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Abstract
Key Statement Analysis extracts from a program, state-

ments that form the core of the program’s computation. A
good set of key statements is small but has a large impact.
Key statements form a useful starting point for understand-
ing and manipulating a program.

An empirical investigation of three kinds of key state-
ments is presented. The three are based on Bieman and
Ott’s principal variables. To be effective, the key statements
must have high impact and form a small, highly cohesive
unit. Using a minor improvement of metrics for measuring
impact and cohesion, key statements are shown to capture
about 75% of the semantic effect of the function from which
they are drawn. At the same time, they have cohesion about
20 percentage points higher than the corresponding func-
tion. A statistical analysis of the differences shows that key
statements have higher average impact and higher average
cohesion (p < 0.001).

Keywords: Program Slicing, Principal Variables, Impact,
Cohesion

1 Introduction
Key Statement Analysis (KSA) identifies statements that

are key to a given module [9]. The key statements identified
support quicker focus of attention on critical code [7]. This
helps engineers perform the kinds of tasks that arise, for
example, during software maintenance and program com-
prehension [6, 12, 13, 15].

The computation of key statements denotes a depar-
ture from traditional slicing, which seeks to extract an ex-
ecutable sub program. Our previous research has found
that, at least within the static slicing paradigm, the extracted
slices can be rather large; on average they are about one
third of the whole program [3]. Such large slices may re-
tain some value for applications in reuse and reverse engi-
neering, but for the purpose of supporting human analysis
and insight elicitation from source code, large chunks of ex-
tracted code are comparatively unhelpful.

1On sabbatical leave from Loyola College in Maryland.

By contrast, key statements are not executable subsets
of programs. Rather, they are specific statements, through
which the largest part of the program’s dependence appears
to flow. They can be thought of as high impact statements,
or statements that capture something of the essence of the
overall computation; at least, they can be said to capture
the ‘essence of dependence’ by definition. This paper intro-
duces a new algorithm for KSA, and evaluates its ability to
locate statements that capture this ‘essence of dependence’
in terms of the key statements’ cohesion and impact.

To be effective, KSA must identify statements of high
impact that themselves form a small cohesive unit. To eval-
uate the keyness of the key statements from module m, two
metrics are used. The first, impact, considers the influence
of the key statements as compared to that of all the state-
ments of m. A good set of key statements is expected to
have an impact similar to that of m. The second metric, co-
hesion, considers the influence of each key statement com-
pared to that of all the key statements taken collectively. All
statements in a set of key statements are expected to have
high impact; thus, the set will tend to have high cohesion.

KSA can extract key statements from a variety of soft-
ware modules such as functions, classes, files, and concepts
bindings [7]. This paper investigates the effectiveness of
KSA applied to the functions as found in a collection of
ten C programs. The study considers the following four re-
search questions, analysis of which forms the four primary
contributions of the paper:

1. Is the number of key statements considerably smaller
than the number of statements found in the function
from which they are extracted?

2. Do key statements have similar sized impact on the
computation of the program as that of the overall func-
tion from which they are extracted?

3. Do key statements form a more cohesive unit than
those of the function from which they are extracted?

4. Do (large) dependence clusters [4] affect key statement
identification?
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The rest of this paper is organized as follows: Section 2
describes background on program slicing, the operation that
underlies KSA. This operation is described in Section 3.
Then Section 4 lays out the design of the experiment in-
cluding the two metrics, impact and cohesion, used in the
evaluation. Section 5 presents and discusses the results of
the study. The final section concludes the paper.

2 Background
This section describes the two kinds of static program

slicing [16, 10] used in the paper: backward slicing and for-
ward slicing. Both are computed as a reachability analysis
over a program’s System Dependence Graph (SDG) [10].
The vertices of an SDG are essentially the nodes of the pro-
gram’s control-flow graph. An SDG’s edges represent the
control and data-flow dependences between the vertices.

