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Abstract

The usefulness and usability of programming tools
(for example, languages, libraries, and frameworks) may
greatly impact programmer productivity and software qual-
ity. Ideally, these tools should be designed to be both useful
and usable. But in reality, there always exist some tools
or features whose essential characteristics can be fully un-
derstood only after they have been extensively used. The
study described in this paper is focused on discovering how
C++’s function overloading is used in production code us-
ing an instrumented g++ compiler. Our principal finding
for the system studied is that the most ‘advanced’ subset of
function overloading tends to be defined in only a few utility
modules, which are probably developed and maintained by
a small number of programmers, the majority of application
modules use only the ‘easy’ subset of function overloading
when overloading names, and most overloaded names are
used locally within rather than across module interfaces.
We recommend these as guidelines to software designers.

1 Introduction

Programming languages are one of the many important
tools that programmers use in their daily problem solving.
With the ever increasing size and complexity of the prob-
lems tackled by computer software rises the sophistication
of programming tools. This is a bad news for the aver-
age programmers because to do their jobs properly, they
must master their tools first, which will require more ef-
fort when the tools grow bigger and become more complex.
In particular, current programming languages are providing
programmers with an increasingly large set of features to
support them in solving diverse problems. Consequently,
mastering a whole programming language demands serious
investment on the part of the programmers. 1 While it is rel-
atively easy to learn how to write and compile small pieces

1Recognizing this problem of increasing language scale, some lan-
guage designers are trying to develop a minimal core language and shift

of example code that demonstrate the use of a particular
language feature, it is challenging for the programmers to
decide what features to learn that can solve their problems
at hand in the best possible way. It would be ideal if for each
language feature, there is a methodology defined that guides
the programmers on what kind of a problem the feature is
useful for and how to solve the problem properly with the
feature [11].

The formulation of such a methodology could be best
done by examining and reflecting on as much as possible
empirical evidence from the serious use of the particular
language feature of interest. While language designers tend
to do their best in guiding their design process with practi-
cal experience and user feedback [2, 11, 14], not all design
decisions are, or can be, made based on solid empirical ev-
idence. Sometimes, there simply is not a sufficient amount
of experience available at the time a particular design de-
cision is made [14]. For sophisticated features like over-
loading and templates, while there is no doubt that such a
feature as a whole is useful, its interactions with other fea-
tures can be numerous and the details can be subtle to pin
down. Sometimes, decisions can be made in an arbitrary
and ad hoc fashion, or based on particular requirements that
are controversial (for example, the decision for C++ to sup-
port implicit narrowing in overloading resolution in order
to maintain compatibility with C). For all of these reasons,
there is always a need to examine how language features are
actually used in the wild in order to understand the conse-
quences of such decisions, to identify typical use cases of
language features, and to develop guidelines.

One way to gather such empirical evidence is by ana-
lyzing the source code of large-scale systems. We chose to
study the use of the compilation-time overloading feature
in C++ because it involves a large set of rules that many
programmers would not be confident with. Furthermore,
C++ overloading interacts with many other features of the
language, for example, namespaces, inheritance, and tem-

some of the complexity to external libraries and APIs. However, we be-
lieve that learning such a minimal language can still be a challenge for the
average programmers.
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class Y;
class X {
public:
operator char() const {return ’a’;}
void foo (int); //f1
void foo (char);//f2
void foo (double);//f3
void foo (X);//f4
void foo (Y&);//f5
};

class Y: public X { };

void foo (double); //f6
void foo (int);//f7

void bar(Y & aY){
//C={f6,f7}, V={f6,f7} best:
//f7<cr promotion:ck std>
foo(’c’);
//C={f6,f7},V={f6,f7} best:
//f7 <cr user:ck user->ck std>
foo(aY);
//C={f1...f5},V={f1,f2,f3} best:
//f2 <cr std:ck ptr,cr identity:ck identity>
aY.foo(’a’);
//C={f1...f5},V={f1...f5} best:
//f5 <cr std:ck ptr,cr identity:ck ref bind>
aY.foo(aY);}

Figure 1. Example of function overloading
and the process of overloading resolution. C
stands for candidate set and V for viable set.

plates. Thus we felt that overloading would be a complex
feature for which a methodology is needed to guide its use.
There is also doubt on the usefulness of compilation-time
overloading [11]. We hoped that our study could shed some
light on this controversy as well.

