
Parfait – A Scalable Bug Checker for C Code
Tool Demonstration

Cristina Cifuentes
Sun Microsystems Laboratories

Brisbane, Australia
cristina.cifuentes@sun.com

Abstract

Parfait is a bug checker of C code that has been designed
to address developers’ requirements of scalability (support
millions of lines of code in a reasonable amount of time),
precision (report few false positives) and reporting of bugs
that may be exploitable from a security vulnerability point
of view. For large code bases, performance is at stake if the
bug checking tool is to be integrated into the software de-
velopment process, and so is precision, as each false alarm
(i.e., false positive) costs developer time to track down. Fur-
ther, false negatives give a false sense of security to devel-
opers and testers, as it is not obvious or clear what other
bugs were not reported by the tool.

A common criticism of existing bug checking tools is the
lack of reported metrics on the use of the tool. To a devel-
oper it is unclear how accurate the tool is, how many bugs
it does not find, how many bugs get reported that are not
actual bugs, whether the tool understands when a bug has
been fixed, and what the performance is for the reported
bugs.

In this tool demonstration we show how Parfait fairs in
the area of buffer overflow checking against the various re-
quirements of scalability and precision.

1. The Parfait Framework

Parfait was designed to statically find bugs in large code
bases [1]. Its design features (1) fast and precise bug check-
ing by reducing the problem space with fast analyses ap-
plied first, (2) demand driven analyses, facilitating paral-
lelization on multi-core computer architectures now avail-
able, and (3) an optional pass to make the analysis relevant
to security vulnerability checking. In this demo, we look at
preliminary work in these three aspects.

For better precision in bug checking we use an ensem-
ble of sound static program analyses, by exploiting the

strengths of the individual analysis. The program analyses
in the ensemble should range in complexity and expense,
and we define an order among them. For two program anal-
ysis P and Q, we express that P is less (time) expensive
than Q by writing P < Q.

Figure 1. The Parfait Framework

With an ensemble of program analyses, we can state a
kind of complexity property for a buggy statement in the
program. The complexity property gives an indication of
how complex (according to our order) the analysis needs to
be for identifying it. The use of an ensemble achieves bet-
ter precision with smaller runtime overheads, i.e. a buggy
statement is detected with the cheapest possible program
analysis in the ensemble.

Figure 1 shows our framework. Our algorithm works
as follows: First, a worklist for a specific bug (e.g. buffer
overflow) is set up and populated with statements that po-
tentially can cause the bug. Second, we iterate over the pro-
gram analyses in the ensemble in ascending order. With the
selected program analysis, we analyze the statements in the
worklist. We remove statements from the worklist for which
the analysis can prove that there is no bug. For a partially

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.21

263

complete analysis 1 , the statement will be removed if the
analysis proves that there is a bug and this bug is reported
as a real bug. Third, the remaining statements in the work-
list are reported as potential bugs and need to be verified
by the developer/tester. Heuristics are applied to order the
importance of the reported bugs.

To overcome the computational program analysis bottle-
neck, we parallelize the algorithm by employing demand
driven program analysis instead of traditional forward anal-
yses for the whole program. Demand driven analysis gen-
erates a backward slice of a program starting at a particular
statement of interest (in our case, a potential buggy state-
ment). The algorithm has two levels of embarrassing par-
allel problems. The first level is the various worklists for
specific bugs (e.g. buffer overflows, string vulnerabilities,
integer overflows, etc.) and the second level is for state-
ments in a specific worklist.

2. Evaluation Methodology

As far as we are aware of, there is no established eval-
uation methodology for bug checking tools. In the re-
search community, a few first attempts have been made to
consolidate this problem [6, 2, 3, 4], however no general
consensus has yet been reached. Limited results such as
“Tool/Technique X found Y number of bugs.” are frequently
presented in the literature. Such statements lack practical
use as they fail to address any of the following questions:

• Which kind of bugs were found? (there exists a lot of
bugs in any large software project, but which ones are
considered relevant to the developer or security audi-
tor?)

• How many bugs were not found? Note that Y could
be a small number in comparison with the real total
number of bugs in the code.

• How many bugs were reported as bugs and were not
actual bugs?

• Does the tool understand when a reported bug has been
fixed? (i.e., when the tool is re-run with a fixed bug, is
the bug reported again or not?)

• How long did it take to run the tool to find the bugs?

We use a simple scheme that gives a “bug specific”
view. For a specific bug class (e.g. buffer overflow bugs,
signed/unsigned bugs), we conduct an automated evalua-
tion. The evaluation contains the measurement of functional

1A program analysis is said to be complete if it can report only real
bugs in the program (i.e., it does not report on false positives). A program
analysis is partially complete if it is complete for a sub-set of statements in
the program.

metrics for each benchmark including false positives and
false negatives.

Besides functional metrics we are also interested in the
execution time of the tool, i.e., how many lines of code it
can process per minute, and how much memory is needed
for the execution of the tool. Speed and memory consump-
tion are important to be able to extrapolate the scalability of
the system.

As part of our evaluation methodology, we are collecting
kernels of sample proprietary and open source buggy source
code and annotating it with the bugs that are known to exist
in that code. We also use the synthetic benchmarks that have
been contributed to the SAMATE project [4].

3. The Tool Demo

In this demo we show how the Parfait framework can be
used to detect buffer overflows, using several layered anal-
yses. For each analysis, we show its performance, and the
types of buffer overflows that it can find. We also demo pre-
liminary work on a (security) pre-processing filter to Parfait
that finds user-input dependencies in a program and scales
well to large code bases of millions of lines of code [5].
Finally, we show our benchmarking infrastructure with a
combination of examples from the SAMATE project and
kernels from existing buggy open source code.

References

[1] C. Cifuentes and B. Scholz. Parfait – designing a scalable bug
checker. In Proceedings of the ACM SIGPLAN Static Analysis
Workshop, 12 June 2008.

[2] K. Kratkiewicz and R. Lippmann. Using a diagnostic corpus
of C programs to evaluate buffer overflow detection by static
analysis tools. In Proc. of Workshop on the Evaluation of Soft-
ware Defect Detection Tools, June 2005.

[3] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bug-
Bench: A benchmark for evaluating bug detection tools. In
Proc. of Workshop on the Evaluation of Software Defect De-
tection Tools, June 2005.

[4] NIST SAMATE – software assurance metrics and tool evalu-
ation. http://samate.nist.gov. Last accessed: Jan-
uary 2007.

[5] B. Scholz, C. Zhang, and C. Cifuentes. User-input depen-
dence analysis via graph reachability. In Proceedings of the
Eighth IEEE Working Conference on Source Code Analysis
and Manipulation, September 2008.

[6] M. Zitser, R. Lippmann, and T. Leek. Testing static analy-
sis tools using exploitable buffer overflows from open source
code. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM
SIGSOFT Twelfth International Symposium on Foundations of
Software Engineering, pages 97–106, New York, NY, USA,
2004. ACM Press.

264

