
An Empirical Study of
Function Overloading in C++

Daqing Hou

Electrical & Computer Engineering Dept.
Clarkson University
Potsdam, NY, USA

joint work with Cheng Wang

Motivation
 Programmers are dealing with an increasingly rich set of

tools and features in daily programming.

 To fully master these tools, in addition to learn what they
can do individually, it is necessary to develop a
methodology that provides the “big picture” view.

 Such a methodology should include an account of design
rationale for tools and features, typical patterns of use,
and usage guidelines and principles.

 This study tries to do this for C++ function overloading.

Example of Overloading
class Y;
class X {
public:
 operator char() const;

 void foo(int); //f1
 void foo(char); //f2
 void foo(double); //f3
 void foo(X); //f4
 void foo(Y&); //f5
};

class Y: public X {};

void foo(double); //f6
void foo(int); //f7

Example of Overloading
class Y;
class X {
public:
 operator char() const;

 void foo(int); //f1
 void foo(char); //f2
 void foo(double); //f3
 void foo(X); //f4
 void foo(Y&); //f5
};

class Y: public X {};

void foo(double); //f6
void foo(int); //f7

void bar(Y &aY)
{
 foo(‘c’); //C={f6,f7},V={f6,f7}, Best f7
 foo(aY); //C={f6,f7},V={f6,f7}, Best f7
 aY.foo(‘a’); //C={f1…f5},V={f1,f2,f3}, Best f2
 aY.foo(aY); //C={f1…f5},V={f1…f5}, Best f5
}

Type Conversion Rules for C++
Function Overloading
 Exact match

 L-value to R-value conversion
 Array-to-Pointer conversion
 Function-to-Pointer conversion
 Qualification conversion

 Promotion
 Standard conversion
 User-defined conversion
 Ellipsis

Format of Output Data
 Definition of Overloaded Functions
Function_Name: X::foo Definition_File: example.cpp Overload Times: 5

Function_Name: X::X Definition_File: example.cpp Overload Times: 2

Function_Name: ::foo Definition_File: example.cpp Overload Times: 2

 Calls of Overloaded Functions
 ::foo #2 #2 #<2|3|char--int> #/Users/Wangc/Work/Test/example.cpp:20 #/Users/Wangc/Work/Test/

example.cpp:17

 ::foo #2 #2 #<5|3:8|Y--int> #/Users/Wangc/Work/Test/example.cpp:22 #/Users/Wangc/Work/Test/
example.cpp:17

 X::foo #5 #3 #<3|4|Y*--X*> <0|0|char--char> #/Users/Wangc/Work/Test/example.cpp:24 #/Users/Wangc/
Work/Test/example.cpp:9

 X::foo #5 #5 #<3|4|Y*--X*> <0|7|Y--Y*> #/Users/Wangc/Work/Test/example.cpp:26 #/Users/Wangc/Work/
Test/example.cpp:12

Case I: Mozilla
 Version 1.8b
 Some Size Metric

 Classes (5689)

Summary of Findings - Definition
of Overloading Functions
 13,817 names are overloaded. 42% are due to

constructors. 47% due to template instantiations
(11 names from 6 templates classes in xpcom).

 6.6% of classes (375/5,869) in Mozilla overload
member names.

 85.6% of these classes overload 3 or less
members.

 92.6% of the 757 overloaded members are
overloaded 2 or 3 times. 82.8% only 2 times.

Summary of Findings - Definition
of Overloading Functions
 By inspecting portion of 757 overloaded members,

overloading is used in string and file operations,
graphics, data, layout, db access API, and so on.

 Also found 3 patterns.
 One is to overload getters and setters to provide

different ways of setting and getting object attributes.
 Another is to overload a core operation with several

others that are reduced to the core.
 Yet another is to provide two ways of retrieving

object attributes, via return values and via a
parameter, respectively.

Summary of Findings - Size of
Candidate/Viable Set for Calls

 71.8% of 39,012 calls have a viable set of
size 1. And 81.6% have 4 or less.

 Calls with a large candidate/viable set are
standard operations on string and character,
file and stream, most defined in xpcom.

 Only 10 such names are from application
modules.

Intra- and Inter- Module Calls (39,012)

Note

•#intra-module calls
and #calls to xpcom
dominate (96.6%).

•Only 1,332 (3.4%)
inter-module calls.

Distribution of 3,812 Implicit
Conversions for 1,332 Inter-module Calls

Conclusion
 This study is focused on discovering how C++’s function overloading

is used in production code using an instrumented g++ compiler.

 Our principal finding for the systems studied (Mozilla and MySQL) is
that the most “advanced” subset of function overloading tends to be
defined in only a few utility modules, and the majority of application
modules use only the “easy” subset of function overloading when
overloading names.

 Most overloaded names are used locally within rather than across
module interfaces.

 This study also contributes a set of concrete usage examples for C++
function overloading, which would be useful to guide future users in
using this feature more effectively.

 Q: Perhaps the set of C++ conversion rules can be subset and
controlled by developers rather than by only compilers.