A backward slice of an SDG is taken with respect to one
or more selected vertices of the SDG and includes the ver-
tices for those parts of the program that potentially effect
the behaviour of the selected vertex. A forward slice is also
computed with respect to one or more SDG vertices; it in-
cludes those parts of the program potentially affected by the
computation represented at the selected vertex. The follow-
ing two definitions formalize these two kinds of slicing.
Definition 1 (Backward Slice [2])
A backward slice of program P taken with respect to one or
more vertices V from P ’s SDG, denoted

←−S (P, V ), includes
those vertices denoting computations that transitively effect
the computation represented at V . The corresponding pro-
gram elements form an executable subprogram, S, such that
S behaves identically to P with respect to the sequence of
values computed at each of the statements represented in
V .

Definition 2 (Forward Slice [10])
A forward slice of program P taken with respect to one or
more vertices V from P ’s SDG, denoted

−→S (P, V ), includes
those statements and predicates of P that are transitively
affected by the computation represented at V .

In this paper, backward slices will be constructed
intraprocedurally, while forward slices will be constructed
interprocedurally. This is done to capture by simple in-
traprocedural backward slicing, within a procedure/function
of interest, the global whole–program forward impact of
that procedure. The work described in this paper seeks to
use slicing to capture the (hopefully few) key statements
that denote the largest part of this whole–program impact.

3 Key Statement Analysis
This section summarizes the key statement identifica-

tion process [9, 7], which is based on the observation that
statements in multiple backward slices contribute to mul-
tiple computations; thus, they are potential key statements
within a program. To identify key statements the backward

slices are taken with respect selected principal variables.
The algorithm starts by identifying the principal variables
for each function. Bieman and Ott defined these variables as
those that play a “more important role in a program” [1, 11].
Formally, they defined variable v of function F is a princi-
pal variable iff

• v is a global variable assigned in F . The global princi-
pal variables is denoted PVG.
• v is used in an output statement (e.g., print or write) in

F . The output principal variables is denoted PVO.

In addition to PVG and PVO, the empirical study also con-
siders the set of principal variables PVG

⋃
PVO.

In the experiments the sets PVG and PVO are extracted
from the program’s SDG. The set of global variables poten-
tially modified by a call to a function f , is easily extracted
because each such global variable has a special global-
formal-out vertex in the subgraph representing f . The set
PVO is also easily determined from the SDG as each out-
put variable appears in an actual-in vertex (i.e., is used as
an actual parameter). The set PVO includes those variables
found in the actual-in vertices of calls to output functions
such as printf and write.

Figure 1 presents the algorithm used to identify key
statements based on an algorithm proposed by Harman et
al. [7]. It takes as input a function f from a program P
and a set of principal variables p. It computes the set of
key statements, denoted KS. The algorithm upon which
that of Figure 1 is based computes the key statements as
those found in the intersection of the backward slices taken
with respect to the final use of each principal variable. In
the figure, Finaluse(f , v) is used to denote the final use of
variable v of function f .

This paper introduces an improved KSA algorithm that
maintains the same impact and cohesion while reducing the
size of the set of key statements. It exploits the observation
that statements in the forward slice of a key statement can be
removed from the set of key statements. Note that a function
f may have no key statements.

Example. Figure 2 shows an example of the key state-
ment computation based on the set of principal variables
PVO. The example function computes the area and vol-
ume of a cylinder given its radius. From Lines 8 and 9,
PVO includes {area, volume}. The intersection of the
backward slices taken with respect to the final uses of these
two principal variables includes only Line 4 (shown boxed
in Figure 2). Thus, Line 4 is the sole key statement. Here
the intuition behind this statement’s keyness is that the vari-
able under surface contributes to the computation of both
area and volume variables.

4 Evaluation
A ‘good’ set of key statements ought to have a large im-

pact while itself being a small cohesive group. Two metrics
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function KSA (Program P , Function f , PVs p)
returns: a set of Statements from f

{
for each variable v in p

let slicei =
←−S (P , Finaluse(f , v))

endfor
let KS = Statements(f ) ∩ {⋂i slicei}
for each (remaining) statement si in KS

for each key statement sj �= si in
−→S (f, si)

remove sj from KS

endfor
endfor
return KS

}

Figure 1. Key Statement Analysis Algorithm
for identifying those statements that effect all
of a function’s principal variables.

