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Abstract

The presence of vulnerable statements in the source code
is a crucial problem for maintainers: properly monitoring
and, if necessary, removing them is highly desirable to en-
sure high security and reliability. To this aim, a number
of static analysis tools have been developed to detect the
presence of instructions that can be subject to vulnerability
attacks, ranging from buffer overflow exploitations to com-
mand injection and cross-site scripting.

Based on the availability of existing tools and of data
extracted from software repositories, this paper reports an
empirical study on the evolution of vulnerable statements
detected in three software systems with different static anal-
ysis tools. Specifically, the study investigates on vulnera-
bility evolution trends and on the decay time exhibited by
different kinds of vulnerabilities.

Keywords: software vulnerabilities, mining software
repositories, empirical study.

1 Introduction

The presence of vulnerable instructions in the source
code is often the cause of security attacks or, in other cases,
of system failures or crashes. Example of vulnerable in-
structions are buffer accesses performed without a proper
boundary checking, or the injection of malicious shell com-
mands and SQL instructions through Web forms. In his PhD
thesis [15] Krsul defined a software vulnerability as “an in-
stance of an error in the specification, development, or con-
figuration of software such that its execution can violate the
security policy”.

Detecting the presence of such instructions is therefore
crucial to ensure high security and reliability: for example,
as claimed by CERT1, statements vulnerable to buffer over-
flows are cause of 50% of software attacks. A number of au-
tomatic tools have been developed for the identification of

1http://www.cert.org/

such a kind of instructions. These tools performs static anal-
ysis of source code in different ways: some tools merely use
pattern matching e.g., with the aim of identifying program-
ming language functions that are known to be vulnerable,
while others perform a more accurate analysis, including
data-flow analysis. An overview of these tools is reported
in Section 3. Although the effectiveness of these tools has
been assessed in the past, up to now the literature lacks of
studies aimed at analyzing how vulnerable statements are
maintained, or whether during the time developers modify
the system to protect it against vulnerability attacks.

Nowadays, the availability of several vulnerability detec-
tion tools, of data from source code and defect repositories
for many open source systems, and techniques to perform
software historical analyses [10], poses the basis for this
kind of study. This paper performs a fine-grained analysis
of the evolution of vulnerabilities statically detected in three
network applications, namely a Web caching proxy (Squid),
a file/printer sharing system (Samba), and a Web application
framework (Horde), the first two developed in Java and the
third one in PHP. The objective of this study is two-fold:

• analyze how the number of vulnerabilities in a sys-
tem varies over the time, and check for the presence of
trends and on vulnerability removal activities occurred
in particular contexts, e.g., in proximity of a new re-
lease;

• focus on vulnerabilities that, after a given time inter-
val, disappear from the system, compare their decay
time for different vulnerability categories and investi-
gate whether such a decay time follows any particular
statistical distribution.

The paper is organized as follows. After a discussion of
related work, Section 3 discusses the main features of static
vulnerability detection tools, and presents a taxonomy of
vulnerabilities that can be detected by the tools we consid-
ered. Section 4 details the vulnerability evolution analysis
process. Section 5 describes the empirical study definition,
the context, and outlines the research questions it aims to
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address. Results are reported and discussed in Section 6,
while threats to validity discussed in Section 7. Finally, Sec-
tion 8 concludes the paper and outlines directions for future
work.

2 Related Work

The literature reports various approaches for identifying
and protecting vulnerabilities. DaCosta et al. [5] proposed
an approach to evaluate the security vulnerability likelihood
of a function based on the assumption that a function near
a source of input may have a high probability to being vul-
nerable. Buffer overflow detection has been addressed in
a number of research works (e.g., [14, 20]). Genetic algo-
rithms and simulated annealing have been used with the pur-
pose of exercising exception handling and determining the
cause-effect relationship between program inputs and vari-
ables used in likely dangerous statements [7, 22]. Program
transformation languages, such as TXL, have been used by
Dahn and Mancoridis [6] and by Wang et al. [23] to secure
C programs against buffer overflows.