In order to gather data about the use of overloading in
practical systems, the GNU g++ compiler 2 is modified and
used to compile a Mozilla browser. 3 In this paper, we ana-
lyze the data and report our findings about the use of over-
loading in the Mozilla code base. Analysis of data extracted
from another system (MySQL 4) is currently under way.

The rest of this paper is organized as follows. Section 2
provides a brief overview of C++ overloading. Section 3
describes the study method, how g++ is instrumented, and
what kind of data are gathered. Section 4 presents the re-
sults of our analysis. Section 5 presents related work. Sec-
tion 6 concludes the paper and anticipates future work.

2 Overloading in C++

Overloading allows a single name to be used to repre-
sent more than one operation. It is a compile-time fea-

2http://gcc.gnu.org/
3http://www.mozilla.org/
4www.mysql.com

ture. That is, given an expression that applies an overloaded
name, a compiler needs to choose a single candidate that
best matches the expression (overloading resolution). The
compiler thus needs to implement a set of rules that govern

1. how to identify from the surrounding scopes of the ex-
pression the set of candidate operations with the same
name as what is used by the expression (candidate set),

2. how to convert from argument types appearing in the
calling expression to the parameter types in the defini-
tion of a candidate operation and rank the conversions,

3. how to determine the set of operations to whose param-
eter types there exist feasible conversions from types in
the expression (viable set), and

4. how to determine the best candidate from the viable set
as the final result that the expression should be linked
to. If no such candidate can be found, the process fails
and a compilation error is given to the programmer.

Table 1 summarizes the implicit type conversion rules
of C++. A rank on top of the table is considered better
than ones below it. Also note that a rank may contain sub-
categories known as kind.

Figure 1 shows a simple example designed to illustrate
the process of overloading resolution in C++. For each
overloaded call in bar(), its candidate set and viable set,
the best candidate, and the conversion sequences from ar-
guments to parameter s are given in the comment above the
call. For example, foo(’c’) has a candidate set that con-
tains f6 and f7. Its viable set also contains f6 and f7
since there are conversions from char to both double
(for f6) and int (for f7). The conversion from char to
int has a rank of cr promotion and a kind of ck std.
which is represented as <cr promotion:ck std> in
the comment. Note that in this example, foo(aY) has
a conversion sequence of length 2, and the conversion se-
quences of all other calls are of length 1.

Overloading, when used appropriately, can increase pro-
gram readability and clarity [10]. Without this feature, it
would be rather difficult to designate different but meaning-
ful names to the several foo’s in Figure 1 when the opera-
tions have similar behavior but different parameter types.

On the other hand, the size of Table 1 indicates that C++
overloading rules are rather complex to understand. But this
is the result of a careful design that accommodates multiple
design requirements of C++ [14]. Each conversion rule has
a reason. For example, ck std results from the design de-
cision to maintain compatibility with C’s basic types and
conversions (narrowing), and ck ptr from the interaction
with inheritance. cr user is designed to make it possi-
ble for user-defined types to be used in the same way as
primitive types. In particular, with the addition of operator
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rank kind
cr identity ck identity (two identical

types), ck lvalue (e.g., array to
pointer), ck rvalue (l-value to
r-value), ck ref bind (from a
type to reference to the type).

cr exact ck qual (adds a qualifier like
const to the base type in a pointer
type).

cr promotion safe conversion from shorter data
type to longer one (widening).

cr std ck std (narrowing), ck ptr (con-
version to pointer to the most ‘de-
rived’ base type), ck base (con-
version to the most ‘derived’ base
type), ck pmem (conversion to
pointer to member function). But a
conversion of ck std may be given
a rank of cr promotion if, for
example, in a conversion from enum
to int of kind ck std, the integral
value of the enum is known to fall
within the range of int.

cr pbool An rvalue of arithmetic, enumera-
tion, pointer, or pointer to member
type can be converted to an rvalue
of type bool.

cr user ck user (user-defined conversion,
either via a constructor or a type
conversion operator).

cr ellipsis Conversion to ellipsis in target type.
cr bad No conversion possible.

Table 1. C++’s implicit type conversion rules
as implemented by g++.

overloading, it becomes possible for a user-defined type to
work immediately with generic algorithms and data struc-
tures without change.

