
Beyond Annotations: A Proposal for Extensible Java (XJ)

Tony Clark, Paul Sammut, James Willans - Ceteva Ltd.

Abstract

Annotations provide a limited way of extending Java in
order to tailor the language for specific tasks. This paper
describes a proposal for a Java extension which generalises
Annotations to allow Java to be a platform for developing
Domain Specific Languages.

1 Introduction

In his 1994 paper on Language Oriented Programming
(LOP) [1], Martin Ward proposes that the problems of com-
plexity, conformity, change and invisibility that occur with
large software systems can be addressed by designing a for-
mally specified, domain-oriented, very high level program-
ming language as the basis for system design. Recently,
Guy Steele [2] has emphasised this point:

a good programmer in these times does not just
write programs. [...] a good programmer does
language design, though not from scratch, but
building on the frame of a base language

The term Domain Specific Language (DSL) has been used
to refer to languages that have been designed for a restricted
class of applications. Martin Fowler [3] makes the distinc-
tion between external DSLs and internal DSLs. An external
DSL is written outside the main language of an application
whereas an internal DSL is written in and uses the main ap-
plication language.

Medium to large scale enterprise information systems
are implemented using a collection of different technolo-
gies. These include JavaScript, JUnit, Ant, (lots of) XML,
Drools and various extensions to Java implemented using
annotations. In addition to fairly standard technologies such
as those mentioned above, there are a large number of exten-
sions being proposed to standard programming languages
such as Java. Many of these extensions are implemented us-
ing different pre-processor technologies. Each of these dif-
ferent technologies addresses a different aspect of the over-
all system. Therefore the system is implemented using a
collection of loosely integrated DSLs.

The arguments made by Ward in favour of LOP and
DSLs are even more relevant today given the proliferation
of technologies and the scale of software systems. Devel-
opers are using these techniques all the time in various dif-
ferent ways.

The danger with home-grown LOP technology is that it
can make the problem worse, not better. If developers use
a variety of methods and tools to construct a language then
they may get some immediate benefit, but issues will arise
if the underlying technology is not stable. In addition, to
be useful DSLs must be portable - perhaps not as widely
distributed as general purpose languages, but transferrable
nonetheless. For large scale benefit, it should not be neces-
sary to supply the complete language support system along
with a system module.

This paper is a proposal for a language extension to Java
called XJ that supports LOP and therefore allows DSLs to
be constructed to be standard, portable and easily under-
stood. The extension is conservative in the sense that it
will not conflict with any existing language features and
will preserve backward compatibility. The proposal extends
classes with syntax definitions to produce new modular lan-
guage constructs, called syntax-classes, that can easily be
distributed along with an application in the usual way.

The LOP extensions to Java have been implemented in
an existing language called XMF [4]. XMF is a high-level
object-oriented language designed to support DSLs. XMF
has been used in a commercial product and has a Java-like
sub-language. Therefore we are confident that the XJ pro-
posal has been adequately validated.

This paper is structured as follows: section 2 reviews the
state of the art in DSLs; section 3 describes the XJ language
extensions; section 4 describes some LOP defined exam-
ples using XJ; finally, section 5 analyses the proposal and
compares it to related proposals for Java-based LOP tech-
nologies.

2 Domain Specific Languages

Consider an idealised development process. You are
given an application to develop. You start by trying to un-
derstand the kind of executions you will need to perform -
just fragments at first. Gradually, you join the executions

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.34

229

Figure 1. Abstract Model of Development

together to form ever greater descriptions of what will need
to happen. The executions, are described in terms of en-
tities from the application domain: financial transactions,
customers, interest rates and so on.

You start to notice common themes in the executions
and design execution rules that cover them. Gradually, you
wind up with a fairly comprehensive collection of execu-
tion rules; each rule expects to be given some information
that causes it to perform some calculation. The rules define
an idealised domain specific execution engine and the data
that drives the engine defines a domain specific program.
The range of variability in the programs you can given the
engine is a domain specific language.

Once you have arrived at an engine and language then
you choose a general purpose language. You understand
the language very well and your implementation task be-
comes one of working out how to translate the domain spe-
cific program into a real-world program so that it faithfully
executes on your general purpose engine. See figure 1.

Of course, the above process is idealised, however it is
representative of how a developer gets from an application
specification to a working implementation. How closely the
process is followed will depend on how expert the program-
mer is (there are lots of translations going on). An expert
programmer will perform many of the steps instinctively
and perhaps often not even be aware of the various repre-
sentations.