SQL-injection exploits weak validation of textual inputs
used to build database queries. Merlo et al. [17] combined
static analysis, dynamic analysis, and code reengineering
to automatically protect applications written in PHP from
SQL-injection attacks. Huang et al. [11] detected Web
application vulnerabilities by using dynamic analysis ap-
proaches, while Scott and Sharp [21] have a proxy-based
approach to prevent cross site scripting attacks.

Mockus et. al. [19] used a fine-grained analysis to pre-
dict defect correction effort and the time-interval for which
such an effort is needed. We share with them the fine-
grained analysis approach, although we focus on vulnera-
bility decay rather than on defect removal effort. Previous
works [12, 16, 25] found that Weibull and exponential dis-
tributions capture defect-occurrence behavior across a wide
range of systems. In our case, we find that such distributions
are suited to model vulnerability decay. Calzolari et al. [2]
used the predator and prey model borrowed from ecological
dynamic system to model maintenance and testing effort.
They found that, when programmers start to correct code
defects, the effort spent to find new defects has an initial in-
crease, followed by a decrease when almost all defects are
removed.

Kim and Ernst [13], proposed an algorithm to prioritize
the fixing of warnings detected by tools such as FindBugs,
Jlint and PMD. We share with them the idea of using histor-
ical information to analyze how warnings—and vulnerabili-
ties in our specific case—are fixed. However, Kim and Ernst
focus on warnings removed by bug-fixing directly affect-
ing source code lines containing the warning itself. They
found (and our data indicates a consistent behavior) that this
represents a very small percentage of warning/vulnerability

removal. In our paper, we extend the analysis to vulner-
abilities that disappear since other source code lines are
changed, e.g., to “protect” the vulnerability.

3 Statically Detecting Code Vulnerabilities

There is number of commercial or freely available tools
able to statically detect source code vulnerabilities, among
others FlawFinder2, Pixy3, RATS4, ITS45, and Splint6. For
our analyses, we selected three freely available tools, Splint,
Rats, and Pixy, in order to increase the range of vulnerabil-
ity categories we can detect and the set of programming lan-
guages we can analyze. In the following we report a short
description of these three tools.

Splint, previously known as LCLint, is an open source
static analysis tool for ANSI C programs. It uses a
lightweight static analysis technique to identify code vul-
nerabilities, including data flow analysis and type check-
ing/inference.

RATS (Rough Auditing Tool for Security) is an open
source tool which is able to analyze source code written in
C, C++, Perl, PHP and Python. The tool performs a rough
source code analysis — mostly based on pattern matching
— and provides a relative assessment of the potential sever-
ity of the detected problems.

Pixy analyzes PHP programs and is particular suitable
for detecting cross site scripting (XSS) and SQL injection
vulnerabilities.

Vulnerability detection tools are often able to detect a
large number of vulnerabilities at a level of detail not nec-
essary for the purpose of the study described in this paper.
Table 1 shows the different vulnerability categories that can
be detected by the three tools adopted for our study. In the
Table we also provide a brief description of each category,
organizing them into four groups: Input validation, Mem-
ory safety, Race/Control flow and Other vulnerabilities. The
classification is largely inspired from what reported on tool
user manuals and on the Krsul’s PhD thesis [15]. A more
detailed description of the vulnerabilities studied in this pa-
per can be found on a technical report [8] containing further
analyses performed for a related study.

4 Data Extraction

This section describes the process we follow to extract
data necessary for the analysis of source code vulnerabil-
ity evolution. The data extraction process consists in a se-
quence of four steps reported below.

2http://www.dwheeler.com/flawfinder
3http://pixybox.seclab.tuwien.ac.at/pixy/
4http://www.securesoft.com/rats.php
5http://www.cigital.com/its4
6http://www.splint.org
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Table 1. Vulnerability categories detected by each tool
VULNERABILITY DESCRIPTION SPLINT RATS PIXY

INPUT VALIDATION: concerns the incorrect validation of input data, which may lead to data corruption and, consequently, to a security vulnerability.
XSS unconditional (XSSU) Cross-site scripting: malicious content not properly stripped. from the output sent back to a user

√
XSS conditional (XSSC) Cross-site scripting with the PHP configuration flag register globals active.

√
SQL injection (SQLI) Execution of unauthorized queries due to incorrectly filtered input.

