
Abstract

AJAX is a web application programming technique

that allows portions of a web page to be loaded dy-
namically, separate from other parts of the web page.

This gives the user a much smoother experience when
viewing the web page. This paper describes the proc-

ess of converting a class of web pages from round-trip
to AJAX.

1. Introduction

One of the perennial problems in software mainte-
nance is updating existing systems to use new tech-

nologies. When new technologies are introduced, it is
not always cost effective to migrate existing systems

to the new technology. Automated transformations can
reduce both the risk and the cost of the migration.

The world wide web started as a mechanism for
sharing documents, but has evolved, providing a port-

able, platform independent user interface for applica-
tions. The ability to use JavaScript to communicate

with the server independently of the browser get/
submit actions, with the addition of the functionality to

generate and parse XML led to what is now called
Asynchronous JavaScript and XML (AJAX) [10,16].

The main use of AJAX is to update a portion of the
web page without reloading the entire page. This gives

the user a smoother web browsing experience and, in
some cases, also conserves bandwidth.

Migrating round trip legacy web applications to
utilize AJAX is not a trivial task. In this paper, we

show a set of source level transformations that auto-
matically migrates a class of web pages to utilize

AJAX. The class of web pages handled by our trans-
formation are pages written in JSP that display a sub-

set of some form of list. These pages usually contain

links that select the next (or previous) page in the list

and may also have links that jump to to specific pages
of the list (i.e. links to page 2, 3, 4 and 5). An example

of pages in this class are the catalogue pages in an e-
commerce site (e.g. DVD action movies for a movie

rental site). Another example is the search result pages
for a search engine such as Google. Our transform

produces a page in which the previous and next links
use AJAX to load the next or previous section of the

list without affecting the rest of the page. The jump
links are also similarly transformed. Our transforma-

tions only represent part of a more complete migration
to AJAX. We do not handle the merging of multiple

JSP pages such as merging the form with the search
results.

This paper consists of 7 sections. Section 2 gives an
overview of the approach. Section 3 discusses the

manual preparation of the system and Section 4 details
the steps involved in extracting a web service that pro-

vides the appropriate data in XML format from the
JSP source. Section 5 describes how the page can be

modified to use the new web service. Section 6 dis-
cusses some preliminary results of our process. Re-

lated work is described in Section 7 and the paper is
concluded in Section 8.

2. Approach

The dynamic portions of a web page are not neces-
sarily limited to the table of data that is the target of

our transformation. Other items in the page such as the
navigation menu, headers and footers and bread

crumbs may also be generated dynamically. Thus the
first step in our process is a manual identification of

the code that is to be migrated. The rest of the process
is entirely automatic. Figure 1 shows the structure of

our transformation process. There are two streams to

Automated Migration of List Based JSP Web Pages to AJAX

Jason Chu and Thomas Dean
Department of Electrical and Computer Engineering

Queen’s University
{0jhpc,tom.dean}@queensu.ca

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.29

217

the transformation, each of which starts with source
preparation steps that are very similar to each other,

but have some stream dependent details. The first
stream (upper right of Figure 1) uses slicing to extract

a simple Web service that generates the table data in
XML format. The other stream (lower right) removes

the generation of the list from the JSP source and re-
places it with AJAX routines that call the service pro-

duced by the first transformation stream.
Most of the transformations are done using TXL[2]

and the HTML/JavaScript/ASP grammars originally
demonstrated in Synytskyy et al.[14,15] and modified

for JSP by Xinzheng Li[6] and Andy Mao[6]. We ex-
tend the grammar to allow XML markup, specifically

the manual markup used to identify the table to be
transformed, as well as the markup used to implement

the slicing algorithm.

3. Manual Identification

The user first identifies the primary section of code

that is to be transformed using the XML tag
<ajax::mark>. This is typically a loop that extracts

and formats the data from a database query. Figure 2
shows such a markup. In the figure, a Java while

loop has been marked. The loop iterates over the result
set from a JDBC query (rs.next()), generating a

single table row for each element. To simplify the fig-
ure, some of the details in this figure have been elided.

Other parts of the page may also depend on the con-
tents of the table. Some examples are the page title in a

heading at the top of the page, a page number and any
next or previous links to navigate the query results.

