
analysis be bottom up in the call graph. The analysis starts
with the procedures that are leaves, then explores paths in
those. When the analysis for a procedure completes, sum-
mary information for that procedure is computed, and that
information is used by effectively inlining it at call sites.

10

Once summaries are computed for a procedure, the body
of that procedure is never examined again, so it can be dis-
carded. This limits the amount of memory in use at any
time.

This approach means that the analysis cannot handle re-
cursion, so cycles in the call graph are broken at arbitrary
points.

CodeSonar is a path-sensitive analysis, so it explores
paths through each procedure. However, as the number of
potential paths is unbounded, this had to be limited. First,
loops are explored for zero iterations, one iteration, and
more than one iteration. This reduced the problem space,
but the number of paths remained exponential in the num-
ber of branches. To reduce this, an upper limit is placed on
the number of paths explored and the time spent exploring
them. Once this limit is reached, no further paths are ex-
plored for that procedure. Warnings that require universal
quantification over paths are then optionally suppressed if
they depend on procedures for which this limit was reached.

Finally, CodeSonar does not explore paths that arise be-
cause of asynchronous control-flow transfer. Such paths
may occur because of interrupt handlers and context-
switches between threads. Because such transfers may oc-
cur at arbitrary places in the code, a sound analysis would
have to consider all paths that these might imply. This is
intractable for non-trivial programs.

7. Future Work

This section describes planned developments for the
CodeSurfer infrastructure.

7.1. Mixed Language Analysis

GrammaTech has long been working on static analysis of
machine code. Future work will allow simultaneous analy-
sis of both source and machine code.

7.2. Rewriting

CodeSurfer will soon be capable of limited forms of
rewriting. The scripting language will allow the CFG and
normalized ASTs to be rewritten, and for a new source-
code representation to be prettyprinted from those represen-
tations.

7.3. Incrementality

Currently, the intermediate representations created by
CodeSurfer are not reusable, with the exception of those
produced by the front end. Thus if a user makes a small
change to a source file, the only way to recompute the IR is
to throw away the existing representations and start again.

This is a barrier to acceptance, as users expect results to ap-
pear in time approximately proportional to the size of the
change. Future work will address this issue by allowing in-
cremental rebuilds of the IR.

7.4. Web-based User Interface

The CodeSurfer user interface does not scale well to
large projects. Coupled with this is the fact that CodeSonar
has a web-based user interface that has only very limited
program understanding features. Future work will involve
migrating more of the CodeSurfer program understanding
features to the CodeSonar web-based interface. Scalability
to tens of millions of lines of code is a requirement.

8. Conclusion

Many program analysis and manipulation systems have
at their core innovative approaches to solving important
problems. While these may work well in a controlled en-
vironment, there are many stumbling blocks on the way to
making them work on the wide variety of programs, envi-
ronments, and practices encountered in industry. If it is at
all possible to have extreme usages of programming lan-
guage features, it is highly likely that somewhere there is
code that has them. This paper discussed how some of these
issues were addressed and solved for the CodeSurfer static
analysis infrastructure, and the CodeSonar defect detection
tool. It is hoped that some of the lessons learned transition-
ing a static analysis infrastructure from a research vehicle to
an industrial strength analysis tool will be helpful to other
researchers.

9. Acknowledgments

The success of CodeSurfer and CodeSonar would not
have been possible were it not for the contributions of many
highly-talented engineers both at the University of Wis-
consin and at GrammaTech. Lack of space precludes list-
ing them all, but the following individuals deserve special
mention as many of the innovations described here are due
mostly or entirely to them: Chi-Hua Chen, David Vitek,
Radu Gruian, and David Melski.

References

[1] Boost C++ Libraries. http://www.boost.org.
[2] STk Home Page. http://kaolin.unice.fr/STk/.
[3] The C++ Front End. http://www.edg.com.
[4] L. O. Andersen. Program Analysis and Specialization for the

C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

11

[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs. ACM Trans. Prog. Lang. Syst.,
12(1):26–60, January 1990.

[6] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the Third ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages
11–20, New York, NY, Dec. 1994. ACM Press.

[7] R. P. Jetley, P. L. Jones, and P. Anderson. Static Analysis of
Medical Device Software using Codesonar. In Static Analysis
Workshop. NIST, ACM Press, June 12 2008.

[8] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted
pushdown systems and their application to interprocedural
dataflow analysis. Sci. Comput. Program., 58(1-2):206–263,
2005.

12