The difference between the DSL and the implementa-
tion language is the representation chasm. Once the pro-
cess has jumped from one side of the chasm to the other,
it is very difficult to get back. This one-way process is a
source of many problems since it loses the meaning of the
original representation. Once lost, it is difficult for humans
to interpret the code (maintenance becomes an issue), and
it is difficult for machines to extract meaning from the code
(for example building reuse libraries or generating efficient
code).

Current mainstream languages do not provide any sup-
port for LOP, however there is increasing interest in LOP
and DSLs because of the perceived benefits outlined above.
A number of language extensions to Java have been pro-
posed to support LOP and these are analysed in section 5.

The structure of this section is as follows: section 2.1
describes a number of architectural styles for developing
DSLs; section 2.2 describes a number of technologies used
to implement DSLs; section 2.3 analyses the styles and
technologies and makes a proposal for a standard extension
to Java that supports LOP and DSLs; finally, section 2.4
lists a number of example DSLs that could be added to Java
using the proposals.

2.1 DSL Architectural Styles

There are a number of approaches to architecting a DSL
using LOP technologies. This section briefly describes the
main styles.

Fowler makes the distinction between internal and ex-
ternal DSLs. An internal DSL makes use of an existing
language and possibly integrates with it whereas an exter-
nal DSL is completely separate. It should be noted that,
if technology supports a fully integrated internal approach
then that can be used to implement an external approach.

DSLs may be fully or partially integrated with their host
language. A full integration allows the DSL constructs to
be interleaved, where appropriate, with the host constructs.
Effectively the host language is extended by the DSL. Par-
tial integration involves levels of restriction on the poten-
tial for interleaving. A very restricted integration allows the
DSL constructs to occur at pre-defined points in the host
language. A fully restricted integration is effectively an ex-
ternal DSL.

DSLs may introduce new syntax constructs, may re-
interpret the syntax constructs of the host language, or may
simply use the existing constructs of a language in a sys-
tematic way. New syntax constructs are perhaps the purest
form of DSL but will require some parsing technology. Re-
interpretation often involves observing patterns of existing
language constructs and treating them specially in some
way, perhaps involving pattern matching technology. A typ-
ical example is to treat certain procedure calls, method calls
or field references in a special way.

DSLs may be translational or may involve their own
execution engines. A translational DSL transforms source
code from the DSL constructs to existing constructs in a
target language. This may involve a pre-processor or be
integrated within the target language compiler. A transla-
tional approach requires technology for manipulating syn-
tax - concrete, abstract or both.

DSLs that have their own execution engines tend to be
external DSLs (but need not be). In this case the DSL pro-
gram is a data structure that is processed by an engine writ-
ten specifically for the purpose. Such an approach is related
to software frameworks as discussed below.

230

2.2 Existing Technologies for DSLs

2.2.1 XML

XML has been proposed as a technology for expressing
DSLs. This is possible and achieves a standard represen-
tation, however XML is not integrated with a programming
language in any way and cannot take advantage of the fea-
ture of the language in the DSL constructs, therefore it
does not meet the criteria set out in [2] for language def-
inition. In certain limited highly declarative domains (for
example expressing data structure relationships, declaring
project dependencies or menu items) XML is fine, but oth-
erwise it requires a complete language engine to be written
from scratch using a representation that is not particularly
human-friendly.

2.2.2 Pre-processors

A pre-processor can be used to add DSL features to an ex-
isting language. Some pre-processors also allow macros to
be defined so that the user can define new language features.
In both cases this achieves the aims of LOP but introduces
new technology. The pre-processor technology must be dis-
tributed with the language definition in order for anyone
to use it. Most pre-processing technologies have restricted
knowledge of the target language and cannot provide new
language features with information about their static con-
text (variables in scope, types etc). This makes it difficult to
use pre-processors to extend an existing language in order
to achieve [2].

Pre-processors may also be limited to the existing syntax
of the target language, i.e. they can interpret patterns of
existing constructs, but not introduce new constructs. This
feature limits the ability of pre-processors to achieve the
goals set out in [1]. Finally, pre-processors may not work
with existing language tools. For example, Java IDEs can
only process standard Java; language constructs introduced
via a pre-processor will not be legal in such an IDE and the
code produced by the pre-processor will not be understood
by the developer.

2.2.3 Chained Calls

A good place to start when defining a DSL is to make a list
of the nouns and verbs associated with the domain. These
are good candidates for the data and language features that
the DSL will need to support. A style of OOP uses chains
of method calls to implement these features. Proponents of
this style, claim that the approach achieves the benefits of
a DSL without needing any new language features. Whilst
chained-calls can lead to readable code and no doubt the
approach can be good practice since it focusses design at-
tention on the domain, there is limited scope for proper en-

capsulation of new concepts and no scope for conveying se-
mantic intent to the language tools.