Some advanced overloading features, like operator over-
loading and user-defined conversions, may hinder program
understanding. For example, when resolving foo(aY), in
addition to knowing the type of aY and the existence of 2
foo’s found in the global scope, a programmer also needs
to visit the body of class Y and class X. In extreme cases,
the resolution of an overloaded operator may even require
the visit of as many as 7 scopes [10].

Given the above analysis, it appears reasonable to pro-
pose the following guidelines for the use of overloading.

• If a name is going to be used only a few times by
a client, use overloading only if absolutely necessary
and make it as easy as possible for the client to resolve

an overloading call among the candidates (for exam-
ple, by designing the candidates such that they have
obviously different parameters).

• When a name is going to be used many times by a
client, since the benefit of using overloading may out-
weigh its cost, its use is justified.

• User-defined conversion operators should be used only
when they are going to be used many times. Control
the scope of their use. Consider using explicit to
prevent single-parameter constructors from being used
inadvertently as type convertors.

But there are still questions to be answered: What is
overloading used to achieve? How are the various over-
loading rules used in practice? How are user-defined con-
versions used? In the next sections, we try to answer these
questions by studying the use of overloading in Mozilla.

3 Study Method

To gather data for the use of overloading in large-scale
systems, we decided to instrument the GNU C++ compiler
g++ and use it to compile open-sourced software. Our first
test case is Mozilla. In this section, we describe how g++
is instrumented, the data schema for the data we extracted
for the definition and use of function overloading. We also
characterize the Mozilla code base.

3.1 Instrumenting g++

Internally, g++ uses a tree data structure to represent pro-
gram elements and symbol tables. It also provides a rich set
of macros for traversing the tree structure and accessing at-
tributes of individual tree nodes.

The definitions of overloaded functions and operators are
obtained by hooking into the name resolution process of
g++. Specifically, when a new function is encountered, the
compiler will be able to conclude whether it is overloaded
with any other functions that it has seen previously. The fact
that a function is overloaded is intercepted and the informa-
tion about the group of overloaded functions is stored in a
data structure made by us.

In our data structure, a group of overloaded functions is
identified by a fully qualified name, absolute paths for the
files where the overloaded functions appear (in rare cases,
overloaded functions may originate from different header
files), and the path for the file where the group becomes
effectively overloaded. After the compilation of a transla-
tion unit is completed, the information about all overloaded
names that occur inside the translation unit is persisted, one
line per name, into a text file, which is given a name that is
distinct to the translation unit. For example, the following
line of text captures the fact that the global operator new
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defined in the standard C++ header file new is included in
a file named nsXFontNormal.cpp, and the operator is
overloaded 3 times. Fields are separated by the # sign.

::operator new#/include/c++/4.2.0/new#nsXFontNormal.cpp#3

The calls of overloaded functions and operators are ob-
tained by hooking into the type checking process where
the type of an expression is resolved. 5 Specifically, given
an expression like a function call, g++ will indicate which
function or operator the expression should be linked to, and
whether the function or operator is overloaded. If an over-
loaded function is involved, the expression is resolved by
selecting from multiple candidates the one that matches the
best by following the set of overloading rules of C++. A list
of implicit conversions is produced, which indicates how
the types of the arguments can be converted to the parame-
ter types in the function being linked to.

For each overloading call, the following record is pro-
duced as a line in a text file:

• a fully qualified function name that the current expres-
sion is resolved to,

• absolute file path and line number where the winning
function is defined,

• absolute file path and line number where the function
is called,

• candidate set size,
• viable set size, and
• list of ranks, kinds, and from and to types for argument

to parameter conversion.

The text files generated by running the instrumented g++
compiler are then processed with awk scripts and other Unix
utilities like sort and uniq to obtain the desired statistics.

3.2 Study subject: Mozilla

We chose Mozilla as the first subject of our study be-
cause it is an open-sourced, large-scale system written in
C++. We used version 1.8b1. Table 2 shows some static
measures of its size before compilation to give an impres-
sion of its scale.

#header files 4679 #html files 2246
#cpp files 4442 #xul files 624
#c files 1515 #xml files 325

Table 2. Some measures of Mozilla 1.8b1 size.