√
Command Injection (CI) Allows to inject and execute unauthorized commands.

√ √
File System (FS) A weakness of the system which allows a unauthorized file system access.

√
Net Problem (NET) A weakness of the system which allows to exploit functions used to transfer data through a network.

√

MEMORY SAFETY: concerns vulnerabilities dealing with memory access and allocation.
Input Allocation (I) Execution of unauthorized code by using the memory allocated for input data.

√ √
Buffer Overflow (BO) Execution of unauthorized programs by accessing data beyond the boundaries of a fixed-length buffer.

√ √
Type Mismatch (TM) Inconsistent, implicit type conversions, where the actual type differs from the expected one.

√ √
Memory Access(M) Incorrect use of memory management instructions which may cause, e.g., dangling and wild pointers.

√

RACE/CONTROL FLOW CONDITIONS: arise when separate processes or threads of execution depend on some shared state.
Race Check (RC) Race condition caused by changes in a conditional statement, e.g., a security credential.

√ √
Control Flow (CF) Control flow instances where an undetermined order of evaluation produces an undefined behavior.

√

OTHERS: vulnerabilities not specific to any particular exploiting technique.
Random generation (RND) Predictability of random number generators.

√
Dead Code (DC) Code not reached and/or no longer used.

√

Step I: snapshots extraction. Since we are interested
to perform a fine-grained analysis of vulnerability evolu-
tion, we look at changes committed in the Concurrent Ver-
sions Systems (CVS)/SubVersioN (SVN) repository rather
than looking at releases of the software system. In particu-
lar, we rely on an analysis technique [10] that considers the
evolution of a software system as a sequence of Snapshots
(S1, S2,. . .,Sm) generated by a sequence of Change Sets,
representing the logical changes performed by a developer
in terms of added, deleted, and changed source code lines.
Change sets can be extracted from a CVS/SVN history log
using various approaches. We adopt a time-windowing ap-
proach that considers a change set as sequence of file revi-
sions that share the same author, branch, and commit notes,
and such that the difference between the timestamps of two
subsequent commits is less or equal than 200 seconds [27].

Step II: differences identification and line tracing. To
analyze the evolution of vulnerable source code lines over
snapshots, we need to identify whether a change committed
in the CVS/SVN consists in the addition of new lines, in the
removal of existing lines, and/or in the change of existing
lines. To this aim, we use an approach which identifies the
differences between two versions of a source file introduced
in [3]. Such approach identifies the set of changed, added
and deleted source code lines between two subsequent snap-
shots by using ldiff7, an improved diff algorithm. The
tool combines the Levenshtein string edit distance with vec-
tor space models cosine similarity to determine whether a
line has been changed or whether, instead, a change con-
sists in the removal of an old line and in the addition of a
new one. With such an information we are able to trace the
line evolution among subsequent versions of a source code
file with a high (over 90%) precision.

Step III: identification of vulnerable source code
lines. Once we have identified snapshots (Step I) and traced

7http://rcost.unisannio.it/cerulo/tools.html

the evolution of source code lines (Step II), we need to iden-
tify, for each snapshot, the set of source code lines that,
according to the tools described in Section 3, contain vul-
nerabilities. To this aim, we run the vulnerability detection
tools on the set of files that, on each snapshot, have been
changed. The output of this step is, for each snapshot and
for each source code file modified in the snapshot, the list
of vulnerable source code lines along with a vulnerability
description as extracted by the tool, and a vulnerability clas-
sification according to the taxonomy of Section 3.

Step IV: determining vulnerability changes among
snapshots. The last step of this process is to trace a vul-
nerability across snapshots. In particular, by combining the
information extracted at Step II (source code line tracing
across snapshots) with the information extracted at Step III
(vulnerable source code lines for each snapshot), we are
able to determine:

• when (in which snapshot) a vulnerability appears in a
source code line for the first time;

• whether a vulnerability identified on line li of file fj in
snapshot sk+1 is the same vulnerability identified on
line li′ in snapshot sk, where li′ in sk corresponds to li
in sk+1 according to the analysis of Step II;

• when a vulnerability disappears from the system. This
can happen for two reasons. First, a source code line
containing a vulnerability can be removed. Second, al-
though the line has not been removed, the vulnerabil-
ity is not detected anymore, either because of a change
occurred on the line itself, or because of a change oc-
curred somewhere else.