Line void cylinder(int r)
1 {
2 diameter = 2*r;
3 perimeter = PI * diameter;
4 under surface = PI * r * r;
5 side surface = perimeter * h;
6 area = 2 * under surface + side surface;
7 volume = under surface * h;
8 printf(”Area is %f\n”, area);
9 printf(”Volume is %f\n”, volume);

10 }

Figure 2. An example key statement compu-
tation in which the computation of principal
variables area and volume are both influenced
by the computation of under surface at Line 4,
making it a key statement.

are used to evaluate the key-ness: Impact and Cohesion.
This section introduces and motivates these two. It then for-
malizes the measurement techniques used in the experiment
and finally outlines the experimental design.

Following the work of Black [5], and Yau and Collofello
[17] where forward dependence analysis is used to identify
the ripple effect of a change, forward slicing is used in the
definition of the two metrics as a measure of the impact of a
statement. Roughly, the larger the forward slice, the larger
the impact of the vertex (or set of vertices) from which the
slice was computed. Thus, forward slicing can be used to
measure the impact of one or more statements.

In the following, the forward slice notation,
−→
S (P, S),

is overloaded such that when S is a single statement it is
assumed to be the singleton set containing that statement;

where S is a function it is taken to denote the set of all
statements found in the function.

4.1 Metric 1: Impact

Impact measures the relative influence of a set of key
statements S compared to the influence of the function from
which they were drawn. Semantically, this influence can be
defined as those statements computing with a tainted value
when the statements if S introduce the taint [14]. A safe
approximation to this influence can be computed using the
forward slice taken with respect to the set of SDG vertices
that represent the statement in S.

For a single statement s from function F of program P ,
Impact is the ratio of the size of the forward slice taken
with respect to s to the size of the forward slice taken with
respect to the statements of F :

Stmt-Impact(s, F, P ) =
|−→S (P, s)|
|−→S (P, F )|

For a set of statements, the average impact is used in the
evaluation. Given a set of (key) statement S from function
F of program P Impact(S,F,P) is defined as follows:

Impact(S, F, P ) =
1
|S|

∑

s∈S

Stmt-Impact(s, F, P ) (1)

=
1
|S|

∑

s∈S

|−→S (P, s)|
|−→S (P, F )|

=
∑

s∈S |
−→S (P, s)|

|S| × |−→S (P, F )|
Because any set of key statements S is always a subset

of the function from which they are drawn, F , the value of
Impact(S, F, P ) ranges between zero and one, where zero
occurs when there are no key statements and one when the
slice on each key statement is identical to the slice taken
with respect to the entire function. Conceptually, the higher
the value of Impact the more key the key statements. In the
sequel Impact is used in place of Impact(S, F, P ) when
the statements, function, and program are clear from the
context.

4.2 Metric 2: Cohesion

Whereas impact measures the outward influence of the
key statements, Cohesion measures their inward connect-
edness. It compares the influence of each key statement to
the influence of all the key statements taken collectively.
This is similar to Bieman and Ott’s notion of Coverage [1]
and Weiser’s notion of Overlap [16]. High cohesion is ob-
tained when each of the key statements has a similar influ-
ence. For a fixed impact, the range of cohesion values is
from 1/n (n is the number of key statements), where each
key statement has a completely separate influence, to one,
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when each key statement has exactly the same influence.
Combined high Cohesion means the key statements have
similar influence and high Impact means that they have a
large influence.

Cohesion is computed as the ratio of the average slice
size for the key statements to the size of the slice taken
with respect to all the key statements collectively. More
formally, for the set of key statements S from program P ,
Cohesion(P, S) is defined as follows:

Cohesion(P, S) =

1
|S|

∑

s∈S

|−→S (P, s)|

|−→S (P, S)| (2)

=
∑

s∈S |
−→S (P, s)|

|S| × |−→S (P, S)|
As with Impact, Cohesion is used in place of Cohesion
(P, S) then the program and set of key statements are clear
from the context.

The definition of Cohesion improves on Weiser’s orig-
inal slice-based metric Overlap [16] when the intersection
of the set of slices is empty. Weiser’s metric is defined as
the average ratio of the size of the intersection of all slices
to the size of each slice. When the intersection is empty,
this metric takes the value zero. The difference is illustrated
by the three examples shown in Table 1.