The <ajax::annotate> tag is used to identify this
dynamic data. There are two minor changes in our

markup from pure XML. The first is that we use
square brackets to delimit attribute values to more

easily manipulate them in TXL. The second is that we
allow attributes on the close tag as well as the open

tag. Figure 2 shows an example of the markup of the
code that generates a previous link for a page. The

type attribute of the annotation is dlink, which is
used to indicate that the annotation may contain a dy-

namic link which must be modified to invoke the
AJAX loading function as part of the page translation.

As with Figure 2, some of the generated HTML text in
Figure 3 has been elided for clarity.

<ajax::mark>
 while((iCounter<RecordsPerPage)&& rs.next()){
 getRecordToHash(rs,rsHash,aFields)
 String fldauthor = (String)rsHash.get(”mauthor”);
 String flddateentered = (String)rsHash.get(”mdateent”);
 String fldtopic = (String)rsHash.get(”mtopic”);
 out.println(”<tr>”);
 …
 out.println(”</tr>”);
 iCounter++;
 }
</ajax::mark>

Figure 2. Table markup.

Figure 1. Transformation Process

Source
Preparation

Manual
Identification

External Print
Replacement

Slicing
Preparation

XML
Tags CleanupSlicing

Add
AJAX

Interior Print
Removal

Other
Dynamic Data

Source
Preparation

218

4. The XML Web Service

This section describes the extraction of a web serv-

ice from the JSP page that generates the dynamic data
in XML format.

4.1 Source Preparation

As in previous research using the same grammars, a

sed (unix stream editor) script is used to normalize
newlines, convert all commenting conventions to a

single comment form and to convert any literal quotes
in the HTML to the HTML friendly form.

Since the result of the transform will be code that
generates an XML representation of the dynamic data,

there is no need for any of the existing HTML from
the page. In a similar manner to that used by Synyt-

skyy et al[15], a TXL transform is used to extract all
of the interesting elements. The transform redefines

the interesting elements to include only the Java ele-
ments of the combined grammar. Thus all HTML ele-

ments are removed leaving only the scriptlets (<%…%
>) and JSP expressions (<%=…%>). The JSP expres-

sions are further normalized by converting them to
explicit print statements. That is the JSP expression

<%=A%> is converted to the Java statement
out.print(A).

When a JSP page is invoked by an application
server, it is transformed by the server into a servlet. In

this transformation, the code in the page is inserted
into the getRequest() method. The developer can

declare other methods and instance fields that can be
shared between the methods. To simplify the slicing

transform, these declarations are moved to the start of
the page. The individual scriplets are also merged to

produce a single scriptlet containing all of the execu-
table Java code that will end up in the getRe-

quest() method.

The last step is to convert any string concatenations

in output statements that are within the
<ajax::mark> tags into multiple statements, each

referencing a single string expression. Output state-
ments outside of this tag, including those manually

identified with the <ajax:: annotate> are not
modified. Instead they are annotated with a unique

identifier that will be used as the XML tag for the data
that they produce. This unique identifier is formed by

concatenating all of the identifiers in the expression
and an integer to make the identifier unique.

4.2 Slicing Preparation

Before we can slice, we must first identify the slic-

ing criteria. Slicing criteria are a set of statements and
a set of variables in those statements[17]. In this case,

any statement that uses a Java variable when writing
output is a slicing criteria candidate. We start by as-

suming that all such statements within the manual
markup (<ajax::mark> and <ajax:: anno-

tate> tags) and the variables referenced are slicing
criteria. Any variables that have constant values (i.e.

are assigned single literal values once) are removed, as
are the output statements that use these variables.

We use the <ajax:: annotate> tag with pa-
rameters to identify the slicing criteria and, as will be

shown in the next subsection, implement the slicing
algorithm. Our transform starts by annotating the re-

maining output statements in the manually identified
segments of code with the <ajax::annotate> tag,

but with a type attribute of data. The keyword attrib-
ute of the annotation gives the set of variables for the

slicing criteria. Figure 4 shows the annotation of one
such output statement.

