An Empirical Study of
Function Overloading in C++

Daqing Hou

Electrical & Computer Engineering Depit.

Clarkson University
Potsdam, NY, USA

joint work with Cheng Wang

Motivation

e Programmers are dealing with an increasingly rich set of
tools and features in daily programming.

To fully master these tools, in addition to learn what they
can do individually, it is necessary to develop a
methodology that provides the “big picture” view.

Such a methodology should include an account of design
rationale for tools and features, typical patterns of use,
and usage guidelines and principles.

This study tries to do this for C++ function overloading.

Example of Overloading

classY;
class X {
public:
operator char() const;

void foo(int);
void foo(char);
void foo(double);
void foo(X);
void foo(Y&);

¥

class Y: public X {};

void foo(double);
void foo(int);

Example of Overloading

class ',
class X {
public:
operator char() const;

void foo(int);
void foo(char);
void foo(double);
void foo(X);
void foo(Y&);

I3

class Y: public X {};

void foo(double);
void foo(int);

void bar(Y &aY)

{

foo(‘c’);
foo(aY);
aY.foo(‘a’);
aY.foo(aY);

1IC={f6,f7},V={f6,f7}, Best f7
1IC={f6,fT},V={f6,f7}, Best f7
lIC={f1...f5},V={f1,f2,f3}, Best f2
lIC={f1...f5},V={f1...f5}, Best {5

/1
112
11f3
1f4
15

Type Conversion Rules for C++
Function Overloading

e Exact match

L-value to R-value conversion
Array-to-Pointer conversion
Function-to-Pointer conversion
Qualification conversion

® Promotion

e Standard conversion

e User-defined conversion
e Ellipsis

Format of Output Data

e Definition of Overloaded Functions

Function_Name: X::foo Definition_File: example.cpp Overload Times: 5
Function_Name: X::X Definition_File: example.cpp Overload Times: 2

Function_Name: ::foo Definition_File: example.cpp Overload Times: 2

e (Calls of Overloaded Functions

::foo #2 #2 #<2|3|char--int> #/Users/Wangc/Work/Test/example.cpp:20 #/Users/Wangc/Work/Test/
example.cpp:17

::foo #2 #2 #<5|3:8|Y--int> #/Users/Wangc/Work/Test/example.cpp:22 #/Users/Wangc/Work/Test/
example.cpp:17

X::foo #5 #3 #<3|4|Y*--X*> <0|0|char--char> #/Users/Wangc/Work/Test/example.cpp:24 #/Users/Wangc/
Work/Test/example.cpp:9

X::foo #5 #5 #<3|4|Y*--X*> <0|7|Y--Y*> #/Users/Wangc/Work/Test/example.cpp:26 #/Users/\Wangc/Work/
Test/example.cpp:12

Case I: Mozilla

e \ersion 1.8b
e Some Size Metric

header files 4679 # html files

cpp files 4442 # xul files

¢ files 1515 # xml files

e Classes (5689)

Summary of Findings - Definition
of Overloading Functions

e 13,817 names are overloaded. 42% are due to
constructors. 47% due to template instantiations
(11 names from 6 templates classes in xpcom).

® 6.6% of classes (375/5,869) in Mozilla overload
member names.

e 85.6% of these classes overload 3 or less
members.

e 92.6% of the 757 overloaded members are
overloaded 2 or 3 times. 82.8% only 2 times.

Summary of Findings - Definition
of Overloading Functions

e By inspecting portion of 757 overloaded members,
overloading is used in string and file operations,
graphics, data, layout, db access API, and so on.

¢ Also found 3 patterns.

One is to overload getters and setters to provide
different ways of setting and getting object attributes.

Another is to overload a core operation with several
others that are reduced to the core.

Yet another is to provide two ways of retrieving
object attributes, via return values and via a
parameter, respectively.

Summary of Findings - Size of
Candidate/Viable Set for Calls

e 71.8% of 39,012 calls have a viable set of
size 1. And 81.6% have 4 or less.

e Calls with a large candidate/viable set are
standard operations on string and character,
file and stream, most defined in xpcom.

e Only 10 such names are from application
modules.

Intra- and Inter- Module Calls (39,012) :

editor

Note

e#intra-module calls
and #calls to xpcom
dominate (96.6%).

*Only 1,332 (3.4%)
inter-module calls.

layout | content | parser | network | gfx | widget | view | xpcom

editor 248 13 28 1 3 5 3339
layout 1534 149 14 478 | 13 9 2553
content 76 1409 9 60 7 6 1 5947
parser 303 4 381
network 133 2299
gfx 2 334 496
widget 1 1 3 12 |36 362
View 27 |6 58 43
xXpcom 3387

Distribution of 3,812 Implicit

Conversions for 1,332 Inter-module Calls

Conversion Number
cr_identity 2568
cr_exact 100
cr_promotion 5
cr_std ck _ctd 48 (int v.s unsigned int)
158 (0 to pointer)
ck_ptr 238 (225 due to a template 1n xpcom)
ck base | 315 (all due to string 1n xpcom)
cr_user 379 (all due to types defined 1n xpcom)

Conclusion

This study is focused on discovering how C++’s function overloading
IS used in production code using an instrumented g++ compiler.

Our principal finding for the systems studied (Mozilla and MySQL) is

that the most “advanced” subset of function overloading tends to be

defined in only a few utility modules, and the majorit?/ of application
0

modules use only the “easy” subset of function over
overloading names.

Most overloaded names are used locally within rather than across
module interfaces.

This study also contributes a set of concrete usage examples for C++
function overloading, which would be useful to guide future users in
using this feature more effectively.

ading when

Q: Perhaps the set of C++ conversion rules can be subset and
controlled by developers rather than by only compilers.