5 Empirical Study Definition

This section defines the empirical study that was carried
out, details its context, and finally formulates the research
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Table 2. Case study history characteristics
SYSTEM SNAPS RELEASES KNLOC FILES

Squid 6215 1.0–3.0 13.2–179.5 21–876
Samba 10531 1.9.16–3.0.0 36.1–344.7 56–889
Horde 6204 1.0.0–3.2rc2 0.482–43.6 5–542

questions it will address. The study is defined according
to the Goal Question Metric Paradigm [1] and described
following the template suggested by Wohlin et al. [24], as
well as the guidelines for case study research provided by
Yin [26]. The goal of this study is to perform a fine-grained
analysis on the evolution of vulnerable source code lines.
The purpose is to determine whether different vulnerabili-
ties exhibit a particular evolution trend over the time, and
how long vulnerabilities tend to remain in the system. The
quality focus is the software system reliability and security,
which can be affected by these statements. The perspective
is of researchers, aimed at understanding whether the num-
ber of vulnerabilities of a given category tends to increase if
compared with the system size evolution, whether vulnera-
bilities tend to be removed in correspondence of particular
events (e.g., new releases), to investigate on the “life-span”
of a vulnerability and on the likelihood a vulnerability has
to be removed in the future.

The context deals with analyzing the evolution of vulner-
able source code lines in three open source systems, namely
Squid, Samba, and Horde. Squid8 is a Web caching proxy,
written in ANSI C, supporting HTTP, HTTPS, and FTP.
Samba9 is a software suite, written in ANSI C, that pro-
vides file and print services and allows for interoperabil-
ity between Linux/Unix servers and Windows-based clients.
Horde10 is a general-purpose Web application framework
written in PHP, providing classes for dealing with prefer-
ences, compression, browser detection, connection track-
ing, MIME handling, and more. Main characteristics of the
three projects, i.e., number of snapshots and range of an-
alyzed releases, and minimum-maximum non-commented
KLOC (KNLOC) and source code files, are reported in Ta-
ble 2. The fraction of unique vulnerabilities detected over
all the analyzed snapshots that after a given time disap-
peared is reported in Table 3.

5.1 Research Questions

The research questions this study aim at answering are
the following:

• RQ1: How does the number of vulnerabilities vary
during the time? In particular, this research question
analyzes the evolution of the vulnerability density de-
fined as number of vulnerabilities per NKLOC.

8http://www.squid-cache.org
9http://www.samba.org

10http://www.horde.org/

Table 3. Number of Disappeared/Detected
vulnerabilities.

Vulnerability Squid Samba Horde
SPLINT

Buffer Overflow 85/106 18/49 –
Control Flow 10/15 9/9 –
Dead Code 35/38 37/48 –
Memory 314/408 850/1075 –
Type Mismatch 315/700 540/1175 –

RATS

Buffer Overflow 805/1638 2026/3305 –
Command Injection 0/1 – 12/12
File System 365/462 408/463 –
Input 25/46 64/287 197/181
Memory 5/9 36/65 –
Network 38/55 9/18 –
Race Check 45/84 132/146 23/25
Random 23/42 72/133 –

PIXY

XSS Conditioned – – 49/49
XSS Unconditioned – – 121/157

• RQ2: How long vulnerabilities tend to remain in the
system before disappearing? Specifically, it inves-
tigates whether vulnerabilities belonging to different
categories had a significantly different decay, i.e., the
time it remained in the system from its introduction
until it disappeared.

• RQ3: How can vulnerability decay be modeled with
a statistical distribution? This research question in-
vestigates whether the decays of different vulnerability
categories follow a specific distribution.

5.2 Analysis Method

For RQ1, we mainly perform a qualitative analysis, by
using plots where the x-axis indicate the snapshot times-
tamp (relative to the first snapshot analyzed) and the y-axis
indicate the vulnerability density, i.e. the ratio between
the number of vulnerability and NKLOC. We also consider
when a new system release was made available. In addition
to the qualitative analysis, we test whether the vulnerability
density time series for different categories are stationary or
not, i.e., whether they exhibit a trend. To this aim, we used
the Augmented Dickey-Fuller (ADF) test [9], which tests
the null hypothesis H01: the time series is not stationary.