2.2.4 Processing Concrete Syntax

Systems that support an LOP approach often provide mech-
anisms for working with concrete syntax. These include
patterns for matching structure and templates for generat-
ing code. It is important that processing is not limited to
concrete syntax since there are often constructs in a lan-
guage that have no corresponding concrete syntax language
feature. For example, in Java there is no concrete syntax for
defining a package containing classes. However, in order to
achieve [1] it is necessary to be able to produce new features
that abstract commonly occurring language patterns.

Systems that are limited to just pattern matching over
concrete syntax cannot introduce new language features
whose structure differs from that of existing features. In or-
der to deal with new concrete syntax, some form of parsing
mechanism is required. One way of achieveing this is to al-
low grammars to be defined within the language. Each new
grammar corresponds to a new language construct. In or-
der for the new language constructs to be embedded within
the existing language, the grammar rules should be able to
extend those of existing constructs.

2.2.5 Scripting and External DSLs

An external DSL is one that does not extend or use the main
implementation language. Such a language is often used to
implement a module in a larger system. There are a number
of scripting languages, such as JRuby, that can be used in
conjunction with general purpose programming languages,
such as Java. In these cases the GPL is used to implement
the core system and the scripting languages provides a DSL
for specific aspects, in the case of JRuby this could be the
user interface.

For specific types of application this can work well, but
it does not really address the key motivations behind [2, 1].
The scripting language is often just another GPL that hap-
pens to be used for a specific aspect of the system. The main
GPL (Java) knows little about the semantics of the con-
structs it is calling in the scripting language. In many cases
the scripting language is quite broad in scope and therefore
is not really achieving the aim of providing a DSL.

2.2.6 Java Annotations

Java has recently been extended with annotations which can
be used to introduce properties to specific places in the
source code. The motivation for the annotations has been
to provide a mechanism for extending the Java language
with new constructs, by allowing existing constructs to have

231

properties. A new class of construct can be defined by dis-
tinguishing between existing constructs based on their prop-
erty annotations. In addition, the annotations are a standard
part of the language and therefore can be processd by Java
language tools such as compilers and IDEs.

This approach has been used in a number of extensions
to Java and, if used lightly, can be successful. However the
aim of achieving new program constructs that reflect the do-
main or capture programming idioms is not achieved using
annotations since they cannot introduce any new syntax. In
addition, if annotations are overused then the source code
becomes difficult to read.

2.2.7 Frameworks and Libraries

A DSL is related to frameworks in a number of ways. A
DSL that extends the syntax of a language typically uses a
parsing framework to deal with the new concrete syntax. If
the new syntax is fully integrated with an existing language
then extension points can be provided by the parser for the
existing language to support the extensions. If the compiler
or interpreter for an existing language is a framework then
it can provide extension points for new language constructs
to be expanded into existing language constructs. Finally,
if a DSL is to be implemented as an external language then
the execution engine for that language can be viewed as a
framework where the extension points are implemented in
data that is supplied as the DSL program.

2.3 Analysis

We have described DSLs, their architectural styles and
some technologies that can be used to implement them.
This section reviews the benefits and drawbacks of DSLs
and then makes some recommendations regarding an ap-
proach to DSL architecture and implementation technology.
XJ supports all of these recommendations.

2.3.1 Benefits of DSLs

LOP is important because it allows languages to grow in
line with [2]. It allows new programming idioms and pat-
terns to be captured in a standard way, can significantly re-
duce the number of technologies required to produce a large
application, and it supports DSL development. The amount
of investment necessary to implement a new language from
scratch or even to make significant modifications to an exist-
ing language is huge. Given that LOP and DSLs are gener-
ally accepted to have benefits, this raises a significant prob-
lem regarding DSL development.

DSLs improve the readability and maintainability of
code since they close the representation chasm. In addi-
tion DSLs improve the scope for a developer to convey the
intent of program code to system tools such as IDEs and

compilers. This is important for tool support of DSLs and
to ensure efficient execution of DSL programs. DSLs can
be designed so that system component properties are made
explicit which provides scope for reuse.

2.3.2 Drawbacks of DSLs

Current approaches to DSLs suffer from having no standard
technology that supports language definition. DSL develop-
ers are forced to use a variety of technologies or write their
own. This has lead to the objection that DSLs are hish-risk
since they require specialised skills for development and are
difficult to maintain. Lack of standards for DSLs also mean
that tool support for development is weak.