In the table, each column represents a slice, in which a
‘1’ denotes a statement in the slice and a ‘0’ a statement
not in the slice. In Example 1, the three slices cover all six
statements without any pairwise-overlap; in Example 2, the
three slices cover only four of the statements, but SL1 and
SL2 completely overlap; finally, in Example 3, three slices
cover the same two statements and fully overlap. Weiser’s
definition of Overlap has the same value for Examples 1
and 2 and thus does not distinguish between, the no overlap
and partial overlap cases.

By contrast, Cohesion, as defined above, distinguishes
these two examples. At the same time, when Overlap im-
poses an order as it does between both Examples 1 and 2
when compared to Example 3, then Cohesion imposes the
same order.
4.3 Measurement

While commonly used, Lines of Code (LoC) forms a
somewhat crude measure owing to the lack of a standard
definition and thus the influence that formatting style has
on most definitions can be large. For this reason the empir-
ical investigation uses SDG vertices, which provide a more
consistent measure. However, to simplify the presentation,
the examples will continue to refer to source lines rather
than the associated vertices.
4.4 Experimental Design

The experimental design first presents the programs
studied and then describes the source code analysis tools

used. The ten C programs employed as subjects are de-
scribed in Table 2. The table provides each program’s size
in LoC, SDG vertices, and the number of user defined func-
tions. It also provides a brief description of each subject.
The penultimate column separates the five programs known
to be free of large dependence clusters from the five known
to contain large dependence clusters.

The analysis constructs the SDG for each program
and then slices it using CodeSurfer, Grammatech’s deep-
structure analysis tool [8]. The API for CodeSurfer includes
functions for backward and forward slicing as well as access
to the mapping from SDG vertices to the source code. In
addition to slicing, the SDG vertices associated with global
variables and function parameters are used to compute the
sets PVG and PVO.

5 Results and Discussion
This section first discusses the results related to the prin-

cipal variables discovered. It then considers the key state-
ments identified from the three kinds of principal variables
and compares their Impact and Cohesion. This is followed
by a comparison of the number of key statements compared
to the number of statements in to the function from which
they are extracted. The section finally returns to the four
research questions from the introduction and interprets em-
pirical results in terms of these questions.

5.1 Principal Variables
Table 3 presents the number of functions in each pro-

gram and then the number that contain each of the three
kinds of principal variables. In total 373 of 1,444 functions
contain principal variables. The first observation evident
from the data is that there are a large number of functions
without any principal variables as Bieman and Ott define
them [1]. These functions, by definition, will have no key
statements. Inspection of the 1,071 functions without prin-
cipal variables reveals that 749 of the 1,071 return a result
computed from their input parameters. While not a vari-
able per se, this suggests that one direction for future inves-
tigation is the consideration of additional kinds of principal
‘variables’ to augment those defined by Bieman and Ott.
For example, expressions returned by a function.

Also evident from the table, the programs space and
oracolo2 define no global variables, leaving PVG empty.
Finally, PVG appears to be smaller for subject programs
without large dependence clusters. This is potentially ex-
plained by the likelihood of a correlation between programs
defining a large number of global variables and those with
large dependence clusters.

In total there are 2,494 principal variables in the ten pro-
grams studied. These include 953 global principal variables
and 1,541 output principal variables. Figure 3 shows three
scatter plots, one for each kind of principal variable. Each
plot shows the number of principal variables per function
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Table 1. Example Cohesion computation illustrating how Cohesion provides a range of values in cases
where Weiser’s overlap metric (upon which Cohesion is based) does not. At the same time Cohesion
preserves the ordering when overlap identifies one.

