
An Empirical Study of
Function Overloading in C++

Daqing Hou

Electrical & Computer Engineering Dept.
Clarkson University
Potsdam, NY, USA

joint work with Cheng Wang

Motivation
 Programmers are dealing with an increasingly rich set of

tools and features in daily programming.

 To fully master these tools, in addition to learn what they
can do individually, it is necessary to develop a
methodology that provides the “big picture” view.

 Such a methodology should include an account of design
rationale for tools and features, typical patterns of use,
and usage guidelines and principles.

 This study tries to do this for C++ function overloading.

Example of Overloading
class Y;
class X {
public:

 operator char() const;

 void foo(int);

 //f1

 void foo(char);

 //f2

 void foo(double);

 //f3

 void foo(X);

 //f4

 void foo(Y&);

 //f5
};

class Y: public X {};

void foo(double);

 //f6
void foo(int);

 //f7

Example of Overloading
class Y;
class X {
public:

 operator char() const;

 void foo(int);

 //f1

 void foo(char);

 //f2

 void foo(double);

 //f3

 void foo(X);

 //f4

 void foo(Y&);

 //f5
};

class Y: public X {};

void foo(double);

 //f6
void foo(int);

 //f7

void bar(Y &aY)
{
 foo(‘c’); //C={f6,f7},V={f6,f7}, Best f7
 foo(aY); //C={f6,f7},V={f6,f7}, Best f7
 aY.foo(‘a’); //C={f1…f5},V={f1,f2,f3}, Best f2
 aY.foo(aY); //C={f1…f5},V={f1…f5}, Best f5
}

Type Conversion Rules for C++
Function Overloading
 Exact match

 L-value to R-value conversion
 Array-to-Pointer conversion
 Function-to-Pointer conversion
 Qualification conversion

 Promotion
 Standard conversion
 User-defined conversion
 Ellipsis

Format of Output Data
 Definition of Overloaded Functions
Function_Name: X::foo Definition_File: example.cpp Overload Times: 5

Function_Name: X::X Definition_File: example.cpp Overload Times: 2

Function_Name: ::foo Definition_File: example.cpp Overload Times: 2

 Calls of Overloaded Functions
 ::foo #2 #2 #<2|3|char--int> #/Users/Wangc/Work/Test/example.cpp:20 #/Users/Wangc/Work/Test/

example.cpp:17

 ::foo #2 #2 #<5|3:8|Y--int> #/Users/Wangc/Work/Test/example.cpp:22 #/Users/Wangc/Work/Test/
example.cpp:17

 X::foo #5 #3 #<3|4|Y*--X*> <0|0|char--char> #/Users/Wangc/Work/Test/example.cpp:24 #/Users/Wangc/
Work/Test/example.cpp:9

 X::foo #5 #5 #<3|4|Y*--X*> <0|7|Y--Y*> #/Users/Wangc/Work/Test/example.cpp:26 #/Users/Wangc/Work/
Test/example.cpp:12

Case I: Mozilla
 Version 1.8b
 Some Size Metric

 Classes (5689)

Summary of Findings - Definition
of Overloading Functions
 13,817 names are overloaded. 42% are due to

constructors. 47% due to template instantiations
(11 names from 6 templates classes in xpcom).

 6.6% of classes (375/5,869) in Mozilla overload
member names.

 85.6% of these classes overload 3 or less
members.

 92.6% of the 757 overloaded members are
overloaded 2 or 3 times. 82.8% only 2 times.

Summary of Findings - Definition
of Overloading Functions
 By inspecting portion of 757 overloaded members,

overloading is used in string and file operations,
graphics, data, layout, db access API, and so on.

 Also found 3 patterns.
 One is to overload getters and setters to provide

different ways of setting and getting object attributes.
 Another is to overload a core operation with several

others that are reduced to the core.
 Yet another is to provide two ways of retrieving

object attributes, via return values and via a
parameter, respectively.

Summary of Findings - Size of
Candidate/Viable Set for Calls

 71.8% of 39,012 calls have a viable set of
size 1. And 81.6% have 4 or less.

 Calls with a large candidate/viable set are
standard operations on string and character,
file and stream, most defined in xpcom.

 Only 10 such names are from application
modules.

Intra- and Inter- Module Calls (39,012)

Note

•#intra-module calls
and #calls to xpcom
dominate (96.6%).

•Only 1,332 (3.4%)
inter-module calls.

Distribution of 3,812 Implicit
Conversions for 1,332 Inter-module Calls

Conclusion
 This study is focused on discovering how C++’s function overloading

is used in production code using an instrumented g++ compiler.

 Our principal finding for the systems studied (Mozilla and MySQL) is
that the most “advanced” subset of function overloading tends to be
defined in only a few utility modules, and the majority of application
modules use only the “easy” subset of function overloading when
overloading names.

 Most overloaded names are used locally within rather than across
module interfaces.

 This study also contributes a set of concrete usage examples for C++
function overloading, which would be useful to guide future users in
using this feature more effectively.

 Q: Perhaps the set of C++ conversion rules can be subset and
controlled by developers rather than by only compilers.