Table 3 lists a subset of Mozilla modules for which
the following module dependency exists. Modules xpcom,

5Inlining would have no impact on the completeness of our data as it
happens after type checking.

module name description
browser Mozilla web browser
editor a.k.a composer
dom Document Object Model
js JavaScript
xpfe cross-platform front end
layout APIs for laying out UI
content modeling contents like HTML and XML
parser HTML parser
netwerk networking APIs
gfx graphics APIs
widget
view
rdf Resource Description Framework
nspr netscape portable runtime
xpcom cross-platform component model
intl internationalization

Table 3. A subset of Mozilla modules.

intl, and nspr make up the utility layer. Modules netwerk,
widget, view, gfx, and rdf provide various systems ser-
vices, with modules widget and view depending on gfx.
Modules content and parser handle documents like HTML
files. Module layout sits on top of all of the above mod-
ules. Module xpfe provides platform-portable implementa-
tion for browser. Finally, the top-most layer contains mod-
ules browser, editor, dom, and js.

The xpcom module needs to be mentioned because it
makes extensive use of overloading. xpcom provides APIs
for implementing the COM component model. It also pro-
vides a rich set of classes for string manipulation, a template
class nsCOMPtr for implementing a smart pointer, as well
as support for threading, hash tables, and arrays.

Given a pointer p to a class X, a smart pointer
of type nsCOMPtr<X*> can be created and used on
behalf of p. In places where an X* is needed,
nsCOMPtr<X*> is converted to X* automatically. The
following code snippet illustrates how the conversion hap-
pens. Specifically, the user-defined conversion operator
defined in nsCOMPtr will first convert nsCOMPtr<X*>
to a pointer to nsDerivedSafe<X*>. Because
nsDerivedSafe<X*> is a subclass of class X, the
pointer is then converted to a pointer to the most derived
base type, which is X. Note that in this case, both the def-
inition and the use of user-defined conversion is confined
within the same module xpcom and can be used by a client
without knowing the exact details of the conversions.

template <class T>
class nsDerivedSafe: public T { ... }

template <class T>
class nsCOMPtr {

operator nsDerivedSafe<T >* () const {...}
}
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Figure 2. Distribution of 13817 overloaded
function names over categories.

Figure 3. Distribution of 375 classes over the
number of function names overloaded by a
class.

In Mozilla, files belonging to the same module are stored
into the same file system directory. Therefore, based on
the file path our tool extracts for each translation unit, we
are able to obtain information about the module where an
overloading call is made as well as the module that defines
the function to which the overloading call is resolved.

Mozilla 1.8b1 is configured to build a Mozilla browser
and is compiled with the instrumented g++ compiler. In this
way, both the definition and the use of overloaded functions
are obtained and the data are stored in text files, which are
further processed to produce the desired statistics.

4 Results

This section presents the characteristics of the definition
and use of overloading in the Mozilla code base.

4.1 Overall statistics of definition of function over-
loading in Mozilla source

A total of 13 817 overloaded names are detected. Fig-
ure 2 depicts the distribution of overloaded names over the

Figure 4. Distribution of 757 class members
over the times they are overloaded.

categories of standard library (370), instantiations of class
templates (6269), operators (439), global functions (189),
constructors (5793), and member functions (757). The vast
majority of overloading is due to constructors and class
template instantiations (42% and 45%, respectively). In
particular, the 6269 overloaded names in the category of
class template instantiations are actually caused by only 11
names from 6 template classes, all from the module xpcom,
which are shown in Table 6.

In compiling the Mozilla browser, 5 689 classes are de-
tected (excluding those contributed by instantiating class
templates and the standard C++ library). Out of these,
375 classes overload at least one function name. That is,
about 6.6 percent of the classes define overloaded mem-
ber functions. Figure 3 depicts the distribution of 375
classes over the number of names overloaded by each class.
The classes that contain 14 and 13 overloaded names are
nsIRenderingContext and its 3 subclasses in the gfx
module. The morkStore class from module db overloads
12 names. The xpcom module contributes 3 classes for
11 names and 5 classes for 9 names, 6 of which are string
classes, and 2 for COM implementation.

Figure 4 depicts the distribution of the 757 overloaded
member functions over the number of times a name is over-
loaded. To understand for what purposes certain names
are overloaded a high number of times, we inspected the
23 names that are overloaded 5 times or more. We found
that 16 are string operations, and 5 are graphics operations
(GetWidth from 4 classes and DrawString). The name
that is overloaded 9 times is nsINodeInfo::Equals,
which are used to compare between objects of various types.