Example 1 Example 2 Example 3
Statement SL1 SL2 SL3 SL1 SL2 SL3 SL1 SL2 SL3

1 1 0 0 1 1 0 1 1 1
2 1 0 0 1 1 0 1 1 1
3 0 1 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0
5 0 0 1 0 0 1 0 0 0
6 0 0 1 0 0 1 0 0 0

Weiser’s Overlap 1
3 ( 0

2 + 0
2 + 0

2 ) = 0
1
3 ( 0

2 + 0
2 + 0

2 ) = 0
1
3 ( 2

2 + 2
2 + 2

2 ) = 1

Cohesion 1
3 ( 2

6 + 2
6 + 2

6 ) = 1
3

1
3 ( 2

4 + 2
4 + 2

4 ) = 1
2

1
3 ( 2

2 + 2
2 + 2

2 ) = 1

Table 2. Experimental Subjects.
Number of Large

User Defined Dependence
Program LoC Vertices Functions Cluster Description

acct-6.3.2 3,204 9,775 50 No Process monitoring tools
EPWIC-1 7,943 19,545 124 No Image compressor
space 9,126 20,018 136 No ESA space program
oracolo2 9,477 19,066 135 No Antennae array set-up
CADP 12,762 48,577 450 No Protocol toolbox
userv-1.0.1 6,616 95,076 114 Yes Access control utility
indent-2.2.6 8,259 30,311 48 Yes Text Formatter
bc-1.06 10,449 40,575 94 Yes Calculator
diffutils-2.8 10,743 33,231 91 Yes File comparison utilities
findutils-4.2.25 28,887 105,535 202 Yes File finding utilities
Total 107,466 421,709 1,444

Table 3. Counts of the number of functions
that contain each of the three kinds of princi-
pal variables.

Functions with Principal Variables
Program Total PVG

⋃
PVG PVO PVG

acct-6.3.2 50 24 24 2
EPWIC-1 124 22 18 9
space 136 41 41 0
oracolo2 135 41 41 0
CADP 450 65 57 9
userv-1.0.1 114 38 29 11
indent-2.2.6 48 26 14 16
bc-1.06 94 44 16 36
diffutils-2.8 91 34 30 9
findutils-4.2.25 202 38 10 29
Total 1,444 373 280 121

on the y-axis and each program on the x-axis. In all three
plots, most functions have between 1 to 25 principal vari-
ables. Comparing the charts for PVO and PVG (the upper
two scatter plots), the number of output principal variables
exist in a tighter range of values. Thus, over the ten pro-
grams considered, the output of variables is more consistent
than the modification of global variables. The lower plot
shows the distribution for PVUnion. As the union of PVO

and PVG, this scatter plot shows where PVO or PVG dom-
inate the union. Table 4 presents the mean and standard
deviation for the Union data. It is interesting to note that
the mean number of principal variables does not appear to
be affected by the presence of large dependence clusters.
However, the presence of large dependence clusters does
appear to produce a higher standard deviation (at least with
some programs).

This large standard deviation is partially caused by two
clear outliers. Interestingly, as seen in the scatter plots, one
each attributed to PVO and PVG. The two, having over
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Figure 3. The number of principal variables
per function for each of the three kinds of
principal variables.

Table 4. The mean and standard deviation of
the number of principal variables in PVUnion.

Program Functions Mean Std. Deviation
acct-6.3.2 24 7.13 10.49
EPWIC-1 22 8.59 12.23
space 41 3.12 4.85
oracolo2 41 3.90 8.21
CADP 65 5.89 5.22
userv-1.0.1 38 4.00 2.81
indent-2.2.6 26 21.08 45.46
bc-1.06 44 7.73 19.55
diffutils-2.8 34 6.35 9.20
findutils-4.2.25 38 5.42 12.53
Total 373 6.68 15.96

100 principal variables, are shown as the solid points and
labeled ‘1’ and ‘2’ in the lower scatter plot. Looking at the
source code, Point ‘1’ comes from the main function of the
program indent. Inspection of this function reveals that it is
a large function with 1,657 LoC and 222 principal variables
(219 of which come from PVG). As comments in the code
indicate, the program’s author chose to communicate values
from main to the rest of the program using global variables;
thus, creating a large pool of globals many of which are
modified.

Point ‘2’, the second outlier, is from the function yy-

parse which contains 1,190 LoC and 131 principal vari-
ables. Here, 102 are from PVO and 29 from PVG. From
an inspection of the source code for this Bison-generated
parser, it is evident that there are a significant number output
statements devoted to generating error messages associated
with various error conditions that the parser may encounter.

5.2 Key Statements

Three types of key statements are computed based on
the three kinds of principal variables: from PVG global key
statements, denoted KSG, from PVO output key statements,
denoted KSO, and from PVG

⋃
PVO union key statements,

denoted KSUnion, respectively. Following some statistics
on the number of each kind of key statement, the data re-
lated to the Impact and Cohesion are presented.