2.3.3 Recommendations

Standardisation is key to achieving the aims of LOP and
DSLs. Without standardisation, each LOP developer uses
different approaches and technologies which makes the de-
velopment highly specialized and the maintenance difficult
to control. If LOP technology can be standardized then lan-
guages become easier to develop since tools can support the
standard and problems of maintenance are greatly reduced.
Standardization can also significantly reduce the number of
technologies necessary to support LOP and develop DSLs.

Should such a standard support fully integrated DSLs or
external DSLs? Given that technology for fully integrated
DSLs subsumes that of external, the the standard should
support a the definition of language constructs that can be
fully integrated with a host language. In addition, the stan-
dard should allow full concrete syntax extension and the
ability to process abstract syntax in arbitrary ways since this
is perhaps the essence of DSLs.

Should the standard support a translational approach or
an execution engine approach? As noted above, the execu-
tion engine approach is universal, but quite specialized. It
is more suited to external DSLs than internal DSLs. Whilst
there are benefits from an execution engine approach (no-
tably control and debugging), a translational approach is
more accessible and supports a more lightweight approach
for non-language specialists.

Our proposal is to incorporate the above recommenda-
tions as a standard language extension to Java. The exten-
sion produces a language called eXtensible Java (XJ) which
is introduced in the rest of this paper.

2.4 Example DSLs

The following is a list of some of the DSLs that could
be supported by XJ: SQL traditional methods of embedding
SQL in Java have used strings, a DSL for SQL would em-
bed the language within Java and allow Java expressions to

232

be references within SQL, see [5]; Testing there are a num-
ber of proposals for languages to support testing includ-
ing JUnit and jMock [6] allowing the details of testing to
be hidden and for tests to be expressed declaratively; XML
and HTML to produce languages similar to JSP; Architec-
ture Marcus Voelter [7] shows how system architecture can
be expressed using a DSL and describes how code can be
generated from the DSL; Closures there is current discus-
sion regarding how to add closures to Java; SPLA feature
models and product line architectures allow single systems
to describe a number of products; Hardware many hard-
ware systems are controlled by small scripting languages
that could be embedded in embedded within Java; Rules
rules systems such as Drools [8] already class themselves
as DSLs; GUI Libraries for constructing GUIs tend to re-
quire a large amount of code to create, link and configure
the various graphical components. DSLs would allow the
detail of this code to be hidden and constructed in a stan-
dard way.

3 XJ

XJ is a proposed extension to Java that supports LOP. It
introduces the idea of a syntax-class into Java. A syntax-
class is a normal Java class that defines a language gram-
mar. When the Java parser encounters an occurrence of
a language feature delimited by a syntax-class, the class’s
grammar is used to process the input. If the parse succeeds
then the grammar synthesizes an Java abstract syntax tree
(AST). An object of type AST has a standard interface that
is used by the Java compiler when it processes the syntax.
New types of AST can be defined providing that they im-
plement the appropriate interface.

The rest of this section introduces XJ using examples and
analyses the main features: section 3.1 specifies a simple
language construct; section 3.2 shows how Java is extended
with concrete syntax for the new construct; section 3.3 de-
scribes the features in XJ for specifying concrete syntax;
section 3.4 describes how the new construct is translated
into standard Java; section 3.5 describes how abstract syn-
tax is manipulated in XJ; section 3.6 describes some further
simple language examples in XJ; finally, 3.7 reviews the
main features of XJ.

3.1 The Select Language Construct

Consider a simple language construct in Java that selects
an element from a collection based on some predicate. An
example of the new construct is shown below:

import language mylang.Select;

public Person getChild(Vector<Person> people) {
@Select Person p from people where p.age < 18 {

return p;
} else { return null; }

}

The new language construct is called Select. A LOP-
defined construct in XJ is used by prefixing a reference to
the syntax-class with the @-character. The value p is se-
lected from the vector people providing that the age of
the person is less than 18. If a value can be selected then it
is returned otherwise null is returned. The use of Select is
equivalent to the following definition:

public Person getChild(Vector<Person> people) {
for(int i = 0; i < people.size(); i++) {

Person p = people.elementAt(i);
if(p.age < 18) return p;

}
return null;

}

3.2 Concrete Syntax for Select

A new language construct is defined in XJ by defining
a syntax-class. A syntax-class contains a grammar which
is used by the Java parser to process the concrete program
syntax and to return an abstract syntax tree (AST). Once
a syntax-class has been defined, it can be used in program
code by referencing the class after the syntax escape char-
acter ’@’.