For RQ2, to test whether different vulnerability cate-
gories exhibit significant differences in terms of decay time,
we used the Kruskal-Wallis test, which is a non-parametric
test for testing the difference among multiple medians. The
null hypothesis tested is H02: all medians of vulnerabil-
ity decay times are equal. In addition, we used the non-
parametric, two-tailed Mann-Whitney test to perform pair-
wise comparisons among vulnerability categories. Since
we are performing multiple tests on data extracted from
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the same data set, it is appropriate to correct the signifi-
cance level (95% in all the tests) using Bonferroni correc-
tion [18], i.e., dividing the significance by the number of
tests performed (the number of combinations across cate-
gories). Thus, a p-value indicates a significant difference
if it is < 0.05/number of comparisons. Truly, in this
case the application of the Bonferroni correction is a sort of
over-protection against the internal validity threat of fishing
rate, since the overall hypothesis is tested using a multiple-
median test and the pairwise comparison is only performed
for the purpose of comparing categories. Other than com-
puting p-values, it is also important to evaluate the differ-
ence magnitude. To this aim we used the Cohen d effect
size [4] which is defined, for independent samples, as the
difference between the means (M1 and M2), divided by the
pooled standard deviation (σ =

√
(σ2

1 + σ2
2)/2) of both

groups: d = M1−M2
σ . The effect size is considered small

for d ∼ 0.2, medium for d ∼ 0.5 and large for d ∼ 0.8 or
higher.

Regarding RQ3, we attempted to fit distributions of de-
cays for different vulnerability categories to various sta-
tistical distributions, namely normal, exponential, Weibull,
Gamma, and lognormal. In the following we only focus on
exponential and Weibull, since these were the only distribu-
tions that fitted to our data, and that were used in literature
to model defect decay [16]. The probability density func-
tion of the Weibull distribution is defined as:

f(x; k, β) =
k

β

(
x

β

)k−1

e−(x/β)k

(1)

where k > 0 is the shape parameter and β > 0 is the scale
parameter. The exponential distribution is a particular case
of Weibull distribution with k=1. In the exponential dis-
tribution the rate parameter λ is often used instead of the
scale β, where λ = 1/β. To check whether a distribu-
tion could fit our data, we first estimated the distribution pa-
rameters using the method of Maximum Likelihood, which
maximizes the likelihood that the set of data used for the
estimation can be obtained from the statistical distribution
modeled with the estimated parameters. Once estimated the
distribution parameters, we used a non-parametric test, the
Kolmogorov-Smirnov (KS) test to check whether the distri-
bution was able to actually fit the data H0: there is no sig-
nificant difference between the theoretical distribution and
the actual data distribution. Thus, the data set fits the distri-
bution for p-values> 0.05. We used a maximum likelihood
estimator available in the fitdistr function included in the
MASS package of the R statistical environment11 and the
ks.test again available in R.

11http://www.r-project.org

6 Empirical Study Results

This section reports results of the empirical study defined
in Section 5.

6.1 RQ1: How does the number of vulner-
abilities vary during the time?

To answer RQ1 we analyzed the evolution of vulnera-
bility density over time. Due to space limitations, we only
report the most interesting results; a complete set of vul-
nerability density evolution plots is included in a detailed
technical report12. Figure 1 shows, for the three systems
analyzed and for the tools used, the evolution of vulnerabil-
ity density counting, for each snapshot, the whole set (i.e.,
all categories) of vulnerabilities detected. It can be noted
that vulnerabilities detected with different tools exhibit al-
most the same consistent behavior. Vulnerabilities detected
with Rats started with a high density, that tended to de-
crease over the time; vulnerabilities detected with Splint had
a lower density: this can be explained by the thorough anal-
ysis Splint performs (data and control flow analysis) with
respect to the simple pattern matching of Rats. We also no-
ticed, in all systems we analyzed, patterns on vulnerability
density increases followed by sudden decreases. This hap-
pened because, when a new pre-release is made available, it
usually exhibits a high density of vulnerabilities, that tend to
be removed with the subsequent release of security patches
and updates.