To gain an initial feel for the data, the size of the set of
key statements is first compared to the size of the associated
function. Here a lower value is preferred. For example, the
ratio for 2 key statements in a 5 statement function is 40%,
while 2 key statements in a 10 statement function is only
20%.

For each program, Figure 4 presents the average number
of key statements per function expressed as percentage of
the function’s size. The numeric percentages are presented
in Table 5. Overall, the average for each kind is similar,
being around 25% of the function.

Two relevant observations about the key statements can
be made from this graph. First, several of the averages for
KSG show what appears, at first sight, to be an interest-
ing anomaly whereby the percentage for KSUnion is lower
than that for KSG (a similar pattern exists between KSO

and KSUnion). This occurs when the backward slice taken
with respect to each of the global principal variables in PVG

includes similar statements, while the backward slice taken
with respect to the variables in PVO includes different state-
ments. Thus, when considering PVG

⋃
PVO, a smaller set

of key statements (i.e., a smaller intersection) is identified.
That this pattern is not more pronounced supports the notion
that the key statements identified are true.

The second observation is that, for all three types of
key statements, the absence of large dependence clusters
appears to correspond to smaller sets of key statements.
Furthermore, large dependence clusters seem to accompany
lower variability in the average. This is most pronounced
for KSG. This suggests that large dependence clusters are
masking the variability seen in the cluster-free programs.
This provides evidence that large dependence clusters affect
KSA and further that they do so through global variables.

The remainder of this section considers the Impact and
Cohesion for each of the three types of key statements. To
begin with, for the key statements to truly form the nucleus
of a function’s computation then they should have an impact
similar to that of the function from which they are extracted.
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Figure 4. The average percentage of a func-
tion’s statements that are key statements.
(In this and similar charts, lines connect-
ing points are included only as a visual aid;
strictly speaking, no intermediate values ex-
ist.)

Table 5. The number of key statements as a
percentage of function size.

Program KSUnion KSO KSG

acct-6.3.2 36.83% 36.83% 45.00%
EPWIC-1 12.99% 12.63% 14.91%
space 15.60% 15.60% 0.00%
oracolo2 12.92% 12.92% 0.00%
CADP 31.50% 32.93% 25.94%
userv-1.0.1 52.23% 56.60% 30.10%
indent-2.2.6 11.74% 8.21% 13.14%
bc-1.06 25.53% 29.21% 21.58%
diffutils-2.8 22.34% 19.46% 23.57%
findutils-4.2.25 22.87% 24.98% 21.63%
Total 25.17% 25.39% 21.90%

Figures 5 and 6 present the average Impact and its dis-
tribution for each kind of key statement. In the experiment,
Impact has the value 100% when the key statements have
the same impact as the function from which they are ex-
tracted. As can be seen in Figure 5, KSG tends to have
a slightly higher Impact. Overall, the Impact of the key
statements exceeds 70% of that of the associated function
for 19 of the 28 points (discounting the two programs that
have no globals). These include 7 of 10 for KSUnion, 7 of
10 for KSO, and 5 of 8 for KSG.

The distribution of the Impacts, shown in Figure 6,
clearly demonstrates the undesirable effect of large depen-
dence clusters [4]. Consider first, the top row of Figure 6,
which shows the box plots for KSUnion. In the absence of
large dependence clusters, the data have a reasonable dis-

Figure 5. The average Impact for KSUnion,
KSO, and KSG.

Figure 6. The boxplot showing the distribu-
tion of Impact for KSUnion, KSO, and KSG. In
addition to the box and whiskers, when they
exist, outliers, denoted ◦, and extreme cases,
denoted * are shown with each boxplot.

tribution and only a few outliers. By contrast, with four of
the five dependence–cluster–having programs, the ‘box’ in
essence includes only the median value. These programs
also have a considerable number of outliers and extreme
values. For KSO the data is better, but still shows the neg-
ative impact of large dependence clusters. There are fewer
globals, but the data still point to dependence clusters gen-
erating a greater number of outlier and extreme values. Fi-
nally, more than the means, the median values show how
in the first five programs (those without large dependence
clusters), Impact is more consistent.