Figure 2 shows the concrete syntax part of the syntax-
class for Select. The grammar definition describes how to
recognize a select statement. A grammar consists of named
parse rules. The grammar for Select extends that for State-
ment which allows Select to be used wherever a statement is
expected and also allows Select to reference the parse rules
defined for statements (in this case Type, Exp and Block).

The Select rule specifies that a well-formed statement is
a type followed by a name, the keyword from followed by
an expression, the keyword when followed by an expres-
sion and then a block which is the body of the select. After
the body there may be an optional else keyword preceding
a block.

In each case within the Select rule, the parse elements
produce a value that may optionally be associated with
names. For example, the type is associated with the name
T. In addition, a parse rule can contain Java statements that
return a value. These are enclosed in { and }, and may ref-
erence any of the names that have been defined to the left of
the statement. The final value returned by the Select rule is
an instance of the class Select.

3.3 XJ Grammars and Parsing

XJ requires Java classes to be extended with an op-
tional grammar. Classes that contain a grammar definition

233

package mylang;

import language java.syntax.Grammar;

import java.syntax.*;

public class Select extends Sugar {
private Type type;
private Var var;
private AST collection, test;
private Block body, otherwise;
public Select(Type T,String n,AST c,AST t,Block b,Block o) {

// Initialize fields from arguments...
}
@Grammar extends Statement {

Select ::=
T = Type
n = Name
’from’ c = Exp
’when’ t = Exp
b = Block
o = (’else’ Block | { return new Block(); })
{ return new Select(T,n,c,t,b,o); }.

}

Figure 2. A Select Command (Part 1 of 2)

are referred to as syntax-classes. XJ also requires that the
Java parser is extended to allow the current grammar to be
changed during a parse.

Referencing a syntax-class after the syntax escape char-
acter ’@’ causes the Java parser to temporarily switch gram-
mars. When the parser encounters @C ..., it finds the class C
(loading it if necessary), extracts its grammar and continues
with the parse using the grammar defined by the class. The
starting non-terminal for the class is always the parse rule
named C.

The XJ parser maintains a stack of grammars. When
an @C ... construct is encountered, the grammar for C is
pushed onto the stack. If the current grammar succeeds,
then the stack is popped, the current value is returned and
the parse continues with the grammar at the top of the stack.
XJ grammars can be associated with their own tokenizers,
but get the standard Java tokenizer by default.

XJ grammars have been implemented and used for a
number of years in the XMF system [15]. XMF is open-
source so the parsing algorithms and language for express-
ing grammars are available for inspection.

3.4 Abstract Syntax for Select

The value synthesized and returned by a grammar must
be an instance of java.syntax.AST. If the return value is an
instance of one of the standard Java AST classes then no
special action needs to be taken by the syntax-class. If
the return value is an instance of a user-defined syntax-
class then that class must implement the AST interface

which is used by the compiler to translate the source code
into Java VM code. To make this process easier, a user
defined syntax-class can extend java.syntax.Sugar which
implements the AST interface through a method called
desugar. The desugar method is responsible for translating
the receiver into an AST for which the interface is defined
(typically desugaring into standard Java code).

The syntax-class Select extends the class
java.syntax.Sugar and defines the desugar operation in
figure 3. The Java compiler needs to process an AST
instance in various ways. It achieves this via the AST
interface. The class java.syntax.Sugar implements the
AST interface by calling desugar and then performing
the appropriate AST operation on the result. The desugar
operation is supplied with the current compilation context
which contains the variables in scope, types etc.

The Select syntax-class uses desugar to produce the se-
lection code. The particular code depends on the type of
the collection so the first thing that desugar does it to work
out the type of the collection and dispatch to an appropriate
desugaring method. Figure 3 shows how vectors are desug-
ared, other types such as arrays are very similar. The desug-
arVector method returns code using quasi-quotes which are
explained in the next section.

3.5 Quasi-Quotes

To define the desugar method, a syntax-class will gen-
erally construct new AST instances. This process is made
easy in XJ through the use of quasi-quotes. A quasi-quoted
AST is shown below:

234

public AST desugar(Context context) {
Class<T> cType = context.getType(collection);
if(isVector(cType)) return desugarVector(cType,contect);
else // More cases...