Table 4 depicts those Mozilla modules that contain more
than 10 overloaded names in member functions and the ac-
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editor/composer 27 layout 104
htmlparser 31 dom 11
content 129 netwerk 14
gfx 144 intl 14
view 11 xpcom 113
widget 17 js 13

Table 4. Mozilla modules that contain more
than 10 overloaded names in class scope.

tual number of overloaded names that each such module
contains. To gain some insights into where and how names
are overloaded, we inspected a subset of the 757 overloaded
names. In general, it appears that overloading tends to be
used in modules that manipulates data structures, for ex-
ample, content for document structures, gfx for geometric
shapes and drawing, layout for data structure traversal and
layout logic, and xpcom for strings and pointers. Our in-
formal inspection also reveals three patterns for function
overloading. One pattern is to overload getters and setters
to provide different ways of setting and getting object at-
tributes. Another is to overload a core operation with sev-
eral others that are reduced to the core one. Yet another pat-
tern is to provide two ways of retrieving object attributes,
via return values and via a parameter, respectively.

In sum, these data indicate that only 6.6 percent of
classes (375) in Mozilla overload member names, 85.6 per-
cent of these classes overload 3 or less members, and 92.6
percent of the overloaded members (757) are overloaded 2
or 3 times (82.8 percent are overloaded only 2 times).

4.2 Overall statistics of calls of overloaded func-
tions in Mozilla source

Figure 5. Distribution of 115439 calls of over-
loaded functions over categories.

A total of 115 439 function calls are identified as call-
ing overloaded functions. Figure 5 depicts the distribution
of these function calls. Of these, 29 530 are due to class
templates (no template functions are called). 3 337 are call-
ing overloaded function defined in the standard C++ library.
The remaining 82 572 calls are of non-library, non-template
overloaded functions.

::operator delete ::operator delete []
::operator new ::operator new []
std::abs std::div
std::memchr std::strchr
std::strrchr std::strstr
std::strrpbrk

Table 5. The 11 overloaded functions in the
standard C++ library used by Mozilla.

Table 5 depicts the 11 overloaded function names in the
standard C++ library used by Mozilla. As an example of the
intricacy of C++ overloading rules and what it means for
C++ to maintain compatibility with C, consider the follow-
ing code snippet that depicts how C++ overloads the C func-
tion strchr. Its purpose is to correct a type problem in the
C prototype for strchr. Since the C strchr returns a
pointer to the content of its first argument, which is of type
const char *, according to C++’s typing rules, its re-
turn type should have been const char* too. To correct
this problem and to maintain maximum compatibility with
C, another strchr is added in C++, which overloads the C
strchr. Note that the 2 functions are distinguished by the
const keyword. This example demonstrates only one of
the many subtle rules C++ defines for function overloading.

//in string.h (C header):

char *
strchr(const char*, int)

//in cstring (C++ header):

using ::strchr;

inline char*
strchr(char* s1, int n)
{return _builtin_strchr(const_cast<const char*>(s1),n);}

In the 29 530 calls that are resolved to an overloaded
member in a class template (see Figure 5), 23 387 are calls
of template constructors, and 6 143 calls of overloaded
member functions in template instantiations. Further analy-
sis reveals that these member functions overload 11 names
in 6 template classes, all from the xpcom module. These 11
names are depicted in Table 6. Note that the nsCOMPtr
class template, which implements a smart pointer, is widely
used (4881 times in 27 modules). Note also that 8 of the 11
overloaded names are operators.
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overloaded name #calls (#module)
nsReadingIterator<T>::operator++ 198 (13)
nsReadingIterator<T>::operator- - 30 (10)
nsWritingIterator<T>::operator++ 9 (2)
nsWritingIterator<T>::operator- - 3 (1)
nsAutoArrayPtr<T>::operator= 4 (2)
nsAutoPtr<T>::operator= 89 (4)
nsCOMPtr<T>::get address 711 (1)
nsCOMPtr<T>::operator= 4881(27)
nsCOMPtr<T>::swap 22 (8)
nsRefPtr<T>::operator= 188 (8)
nsRefPtr<T>::swap 8 (3)

Table 6. The 11 overloaded template member
functions (all defined in xpcom) and the dis-
tribution of 6143 calls of these functions over
modules.