4.3 Slicing

We us a standard backward static slicing algorithm

that is implemented as a set of source level transfor-

<ajax::annotate>
if (iPage == 1){
 out.print(”\n…Previous…”);
}else{
 out.print(”\n<a href=\””+sFileName+”?”+formParams+sSortParams
 +”FormMessagesPage=”+(iPage 1)+”#Form\”> … Previous … ”);
}
</ajax::annotate type=[dlink]>

Figure 3. Dynamic link markup

219

mations. The algorithm is a modification of the one
previously done for the Tiny Imperative Language by

Cordy[3]. The algorithm propagates <ajax:: an-
notate type=[data]> tags, adjusting the con-

tents of the keyword attribute to maintain the set of
active variables. Elements of the transform handle all

of the standard cases including loops and conditional
statements. One significant difference is that the algo-

rithm starts from multiple slicing criteria (one for each
output statement in a manually marked segment), and

as a consequence the transform must merge the vari-
able sets appropriately when one trace runs into an-

other. The annotation is only applied to those state-
ments that are elements of the slice.

After the annotation of the executable is complete,
any global variables or instance fields referred to by

the annotated code are also annotated. After this trans-
form the slice is still embedded in the original code as

annotated statements. Any unannotated code is re-
moved, as are the all of the annotations other than the

annotations on the statements that print the dynamic
data. The result of the slicing algorithm is an executa-

ble JSP page whose output contains only the HTML
text that was generated by the output statements

marked code segments of the original JSP page.

4.4 XML Tags

At this point in time, we have the core of JSP page
that will generate only the dynamically generated val-

ues in the identified print statements. When executed,
the results look like a stream of data with no breaks or

space of any sort between the data items. The next step
is to insert statements to generate the appropriate XML

tags.
This starts with the insertion of the two JSP code

elements shown in Figure 5. The first of these in-
cludes several utility functions that are used by the

transformed code. The second sets the content type of
the page to XML so that the browser AJAX routines

will properly parse into a document object model
(DOM) instance.

The general structure of the resulting XML is given
with three tags, <ajaxdata>, <ajaxlist> and

<axaxitem>. The top level of the XML document is
given by a single <ajaxdata> tag, which contains

both the table data (<ajax::mark>) and any other
dynamic data that was manually identified (<ajax::

annotate>). The table data is identified using the
<ajaxlist> tag, and each row of the table is iden-

tified with an <ajaxitem> tag.
These tags are extended with tags that are generated

for each of the generated values. The names of the tags
are dervied from the names of identifiers in the expres-

sions. At the current time, we do not generate a DTD
to allow the browser to perform conformity checks on

the resulting XML.
Print statements to add the <ajaxdata> tag to the

start and end of the result. Print statements are also
added to enclose the list of items with <ajaxlist>

tags and each line of the table with <ajaxitem>
tags. Code is also inserted around each print statement

that brackets the generated value with an XML tag as
described above.

Calls to two utility routines, AJAXLinkConvert
and HTMLFilter are also inserted into the code. The

first routine is inserted in any print statement that was
manually marked as emitting HTML links. It scans the

generated link for references to the current page and
replaces it by an appropriate AJAX call.

Because the dynamic code may still generate HTML
code such as font tags for custom coloring of text, the

HTMLFilter routine is used to ensure that such
values are properly converted to XML safe values. For

example angle brackets are converted to ‘<’ and
‘>’. Figure 6 shows the results of the loop that was

originally shown in Figure 2.

4.5 Cleanup

The last part to this phase of the transformation is to
clean up the resulting code, including reverting com-

ments to their normal form. Figure 7 shows results
generated by the final JSP page.

As mentioned previously the structure of the table is
identified by the <ajaxlist> and <ajaxitem>

<ajax::annotate>
 out.print(fldField1) ;
</ajax::annotate type=[data]
 keyword=[fldField1]>

Figure 4. Identifying slicing criteria

<%@ include file=”AJAXCore.jsp” %>
<%@ page contentType=”text/xml” %>

Figure 5. XML generation support

220

tags. In the example, there are three rows (the contents

of the second and third row are elided in the figure to
save space). The contents of the first row are “20”,

“test”, “test” and “2007-06-25 11:34:56”.

 Outside of the table data, there are three values,

given by the tags <sFileNameformParamss-
SortParamsiPage0>, <iPage1> and <sFile-

nameformParamssSortParamsiPage2>. The

<ajaxdata>
 <ajaxlist>
 <ajaxitem>
 <toURL-rsHash-get-m_message_id>20</toURL-rsHash-get-m_message_id>
 <toHTML-fldtopic>test</toHTML-fldtopic>
 <toHTML-fldauthor>test</toHTML-fldauthor>
 <toHTML-flddate_entered>2007-06-25 11:34:56</toHTML-flddate_entered>
 </ajaxitem>
 …
 </ajaxlist>
 <sFileNameformParamssSortParamsiPage0>
 &lft;font … >Previous%lt;/a>
 </sFileNameformParamssSortParamsiPage0>
 <iPage1>[1]</iPage1>
 <sFilenameformParamssSortParamsiPage2>
 <a href=javascript:getTable(“indexXML.jsp?s_topic=&FormMessages_Page=
2#Form)”> … Next …