}
public AST desugarVector(Class<T> cType,Context context) {

Var done = context.newVar();
Var coll = context.newVar();
return [| boolean <done> = false;

<cType> coll = <collection>;
for(int i = 0; i < <coll>.size(); i++) {

<underlyingType(cType)> <var> = <coll>.elementAt(i);
if(<test>) {

<done> = true;
<body>;

}
}
if(!<done>) <otherwise>;

|];
}

}

Figure 3. A Select Command (Part 2 of 2)

[| x + <new java.syntax.Int(1)> |]

which is equivalent to the Java expression:

new java.syntax.BinExp(
new java.syntax.Var("x"),
"+",
new java.syntax.Int(1))

The delimiters [| and |] transform the enclosing concrete
syntax into the corresponding abstract syntax. Within [| and
|] the delimiters < and > can be used to ’unquote’ the syn-
tax in order to drop in some abstract syntax. The two forms
of delimiters can be arbitrarily nested. Quasi-quotes are an
easy way to create code templates in XJ.

The drop-quotes < and > allow a single AST valued ex-
pression to be ’dropped’ into program code. Sometimes,
it is necessary to splice a collection of program elements
into a single location. For example, this can occur when a
single DSL construct expands into a collection of method
definitions. XJ provides splice-quotes <$ and $> to support
this. For example the following is a method that constructs
a class definition with a fixed field and a variable number of
methods:

public AST mkClass(String n,Vector<Method> M) {
return

[| public class <n> {
private int storage;
<$ M $>

}
|];

}

3.6 Other Examples

Syntax expansions can make use of syntax-classes (sim-
ilar to macros-calling-macros) in XJ. Some of the examples

in the rest of this paper use a couple of syntax-classes in
this way. These are specified in this section without their
implementations.

3.6.1 Iterate
The UML Object Constraint Language provides a useful
language construct called ’iterate’ which is a restricted form
of collection-folding. The following is a simple example of
the use of a syntax-class called Iterate:

@Iterate int i in nums with int sum = 0 {
return sum + i;

}

The example adds up a collection of integers in the collec-
tion nums. This code is equivalent to a call of a method
called addUp:

public int addUp(Vector<Integer> nums) {
int sum = 0;
for(int i : sums) sum = sum + i;
return sum;

}

3.6.2 Comprehensions
A set comprehension is a standard construct in mathematics
for processing set-elements and constructing new sets. This
is a useful feature for processing Java collections:

@Cmp(x + 1) { int x <- nums }

which creates a new collection by adding 1 to the integers in
the collection nums. This is equivalent to a call of add1:

public Vector<Integer> add1(Vector<Integer> nums) {
Vector<Integer> vec = new Vector<Integer>();
for(int x : nums) vec.addElement(x + 1);
return vec;

}

235

3.7 Review

The main features of XJ are: syntax-classes XJ extends
Java classes with grammars; a new type of syntax construct
@; import a new import mode for importing references to
syntax classes; AST access to, and standardization of, Java
abstract syntax and the compiler context; quasi-quotes that
allow abstract syntax to be constructed as though it were
concrete syntax; lifting any Java value can be transformed
into an AST object whose evaluation will produce the orig-
inal value.

4 A DSL in XJ

This example is due to Martin Fowler [16]. Suppose we
have data that contains information about customer events.
A customer event might be a service call including the name
of the customer, the type of the call (failed hardware, billing
query etc) and the date. This information may be provided
in real-time or in a log file as text:

SVCLFOWLER 10101MS0120050313
SVCLHOHPE 10201DX0320050315
SVCLTWO x10301MRP220050329
USGE10301TWO x50214..7050329

A Java program is to process the information. Obviously the
first task of the Java application is to split the input strings
up in terms of their fields. If there are a very small number
of types of call then it would be OK to just write the appro-
priate string manipulation calls on the input. However, it
would be better to define a string processing framework and
use that. Fowler gives a framework-based implementation
something like that shown in figure 4.

A DSL could be defined that makes the code much easier
to read:

@Reader CallReader
map(SVCL,ServiceCall)
4-18:CustomerName
19-23:CustomerID
24-27:CallTypeCode
28-35:DataOfCallString

end
map(USGE,Usage)
4-8:CustomerID
9-22:CustomerName
30-30:Cycle
31-36:ReadDate

end
do
ServiceCall
Usage

end

which is equivalent to a class definition:

public class Callreader {
public void ConfigureCallReader(Framework f) { ... }
private ReaderStrategy ConfigureServiceCall() { ... }
// More configurations...

}

The syntax-class for the Reader construct is defined in
figure 5.