In the 82 572 calls of non-library, non-template over-
loaded functions, 43 076 of them are calling class construc-
tors, 22 681 are calling global functions, and 16 815 are
calling class member functions (see Figure 5). At this stage
of compilation, internally g++ names all constructors uni-
formly as base ctor and comp ctor. This makes it
easy to remove constructor calls from the data and keep only
the calls of global functions and class members. As part of
its building process, Mozilla performs a variety of tests on
the g++ compiler to see if the compiler is suitable for build-
ing Mozilla. A few hundreds of overloading calls are gen-
erated due to these tests, which do not belong to Mozilla.
A further cleanup is done to remove these calls, and a total
of 39 012 overloading calls are obtained, which are non-
library, non-template, and non-contructor calls in Mozilla.

4.3 Detailed analysis of overloading calls

candidate #calls #name viable #calls #name
2 12120 649 1 30448 692
3 6106 92 2 7084 174
4 13600 44 3 1187 44
5 2976 22 4 167 21
6 3052 20 5 30 8
8 936 4 8 52 2
9 222 3 9 44 1

Table 7. Distribution of 39012 overloading
calls over candidate set sizes (column can-
didate) and viable set sizes (column viable).

functionality overloaded names
string and
character

::Substring, ::ToLowerCase, ::ToUpper-
Case, nsAString:: (Append, Assign, op-
erator+=, operator=) ... (26 more elided)

file and
stream

nsFilePath::operator=, nsFile-
Spec::operator=, nsFileURL::operator=,
nsOutputFileStream::operator<<,
nsOutputStream::operator<<

data and
graphics

nsINodeInfo::Equals, nsIRendering-
Context::GetWidth, nsRenderingCon-
textGTK::GetWidth, nsRendering-
ContextPS::(DrawString, GetWidth),
nsRenderingContextXlib::GetWidth,
::FindInReadable, ::address of, ns-
MetaCharsetObserver::Notify

Table 8. A total of 49 overloaded names have
a candidate set size from 5 to 9.

functionality overloaded names
string and
character

nsAString::(Assign, operator=),
nsAutoString::operator=, ... (14 more
elided)

file and
stream

nsFilePath::operator=, ns-
FileURL::operator=, ns-
FileSpec::operator=,
nsOutputFileStream::operator<<,
nsOutputStream::operator<<

data Value:: (operator!=, operator==,
Equals, operator=), nsGlobalHis-
tory::SetRowValue

Table 9. A total of 32 overloaded names have
a viable set size from 4 to 9.

In this section, overloading calls are analyzed in detail
along three dimensions: the sizes of candidate sets and
viable sets, their distributions within and across module
boundaries, and how inter-module overloading calls use the
conversion rules. The goal of this analysis is to under-
stand how overloading resolution may influence program-
ming understanding and discuss its implications on the use
of various rules about overloading.

Table 7 depicts the distribution of the 39012 calls over
the various sizes of candidate set and viable set. For exam-
ple, the first row shows that 12120 calls have a candidate
set of size 2 and are the result of calling 649 overloaded
names. Furthermore, 30448 calls have a viable set of size
1 and are the result of calling 692 overloaded names. Note
that 77.8 percent of all the overloading calls (30448) have
a viable set of size 1, and that 81.6 percent of calls have
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editor layout content parser netwerk gfx widget view xpcom
editor 248 13 28 1 3 4 3339
layout 1534 149 14 478 13 9 2553
content 76 1409 9 60 7 6 1 5947
parser 393 4 381
netwerk 133 2299
gfx 2 334 496
widget 1 1 3 12 36 362
view 27 6 58 43
xpcom 3387

Table 10. Distribution of 39012 overloading calls over module interactions. Calls within modules are
made italic and calls to xpcom bold.

a candidate set of size 4 or less. In general, this is a good
news because it means that the majority of overloading calls
are made with almost no extra cognitive effort from the pro-
grammers. Programmers would be able to easily recognize
the function intended to be called from other candidates be-
cause the function being called has either a different number
of arguments than that of the parameters of the candidates
or obviously incompatible types from that of the candidates
for which no implicit conversions are possible.