 </sFilenameformParamssSortParamsiPage2>
</ajaxdata>

Figure 7. Sample XML output of generated web service.

out.print(”<ajaxlist>”);
while((iCounter<RecordsPerPage)&&rs.next())
{
 out.print(”<ajaxitem>”);
 getRecordToHash(rs,rsHash,aFields);
 String fldauthor = (String)rsHash.get(”mauthor”);
 String flddateentered = (String)rsHash.get(”mdateentered”);
 String fldtopic = (String)rsHash.get(”mtopic”);
 out.print(”<toURL rsHash get mmessageid>”);
 out.print(HTMLFilter(toURL((String)rsHash.get(”mmessageid”))));
 out.print(”</toURL rsHash get mmessageid>”);
 out.print(”<toHTML fldtopic>”);
 out.print(HTMLFilter(toHTML(fldtopic)));
 out.print(”</toHTML fldtopic>”);
 out.print(”<toHTML fldauthor>”);
 out.print(HTMLFilter(toHTML(fldauthor)));
 out.print(”</toHTML fldauthor>”);
 out.print(”<toHTML flddateentered>”);
 out.print(HTMLFilter(toHTML(flddateentered)));
 out.print(”</toHTML flddateentered>”);
 iCounter++;
 out.print(”</ajaxitem>”);
}
out.print(”</ajaxlist>”);

Figure 6. Modified JSP dynamic generation code

221

first and last contain anchors that refer to the previous

and next pages of the table.
The final result of this sequence of transformations

is a JSP page that returns the same data as the original
page in XML format. Since the service is a slice of the

original page, any side effects of the original page,
such as server side session information, that are related

to the list data are also included in the web service. As
a result, the generated web service may not be fully

compliant with the REST architecture. However, it
provides a starting point for a more complete migra-

tion to a REST based architecture.

5. User Page Transformation

This section describes the migration of the JSP web

page to use the web service described in Section 3.

5.1 Source Preparation

This step is very similar to the one described in Sec-
tion 3. However, since the page is supposed to display

the same contents, we leave all of the HTML elements
in the code(they are not removed as they were in the

previous section). There is one additional transforma-
tion in this step. All HTML code in the element con-

taining the user markup(i.e. <ajax::mark>) is con-
verted to Java print statements. This element may be a

method, or it may be a scriptlet (<%…%>).

5.2 Other Dynamic Data Replacement

The first step in the transform of the web page is to
deal with the sections of the page that were manually

marked as extra elements to be migrated such as page
number and menu elements that depended on the dy-

namic elements. During the source preparation step in
both phases (XML service extraction and Page migra-

tion), additional annotation was introduced for each
generated output that included an unique identifier.

Figure 8 shows the result of this part of the normaliza-
tion. The markup, originally shown in Figure 3 has

been automatically copied to each of the output state-
ments in the block of code and the attributes have been

extended with an name generated from the names of
the variables used in the output statements.

Each of the print statements is changed to generate
an empty HTML span that uses the unique identifier as

the value of the id as shown in Figure 9. The con-
tents of the span will be inserted by JavaScript at run-

time.

5.3 External Print Replacement

The general approach as illustrated in the previous
section is to replace the manually marked sections

with HTML span tags. However, in the case of the
main section of data that was marked with an

<ajax::mark> tag, there are some additional complexi-

if (iPage == 1) {
 out.print(””);
} else {
 out.print(””);
}

Figure 9. Annotated other dynamic data print statements

if (iPage == 1) {
 <ajax::annotate>
 out.print(”\n … Previous … ”);
 </ajax::annotate tagname=[sFileNameformParamssSortParamsiPage0]
 type=[dlink2]>
}else{
 <ajax::annotate>
 out.print(”\n<a href=\””+sFileName+”?”+formParams+sSortParams
 +”FormMessagesPage=”+(iPage 1)+”#Form\”>…Previous…”);
 </ajax::annotate tagname=[sFileNameformParamssSortParamsiPage0]
 type=[dlink2]>
}

Figure 8. Annotated other dynamic data print statements

222

ties. The tag is used to identify the main loop that gen-

erates the data. This is typically inside of an HTML
TABLE tag. Inserting a SPAN element inside of a ta-

ble will not result in well-formed HTML. This step
checks to see if the user markup is inside of a table

tag. If so, the page is changed to generate a two JavaS-
cript string constants. One for the HTML that extends

from the <TABLE> tag to the <ajax:: mark> tag,
and the other for the HTML that extends from the

</ajax::mark> tag to the end of the table (</
TABLE>). If there is no table tags, this transform does

nothing.