5 Analysis and Related Work

This paper has reviewed the motivation for language ori-
ented programming (LOP) and domain specific languages
(DSLs). It has described and analysed a number of ap-
proaches and technologies for LOP and DSLs and has made
some recommendations regarding how LOP and DSLs can
become part of mainstream system development. The key
recommendation is that the technology for LOP should be-
come a standard part of a mainstream language and we have
shown how this can be achieved by defining eXtensible Java
(XJ). XJ supports LOP through the introduction of syntax-
classes.

A syntax-class is a standard Java class extended with a
grammar. Once defined, a syntax-class can be used as a
construct within Java programs through the use of the ’@’
language escape character. LOP is also supported within
XJ through standard access to Java abstract syntax and the
use of quasi-quotes. Quasi-quotes originate in the semantic
brackets or Quine-Quotes used in programming language
theory (notably the work of Scott and others on denota-
tional semantics). Recently they have been used for meta-
programming systems [18] and [19]. The latter gives a good
overview of the field.

There are other systems that support LOP within Java.
OpenJava (OJ) [9] supports LOP using a meta object pro-
tocol (MOP) that supports syntax expansion. Each class
may specify a meta-class that is responsible for expanding
its definition. The meta-class uses a standard definition in-
terface to process its instances. This is a very flexible ap-
proach which supports complete access to abstract syntax.
However, OJ does not include a mechanism for extending
the concrete syntax of the language.

Maya [10] uses a pattern matching mechanism to define
macro expansion rules on Java abstract syntax trees. The
macros are defined using a new language concept called a
mayan which defines a grammar production rule in terms
of patterns. Maya allows macros to be overloaded based on
the type of the arguments, thereby allowing the macros to
expand differently. Maya offers similar features to XJ, how-
ever the changes to the language are global and not modu-
larized by being attached to classes. The use of the syntax
escape @-character, means that new syntax constructs are
encapsulated, attached to classes and do not have global ef-
fect on the Java grammar. This is in contrast to Mayans that
are independent of classes and have global scope much like
macros in Lisp and Scheme.

The Java Syntactic Expander (JSE) [11] is a macro sys-
tem that supports the definition of macros in Java and uses a
quasi-quote mechanism to process the abstract syntax. JSE

236

public void ConfigureCallReader(Framework framework) {
framework.registerStrategy(ConfigureServiceCall());
framework.registerStrategy(ConfigureUsage());

}
private ReaderStrategy ConfigureServiceCall() {

ReaderStrategy result = new ReaderStrategy("SVCL",typeof(ServiceCall));
result.addFieldExtractor(4,18,"CustomerName"));
result.addFieldExtractor(19,23,"CustomerID"));
result.addFieldExtractor(24,27,"CalltypeCode"));
result.addFieldExtractor(28,35,"DataOfCallString"));

}
private ReaderStrategy ConfigureUsage() {

ReaderStrategy result = new ReaderStrategy("USGE",typeof(Usage));
result.addFieldExtractor(4,8,"CustomerID"));
result.addFieldExtractor(9,22,"CustomerName"));
result.addFieldExtractor(30,30,"Cycle"));
result.addFieldExtractor(31,36,"ReadDate"));

}

Figure 4. Configuring a Framework for Service Calls

import language java.syntax.Grammar;
public class Reader extends Sugar {

private String name;
private Vector<Mapping> mappings;
private Strategy strategy;
public Reader(String n,Vector<Mapping> m,Strategy s) {

// Initialization from args...
}
@Grammar {

Reader ::= n = Name ’{’ M = Mapping* s = Strategy ’}’ { new Reader(n,M,s) }.
Mapping ::= ’map’ ’(’ t = Name ’,’ n = Name ’)’ ’{’ F = Field* ’}’ { new Mapping(t,n,F) }.
Field ::= s = Int ’-’ e = Int ’:’ n = Name { new Field(s,e,n) }.
Strategy ::= ’do’ N = Name* { new Strategy(@Cmp new MappingRef(n) | n <- N end) }.

}
public AST desugar(Context context) {

return
[| public class <name> {

public void <"Configure" + name>(Framework framework) {
<@Iterate Strategy s in strategies with e = [| |] {

String name = "Configure" + s.getName();
return [| <e>; framework.registerStrategy(<name>()); |]

}>
<$ @Cmp([| private ReaderStrategy <"Configure" + m.getName() {

ReaderStrategy result = new ReaderStrategy(t,typeof(<v>));
<@Iterate Field f in m.getFields() with e = [| |] {

AST start = f.getStartPos().lift();
AST end = f.getEndPos().lift();
AST name = f.getName().lift();
return [| <e>; result.addFieldExtractor(<start>,<end>,<name>) |];
}>

} |]) {
AST t = m.getTag().lift();
AST v = Var(m.getName());
Mapping m <- mappings;

} $>
}

}
|];

}
}

Figure 5. Reader Syntax Class

237

does not support new syntax rules and operate on the con-
crete syntax of the language. As we have seen in XJ it is
sometimes necessary for syntax-classes to have raw access
to AST structures.