To gain some insights into the question as to why some
names are overloaded more times than the ‘good’ ones dis-
cussed above, names resulting in large candidate sets and
viable sets are collected and analyzed. Table 8 depicts the
49 names that are involved in calls that have a candidate
set size from 5 to 9. Table 9 depicts the 32 names that are
involved in calls that have a viable set size from 4 to 9.
Note that the two tables share more than 20 names, most of
which are string and file operations. 22 of the overloaded
names in Table 9 are operations on string and character, and
file and stream from the utility module xpcom, which pro-
grammers are likely to be familiar with due to their generic
nature. In fact, only 10 overloaded names with a viable set
size from 4 to 9 are contributed by application modules. In
particular, the one with a viable set size of 9 is an oper-
ator (nsOutputStream::operator<<) and is called
44 times.

Table 10 depicts a matrix for the number of overloading
calls that modules in the left-most column made to modules
in the top row. The diagonal cells represent the overload-
ing calls within each module, and a non-diagonal cell rep-
resents the interaction between modules. First note that 84
percent of overloading calls (32717 out of 39012) are made
on 182 names in the utility module xpcom. Thus each over-
loaded name in xpcom is used 180 times in average. Also
noteworthy is that for modules other than xpcom, within-
module calls far out-number interactions between modules.
This is likely to be a good attribute because modules tend

to be owned by individuals or small teams that work closely
with each other, which in general should facilitate the use
of overloading.

There are only 1332 (3.4 percent) inter-module overload-
ing calls among application modules (as opposed to the util-
ity module xpcom). These calls are made to 86 overloaded
names defined in 7 modules, of which 8 are global func-
tions, and 78 class members. No operators are involved.
The gfx module contributes 44 names, content comes next
with 14 names, and widget and view 1 each. In average,
each module contributes 12 names, and a module uses a
name 6.9 times. Furthermore, each name is used in aver-
age by only 2 external modules (with a range 1 to 20). This
means that application modules tend to define a small num-
ber of overloaded names, which are in turn used by only a
small number of other application modules. This is clearly
different from utility modules, which may define a large
number of overloaded names that are used by a large num-
ber of application modules.

conversion number
cr identity 2568
cr exact 100
cr promotion 5
ck std 48 (int vs unsigned int), 158 (0 to

pointer)
ck ptr 238 (225 due to a template in xp-

com)
ck base 316 (all due to strings in xpcom)
cr user 379 (all due to types defined in xp-

com)

Table 11. Distribution of 3812 conversions for
the 1332 inter-module overloading calls.
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Since overloaded names on module interfaces tend to
be defined and used by different developers who are most
likely working on different aspects of the application, it
would be a good strategy to minimize the use of over-
loading on module interfaces, and to use the easy subset
of overloading only. The 1332 inter-module overloading
calls are analyzed to understand in detail how the conver-
sion rules of Table 1 are used. A total of 3812 pairs of
conversion between argument type and parameter type are
identified. Thus in average each overloading call requires
less than 3 conversions. Table 11 depicts the result. Notice
that the uses of the easy rules, cr identity, cr exact,
and cr promotion, occupy more than 70 percent of the
3812 conversions. The data for the standard conversion are
broken down into 3 sub-categories. 48 of ck std convert
between integral values, which may lose precision, and
158 convert 0 to a pointer type. 238 conversions are from
pointer to derived type to a base type, of which, 225 are due
to a template defined in xpcom (nsDerivedSafe<T>).
316 derived-to-base-object conversions are between the
various string types defined in xpcom. Finally, the
379 user-defined conversions are implemented by 3
templates (nsCOMPtr<T>, nsGetterAddRef<T>,
and nsRefPtr<T>) and 3 classes in xpcom
(nsCStringTuple, nsXPDILCString, and
nsGetterCopies). The 3 templates implement the
so-called ‘smart pointer’, and the 3 classes are about strings
and ‘smart pointer’ as well.