5.4 Interior Print Removal

There are two types of data that are generated within
the user markup. Some of the data is static HTML, the

other is the dynamic values that are now generated by
the web service. This step generates the JavaScript

that will create the same output for this region of the
page as would be created by the original JSP. During

the code normalization step, all embedded HTML
within the user markup was converted to Java print

statements.
In this transform, all of the print statements are re-

moved, and the arguments are merged into a commas
separated list of strings. The statements that generate

dynamic data result in a string containing the unique
identifier prefixed with the string concatenation opera-

tor (‘+’). Static text (i.e. string or character literals) are
a string containing the static data as a character literal.

Any variables with static values (see section 3.3 Slic-
ing preparation) are replaced by the constant values.

Figure 10 shows such a list. This list is used by the
transform described in the next section to create the

JavaScript that will generate the full HTML and dy-
namically insert it into the page.

5.5 Adding Ajax Support

The last steps involve the final support for AJAX.
The first transform in this step is to replace the marked

up code with a single call to a helper routine,
ajaxExData. This routine takes two parameters, the

JSP output stream, out, and the URI of the page,
which is obtained with the expression

request.getRequestURI(). This helper rou-
tine will genenerate four elements into the page when

it is called:
1) The empty SPAN tag that will contain the data.

2) Two supporting JavaScript files. The first contains
the generic methods to support AJAX, and the sec-

ond is a custom generated JavaScript function.
3) If a TABLE tag was found, then the constant

strings generated in Section 4.3
4) A call to the JavaScript support library to fill in

the empty SPANs when the page is first loaded.
The custom generated JavaScript function, named

tableMerge, is created from the list of print state-
ment parameters (e.g. Figure 10) created by the trans-

form described in Section 5.4. It iterates over the each
of the ajaxitem elements in the ajaxlist ele-

ment of the DOM instance constructed by the browser
when the web service is invoked. The body of the

loop contains a sequence of string concatenations gen-
erated from the list of strings building up a row for the

table. References to ajax tags are changed into calls to
the getElementByTagName method of the DOM

object. If the transform in Section 5.3 found a TABLE
tag, then the JavaScript strings that were inserted by

step 3 above are also included in the concatenation.
Figure 11 shows part of the function generated from

the string list in Figure 10.
After the core method included in step 2 above calls

the custom function, it then checks the top level of the
DOM object for any tags other than the ajaxitem

tags. If any are found, it converts the text back to

”’ <tr> ’”,”’ <td> ’”,”’’”,
”’’”,”’ ’”,”’</td>’”,”’<td>’”,
”’<a href=\”viewthread.jsp?’”,”’mid=’”,”+toURL rsHash get mmessageid”,
”’&\”>’”,”+toHTML fldtopic”,
”’’”,”’</td>’”,”’<td>’”,”’’”,
”+toHTML fldauthor”,”’ ’”,”’</td>’”,”’<td>’”,
”’<fontface=\”arial\” size=\”2\”>’”,”+toHTML flddateentered”,
”’ ’”,”’</td>’”,”’</tr>’”

Figure 10. Table data list.

223

HTML and writes the contents of these tags to the
HTML SPAN elements with the same name.

6. Preliminary Results

The transformation has been used to transform four
open source web applications. Three of the web appli-

cations are open source applications from the website
GotoCode.com. They were created using CodeCharge

by YesSoftware. CodeCharge is an integrated devel-
opment environment that provides an interface for

attaching snippits of Java code to HTML form ele-
ments, authoring JSP pages and automatically handles

some of the low level details such generating code for
database connectivity.