Meta-AspectJ (MAJ) [12] is an annotation-based lan-
guage extension mechanism that generates AspectJ. MAJ
does not support concrete language extension.

The Jakarta Tool Suite (JTS) [13] provides a macro facil-
ity and uses a quasi-quote like mechanism for dealing with
abstract syntax. The expansion mechanism provides access
to environments that are similar to the compiler contexts of
XJ. JTS allows the concrete syntax of Java to be extended
via the Bali parser. JTS is aimed at writing GenVoca gener-
ators and as such, although it provides a number of key LOP
features, it is a pre-processor and therefore not as integrated
with Java as the proposal for XJ.

The Fortress language [17] is an example of a new lan-
guage that has included features that support LOP. The sup-
port is fairly simple: delimiters can be specified and the
compiler supplies the raw string between the delimiters to
user code for processing. However, this is an indication that
LOP and DSLs are starting to emerge in languages simed at
the mainstream.

XJ is a proposal for a language extension to Java. In
order for XJ to achieve its potential as a LOP system to
support mainstream DSL development it must become part
of the Java standard. A requirement for any proposal for
mainstream language extension is that it should undergo a
rigorous validation process. Although XJ has not been im-
plemented in Java, it is one of the key features of the XMF
language [15, 14] that has been used in commercial tools
(XMF-Mosaic) and has been made open-source in 2008.
All of the language mechanisms and algorithms necesary
to implement XJ have been validated through the XMF sys-
tem.

References

[1] Language Oriented Programming. Martin Ward. Soft-
ware - Concepts and Tools, Vol.15, No.4, pp 147-161,
1994

[2] Growing a language. G. Steele. OOPSLA ’98 Adden-
dum. ACM Press, New York.

[3] Martin Fowler’s blog on Domain Specific Lan-
guages http://www.martinfowler.com/
articles/languageWorkbench.html

[4] XMF. Available from http://www.ceteva.com.

[5] JEQUEL A Java embedded Query language (SQL
in Java). http://jequel.de/index.php?n=
Main.JEQUEL

[6] Evolving an Embedded Domain Specific Language in
Java. S. Freeman, N. Price. OOPSLA 2006.

[7] Architecture as Language: A Story. Marcus Voel-
ter. http://www.infoq.com/articles/
architecture-as-language-a-story.

[8] Drools. http://www.jboss.org/drools/

[9] OpenJava: A Class-based Macro System for Java. M.
Tatsubori, et al. LNCS 1826, pp.117-133. Reflection
and Software Engineering. Springer-Verlag, 2000.

[10] Maya: Multiple-Dispatch Syntax Extension in Java.
Jason Baker, Wilson C. Hsieh. The 2002 Conference
on Programming Language Design and Implementa-
tion.

[11] The Java Syntactic Extender (JSE). Jonathan
Bachrach, Keith Playford. OOPSLA 2001.

[12] Easy Language Extension with Meta-AspectJ. S.
Huang, Y. Smaragdakis. ICSE 2006.

[13] JTS: tools for implementing domain-specific lan-
guages. Batory, D. Lofaso, B. Smaragdakis, Y. Pro-
ceedings. Fifth International Conference on Software
Reuse, 1998. Publication Date: 2-5 Jun 1998 On
page(s): 143-153.

[14] Applied MetaModelling: A Foundation for Language
Driven Development. Second Edition, 2008. T. Clark,
P. Sammut, J. Willans. E-book available from http:
//www.ceteva.com.

[15] Superlanguages: Developing Languages and Appli-
cations with XMF. First Edition 2008. T. Clark, P.
Sammut, J. Willans. E-book available from http:
//www.ceteva.com.

[16] DSLs. Martin Fower presentation at JA00 2006.
http://www.infoq.com/presentations/
domain-specific-languages.

[17] The Fortress Language Specification. Allen
et al. Version 1.0 2008. Available from
http://research.sun.com/projects/plrg/
Publications/fortress.1.0.pdf

[18] Template Meta-Programming for Haskell. T. Sheard,
S. Peyton-Jones. ACM Sigplan Notices, 37(12) 2002.

[19] Domain Specific Language Implementation via
Compile-Time Meta-Programming Preprint PDF L.
Tratt. To appear, TOPLAS, 2009.

238