The data collected for the second metric, Cohesion is
summarized in Figures 7 and 8. Cohesion was only com-
puted for the functions with two or more key statements be-
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cause Cohesion is, by definition, always 100% in the case
of a single key statement.

Figure 7. The average Cohesion for KSUnion,
KSO, and KSG.

Figure 8. The boxplot showing the distribu-
tion of Cohesion for KSUnion, KSO, and KSG.
In addition to the box and whiskers, when
they exist, outliers, denoted ◦, and extreme
cases, denoted * are shown with each box-
plot.

Higher Cohesion comes from higher overlap between
the forward slices taken with respect to key statements. As
seen in Figure 7, Cohesion for KSUnion, KSO, and KSG

is always greater than 75%. This shows that each type of
principal variable tends to generate a highly cohesive set of
key statements.

For programs with large dependence clusters, there is a
high probability that a given key statement will be within
a large cluster and consequently have the same influence
as other key statements that are also within the cluster. As
such, the Cohesion for such programs is expected to be

similar and higher than that of programs free from large de-
pendence clusters. The data in Figure 7 bear this out. In par-
ticular, the points for the rightmost five programs are higher
than those on the left.

Similar to the box plots for Impact, the box plots for
Cohesion show how the presence of dependence clusters
all but remove any spread in the data. With the union data,
the distribution of Cohesion in four of the programs with
dependence clusters is essentially 100%.

In summary, the data for Impact shows that the key state-
ments capture a significant portion of the influence of a
function. For almost three quarters of the functions, this was
over 70% of the influence. In addition, the key statements
have high Cohesion that often, in particular in the pres-
ence of large dependence clusters, measures 100%. Having
demonstrated in this section, the high Impact and Cohe-
sion of these statements, the next section compares these
values to those of the corresponding function.

5.3 Key Statements and their Associated
Function

The previous section compared the Impact and Cohe-
sion of the three kinds of key statements with each other.
This section compares the Impact and then the Cohesion
of the key statements with the Impact and Cohesion of
the function from which they are drawn. Because the same
metric is computed for the matched pair of key statements
and the function from which these statements are drawn, a
Wilcoxon Matched-Pairs Signed Ranks Test procedure was
applied to test the significance of the difference. In this
case, the null hypothesis is there is no difference between
the metric for the key statements and associated function.

To begin with, Figure 9 compares the Impact of the
key statements from KSUnion taken from function F ,
Impact(KSUnion, F, P ) that of F itself, Impact(F, F, P ).
In the figure KSUnion is used as representative of the
three. Recall that, in Section 4, for a set of statements
S, Impact(S, F, P ) is defined as the average impact of
the elements of S as compared to the impact of F ; thus,
Impact(F, F, P ), is not always 1, but rather the average im-
pact of the statements from F compared to the Impact of all
the statements of F taken collectively. As visually apparent
in Figure 9, the key statements always have higher Impact.

Table 6 includes the results of the statistical analysis.
For each kind of key statement, it presents the standard-
ized signed-ranks difference (Z) and statistical significance
p-value (Sig. (2-tailed)). If the p-value shown in the final
column less than 0.05, each null hypothesis can be rejected
and the difference taken as statistically significant.

The first three rows of Table 6 concern Impact. For
all three kinds of key statements, the p-value is less than
0.05; thus, the null hypothesis can be rejected. Hence, the
difference between the Impact of each kind of key state-
ment is significantly different from that of the correspond-
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ing function. Visually, Figure 9 suggests that the impact for
KSUnion is higher than that of the associated function.

Figure 9. Average Impact of key statements
and their associated functions.

Table 6. Wilcoxon Matched-Pairs Signed
Ranks Test comparing key statements and
their associated function.

Z Sig.(2-tailed)
Impact
KSUnion - FunctionUnion 12.819 < 0.001
KSO - FunctionO 10.618 < 0.001
KSG - FunctionG 8.515 < 0.001
Cohesion
KSUnion - FunctionUnion 11.920 < 0.001
KSO - FunctionO 10.303 < 0.001
KSG - FunctionG 6.791 < 0.001

Turning to Cohesion, for a set of key statements S, Co-
hesion (P, S) is compared to that of their associated func-
tion F , Cohesion (P, F ). Figure 10 presents the compar-
ison between the Cohesion for KSUnion, which is again
used as representative of the three. It is clear that the key
statements always have higher Cohesion than the associ-
ated functions.