The fourth application is an open source blogging
web application, JSPBLOG[1], available on the

Sourceforge application hosting site. All of the exam-
ples used in figures in the previous sections are taken

the forum web application from GotoCode.com. Fig-
ure 12 shows the web page generated by the forum

application.
In all of but one of the cases, the rendering of the

final page is identical to the original page. The one
exception(JSPBLOG) introduced one extra space after

a single quote in a 1st level heading as a result of the
default formatting of the TXL engine. All of the ap-

plications performed identically to the untransformed
versions (except that the lists contents loaded without

reloading the rest of the page).

7. Related Work

Automated migration of web applications is not

new. Hassan et al. [4] used the island grammar tech-
nique to migrate web applications written in the ASP

framework to NSP (Netscape Server Pages) frame-
work. Ping et al.[11] use a transformation approach to

migrate IBM Net.Data applications to the enterprise
Java environment. Lau et al[5] demonstrated a migra-

tion from IBM Net.Commerce to Websphere Com-
merce Suite. All of these transformations translate the

server side of the application. Our transformation
changes both the server side and the client side.

There has also been recent research on converting
existing applications to use AJAX. Puder [12] pro-

posed a migration framework that allows AJAX appli-
cations to be written in Java. The application is first

written as a Java desktop application and compiled.
The generated .class file is then translated to JavaS-

cript using XMLVM as an intermediate language.
AJAX is used to transfer the JavaScript application

from the server to the user.

function tableMerge(ajaxlist)
{
 var strTable = ””;
 strTable += ajaxPreCont; // <TABLE> to <ajax::mark>
 for(varrowIndex=0;rowIndex<ajaxlist.childNodes.length; rowIndex++){
 var row = ajaxlist.childNodes.item(rowIndex);
 strTable+=” <tr> ”;
 strTable += ” <td> ”;
 …
 if(row.getElementsByTagName(”toURL rsHash get mmessageid”[0].firstChild
 !=null)
 strTabl +=row.getElementsByTagName(”toURL rsHash get mmessageid”[0]
 .firstChild.nodeValue;
 …
 strTable+=”</td>”;
 strTable+=”</tr>”;
 }
 strTable+=ajaxPostCont; // </ajax::mark> to </TABLE>
 return(strTable);
}

Figure 11. Custom JavaScript function

224

Mesbah et al. [9] presented an approach to migrate

multi-paged web applications to single-paged AJAX
interfaces. They have implemented a tool, called RET-

JAX, which identifies web elements which are candi-
dates for AJAX transformation. The approach pre-

sented does not produce an AJAX enabled product, but
serves as a starting point to the transformation process.

Their tool identifies potential candidates among multi-
ple pages, ours focusses on the transformation of a

single page.
Slicing has also been previously demonstrated for

web applications. Ricca et al.[13] used slicing to dem-
onstrate relationships between web pages. Lu et al.

[18] applied slicing to web applications for the pur-
pose of testing.

Previous work at our group has also used the unified
grammar and TXL to transform web pages. This has

included the conversion of simple JSP to custom tags
[19,20], and the conversion of TABLE tags to DIV

tags and cascading style sheets[8].

8. Future work and Conclusions

In this paper we have shown a set of source trans-

forms that can migrate a class of round-trip JSP web
page to AJAX. The class of pages are those pages that

display a portion of a list with links to display other
portions of the list. This involves extracting a web

service and transforming the web page to use the serv-

ice. The resulting web service is a JSP page that takes

the same parameters as the original page and returns
the data of the list in XML format. The transforma-

tions have been tested against several open source web
applications, which functioned identically with the

intended difference that navigating the list results did
not require page reloads. However, the transforms

have not been tested against any commercial applica-
tions.

The transformations do not handle the merging of
JSP pages, and this is a clear area for future work.

Although Mesbah et al.[9] do not provide an auto-
mated migration, they provide a technique for identify-

ing candidates to be merged. This may provide an ap-
propriate starting point for a more sophisticated trans-

formation.
We have not yet tested pages that require secure

access. Intuitively, the process should work since the
generation of the data depends on the security checks,

and therefore the security checks should be included in
the slice that generates the XML. The JavaScript sup-

port routines will have to be adapted to deal with secu-
rity failures during AJAX loads. This remains another

area for future work
The implementation of our transform is specific to

JSP. However, since the web service that is generated
is a slice of the original page that has been modified to

generate XML instead of HTML, the technique should

Figure 12. Round trip forum

225

be adaptable to other embedded web application lan-

guages such ASP or PHP.

References

[1] Cguru. Jspblog from Sourceforge,net ,
http://sourceforge.net/projects/jspblog/ last accessed,
April 2008.