In sum, the majority of overloading calls in Mozilla have
a viable set of size 1 (77.8 percent) and a candidate set of
size 4 or less (81.6 percent). This is good because it would
imply that the programmers are benefiting from overload-
ing at almost no extra cost in performing overloading reso-
lution. Furthermore, calls with a viable set size larger than 3
and a candidate set larger than 4 involve only 10 names from
application modules, which would imply that the cost asso-
ciated with these uses of overloading can be managed. Only
3.4 percent of overloading calls (1332) happen between ap-
plication modules, and the rest are calls to the utility mod-
ule xpcom and within-module overloading calls, which are
considered less a problem than inter-module calls. Finally, a
detailed examination of the conversions in the inter-module
calls reveals that 70 percent of them use the easy subset
of the conversion rules (below the rank of standard conver-
sion). For the rest 30 percent that use standard conversion
and user-defined conversion, 24 percent are due to xpcom
types. In particular, no user-defined conversion is defined
in application modules.

5 Related work

In this section we survey some related work in the areas
of empirical study of language or tool use, designing reli-

able and usable programming languages or APIs.
There are several empirical studies of language or tool

usage. Knuth reports a study of the characteristics of For-
tran programs in order to understand the effectiveness of
compiler optimization and how to improve it [9]. Ernst et
al. study the use of the C preprocessor in order to char-
acterize how macros are actually used in practice and the
practical implications on tool builders and software devel-
opers [5]. English et al. investigate the use of friend key-
word in practical C++ systems and the appropriateness of
such use [4]. Gil and Mamon study the use of micro patterns
in large corpus of Java code [7]. Baxter et al. investigate the
power law distribution that appear in some structural prop-
erties of Java software [1]. Murphy et al. report an analysis
of the data they gathered about the usage of the Eclipse en-
vironment from actual developers and argue that such data
may be used to inform the future evolution of Eclipse [12].

Gannon and Horning describe a study where a set of
language features are redesigned with the objective to im-
prove program reliability, which is subsequently empiri-
cally verified in terms of both fault frequency and fault per-
sistence [6]. Empirical studies are also conducted to under-
stand the usability tradeoffs of different API design choices,
e.g., abstract factory design pattern versus constructors [3]
and the usability implications between constructors with
and without parameters [15].

In [8], Hoare presents his view on language design. He
believes that the goal of a programming language is to as-
sist programmers in the most difficult aspect of program-
ming, that is, on the design, documentation, and debug-
ging of programs, and proposes five objective language de-
sign principles to help achieve this goal: simplicity, se-
curity, fast translation, efficient object code, and readabil-
ity. Function overloading contributes to program readabil-
ity. In [11], Meyer expresses that useful languages can-
not be small and proposes as design principles consistency,
uniqueness, tolerance and discipline, and methodology. In
particular, he advocates that the language designer should
provide a methodology for the use of each language fea-
ture. There is also much research on designing usable
programming languages. A comprehensive survey can be
found in [13]. In [2], Cordy describes how to achieve bet-
ter language usability by paying attention to conciseness,
expressiveness, and readability in the design of the Turing
language while retaining great power in the notation. He
also emphasizes the use of user feedback as a design tool to
shape the language design.

6 Conclusion and future work

An empirical study of the use of overloading in Mozilla
is described. The goal is to gather evidence on how the
feature is actually used, which can be used to inform fu-
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ture language design, gather typical use cases, and develop
usage guidelines. We conclude that overloading is useful
in the systems programming area that C++ is designed for.
We find that in Mozilla, the most ‘advanced’ subset of func-
tion overloading are only defined and used in a single utility
module xpcom, that the majority of application modules use
only the ‘easy’ subset of function overloading when over-
loading names, and that most overloaded names are used
locally within the modules rather than across module inter-
faces. We feel that this is potentially a good strategy that can
be used to guide the use of overloading in system design.
We have also reported an initial set of anecdotes and obser-
vations on how overloading is used in Mozilla, from which
we hope a useful set of patterns may be distilled eventually
by further analyzing data from Mozilla and other systems.

Clearly, our findings are limited only to Mozilla. More
systems need to be analyzed before generalization can be at-
tempted. We are currently analyzing other C++ systems. It
would also be interesting to perform some in-depth analysis
to determine whether overloaded names on module inter-
faces are necessary or gratuitous. Finally, it may be useful
to modify our tool to make the information about overload-
ing available to programmers, for example, by adding an
option to the g++ compiler to trigger the output of such in-
formation. This can be useful particularly when a program-
mer needs to understand exactly how an overloading call
that involves user-defined conversions is resolved, or when
it is desired to systematically inspect all of the narrowing
conversions for reliability concerns.
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