As with Impact, a Wilcoxon Matched-Pairs Signed
Ranks Test was used to compare the significance
of the difference between the Cohesion (P, S) and
Cohesion(P, F ). The null hypothesis is that there is no
difference in Cohesion. The last three rows of Table 6 in-
clude the results for the three types of key statements. For
Cohesion, the p value is less than 0.05; thus, the null hy-
pothesis is rejected in each case and the difference taken to
be statistically significant. This provides the evidence that
the key statements of KSUnion have higher Cohesion than
associated function.

Figure 10. Comparison of the average Cohe-
sion for KSUnion and the associated functions.

5.4 Summary of Results

Having presented the data gathered in the empirical
study, this section concludes by returning to the four re-
search questions:

1. Is the number of key statements considerably smaller
than the function from which it is extracted?
The data presented in Table 5 presents the average
number of key statements in KSUnion, KSO, and KSG

as 25.2%, 25.4%, and 21.9%, respectively. This data,
visually supported by Figure 4, shows that for all the
three kinds of principal variables, a considerable re-
duction is achieved.

2. Do key statements have similar impact on the compu-
tation of the program as the function from which they
are extracted?
The data presented in Figure 5 shows that for 19 of 28
cases the Impact of the key statements exceeds 70% of
that of the associated function. Furthermore, from Fig-
ure 9 and the statistics in Table 6, the average impact
of the key statements is higher. Thus, the parts of pro-
gram impacted by a function but not its key statements
are, in some sense, less consequential computations.

3. Do key statements form a more cohesive unit than
those of the function from which they are extracted?
Figure 7 shows how the key statements computed for
each of the three types of principal variable have sim-
ilar cohesion. Furthermore, as shown in the last three
rows of Table 6 and visually apparent in Figure 10,
key statements have a higher Cohesion than the state-
ments of the function from which they are drawn.

4. Finally, Do (large) dependence clusters affect key
statement identification?
There is clear support for an affirmative answer to
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this question. Starting with Table 3, the general dis-
tribution of the principal variables hints at a differ-
ence: dependence-cluster free programs tend to have a
greater proportion of their principal variables in PVO,
while programs with large dependence clusters tend to
have a larger proportion of their principal variables in
PVG. In Figure 4 the average number of principal vari-
ables is visually higher in the five programs that con-
tain large dependence clusters. In Figure 5 (and the fol-
lowing box plots), the variability in Impact is higher
for programs with large dependence clusters. Finally,
large dependence clusters produce more cohesive sets
of principal variables, as seen in Figure 7. Thus, large
dependence clusters have a clear and largely negative
impact on key statement identification.

6 Threats to Validity
There are potential threats to the external and internal

validity of this investigation. The only significant threat to
external validity is the possibility that the selected programs
are not ‘typical’ programs. For example, most of the pro-
grams are open-source. As mature tools were used, the only
significant threat to internal validity comes from construct
validity, where variables do not adequately capture the con-
cepts they are supposed to measure. To help alleviate this
concern, mature well-studied metrics were used.

7 Summary and Future Work
This paper empirically examines the value of Key State-

ment Analysis (KSA) starting from the principal variables
as defined by in the work of Bieman and Ott [1, 11].
KSA used is an improvement over previous approaches to
KSA [9, 7]. The keyness of the identified statements is
measured using their Impact and Cohesion. The results
indicate that the identified key statements have high Impact
and Cohesion and thus represent the core of a function’s
computation.

Key statements are computed as an optimized intersec-
tion of the intraprocedural static backward slices on Bie-
man and Ott’s ‘principal’ variables. The results reveal that
this simple intra procedural backward analysis can capture a
significant proportion of the forward impact of the function
within which the intraprocedural analysis is performed.

Future work will consider an evaluation of different start-
ing points in the KSA algorithm. For example, the value
returned by a function call.
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