[2] J. Cordy, “The TXL Source Transformation Lan-
guage”, Science of Computer Programming, 61(3),
August 2006, pp. 190–210.

[3] James Cordy, Backward slicing using TXL, 2007.
h t t p : / / w w w . p r o g r a m - t r a n s f o r m a -
tion.org/Sts/BackwardSlicingUsingTXL, last accessed
February, 2008.

[4] A.E. Hassan, and R.C. Holt, “Migrating Web Frame-
works Using Water Transformations”, Proc. 27th An-
nual International Computer Software and Applica-
tions Conference(COMSAC 2003), 2003, pages 296–
303.

[5] Terence C. Lau, Jianguo Lu, Erik Hedges, and Emily
Xing, “Migrating E-commerce Database Applications
to an Enterprise Java Environment”, Proc of the 2001
Conference of the Centre for Advanced Studies on
Collaborative Research, Toronto, Canada, November
2001, page 68-78.

[6] Xinzheng Li, Defining and visualizing web application
slices, M.Sc. Thesis, Queens University, 2004.

[7] Andy Mao, Translating Table Layout to Cascading
Style Sheets. M.Sc. Thesis, Queen’s University, 2007.

[8] A. Mao, J.R. Cordy, T.R. Dean, “Automated Conver-
sion of Table-based Websites to Structured Stylesheets
Using Table Recognition and Clone Detection”, Proc
IBM Centers for Advanced Studies Conference 2007
(CASCON), Toronto, Canada, October 2007. pp. 12–
26.

[9] Ali Mesbah and Arie van Deursen. “Migrating Multi-
page Web Applications to Single-page AJAX Inter-
faces”, Proc of the 11th European Conference on Soft-
ware Maintenance and Reengineering, Amsterdam, the
Netherlands, March 2007, pp. 181–190.

[10] Sun Microsystems. Asynchronous Javascript Technol-
ogy and XML (AJAX) with the Java platform, 2006.

[11] Y. Ping, J. Lu, T. Lau, K. Kontogiannis, T. Tong, B. Yi,
“Migration of Legacy Web Applications to Enterprise
Java Environments: Net.Data to JSP Transformation”,
Proc 13th IBM Centre for Advanced Studies Confer-
ence (CASCON 03), Toronto, Canada, October 2003.
pp. 223–237.

[12] A. Puder, “A Code Migration Framework For AJAX
Applications”, Proc of the Seventh IFIP International
Conference on Distributed Applications and In-
teroperable Systems, Paphos, Cyprus, June 2006, vol-
ume 4025, pp. 138–151.

[13] F. Ricca, and P. Tonella, “Web Application Slicing”,
Proc. IEEE International Conference on Software

Maintenance, Florence, Italy, November, 2001, pp.
148–157.

[14] Nikita. Synytskyy, J.R. Cordy, and T. Dean “Resolu-
tion of Static Clones in Dynamic Web Pages”, Proc.
Fifth IEEE International Workshop on Web Site Evolu-
tion, Amsterdam Netherlands, September 2003, pp.
49–56.

[15] N. Synytskyy, J.R. Cordy, T. Dean, “Practical
Language-Independent Detection of Near-Miss
Clones”, Proc 13th IBM Centre for Advanced Studies
Conference (CASCON 03), Toronto, Ontario, October
2004, pp. 29–40.

[16] W3C. The Xmlhttprequest Object, http://ww
w.w3.org/TR/XMLHttpRequest/, last accessed April
2008.

[17] M. Weiser, “Program Slicing”, In Proc of the 5th In-
ternational Conference on Software Engineering, 1981
pages 439–449.

[18] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang,
and Huowang Chen, “Regression Testing for Web
Applications Based on Slicing”. Proc. 27th Annual
International Computer Software and Applications
Conference COMPSAC 2003, pages 652–656.

[19] S. Xu, and T. Dean, “Modernizing Javaserver Pages by
Transformation”, Proc. Seventh IEEE International
Symposium on Web Site Evolution (WSE 2005), Buda-
pest, Hungary, September 2005, pp. 111–118.

[20] S. Xu and T. Dean, “Transforming Embedded Java
Code Into Custom Tags”, Proc. Fifth IEEE Interna-
tional Workshop on Source Code Analysis and Ma-
nipulation, Budapest, Hungary, September 2005, pp.
173–182.

226