Interesting behaviors can be noticed by analyzing vul-
nerability categories separately. Figure 2 shows the density
evolution of vulnerability categories detected in Horde with
Pixy. There is an increasing trend of XSS Unconditioned
vulnerabilities, and a stationary behavior of XSS Condi-
tioned vulnerabilities as confirmed by the ADF test reported
in Table 4. XSS Conditional vulnerabilities, specifically re-
lated to the PHP register globals variable, are partially re-
duced in correspondence of each major release, and com-
pletely removed in the last release candidate 3.2rc2, when
the register globals variable was deprecated.

Figures 3 and 4 show some trends of Buffer Overflows
in Squid and Memory problems in Samba, respectively, re-
stricted to a short time window. Both exhibit — over the
whole time frame analyzed — a stationary behavior as in-
dicated in Table 4. It is interesting to note, in both cases,
a periodic increment of vulnerability, due to system evo-
lution and addition of new code, and a subsequent decre-
ment due to security patches. In Squid, the partial increment
of Buffer Overflows introduced in release 2.3STABLE3 has
been removed with the subsequent security patches released
in 2.4STABLE7 and 2.5STABLE7, bringing the vulnerability
density back to the level before 2.3STABLE3. After a while,

12http://www.rcost.unisannio.it/mdipenta/scam-tr.pdf
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Figure 1. Evolution of vulnerability density
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Figure 2. Horde – Vulnerability density detected with Pixy
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a new increment occurs when new features are added. In
Samba, a similar periodic behavior is exhibited between re-
leases 2.0.9 and 3.0.0. The alpha release 2.2.0a contains a
local maximum of Memory problems which is partially re-
duced by the subsequent (not security-related) patches from
2.2.1 to em 2.2.4, and highly reduced with the security patch
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Figure 4. Samba – Memory problem density
(detected with Splint)

2.2.5. This behavior occurs again with other patches, from
2.2.6 to 2.2.8a, until in 3.0.0 a stable release is produced.

Summarizing, similar periodic trends can be observed in
almost all cases whether the vulnerability density series is
stationary (see Table 4), while in all other cases an increas-
ing or decreasing trend can be observed, similarly to XSS
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Table 4. Results of ADF stationarity test on
vulnerability density time series (p-values in
boldface indicate a stationary time series)

SPLINT

Squid Samba Horde
BO 0.01 0.77 –
CF 0.92 0.01 –
DC 0.24 0.5 –
M 0.02 0.01 –

TM 0.28 0.84 –
RATS

BO 0.01 0.01 –
CI 0.93 – 0.78
FS 0.31 0.1 –
I 0.20 0.03 0.27

M 0.20 0.01 –
NET 0.01 0.01 –
RC 0.01 0.04 0.01

RND 0.28 0.63 –
PIXY

XSSC – – 0.01
XSSU – – 0.56

Unconditioned vulnerabilities detected in Horde (see Fig-
ure 2). The first behavior is consistently motivated by the
intrinsic periodicity of stable and unstable releases, while
the second needs further investigations to explain.

6.2 RQ2: How long vulnerabilities tend
to remain in the system before disap-
pearing?

To answer RQ2 we analyzed, for each vulnerability, its
decay. Figure 5 shows boxplots of decays (expressed in
days) for each vulnerability category detected in the three
systems with the different tools.

The Kruskal-Wallis test indicates a significant differ-
ences among different vulnerabilities detected with Splint.
In particular, for Samba there exist a significant difference
among decays of different vulnerability categories (p-value
< 1.96 · 10−12), and the same happens for Squid (p-value
= 0.00029). For vulnerabilities detected with Rats, the
Kruskal-Wallis indicates a significant difference for Samba
(p-value < 2.2 · 10−16) and Squid (p-value= 7.65 · 10−11),
while not for Horde (p-value = 0.1919). Finally, for vulner-
abilities detected with Pixy on Horde, no significant differ-
ence was found between decays of XSS Conditioned and
XSS Unconditioned (p-value = 0.06923).

To perform a deeper comparison, we compared all pairs
of vulnerability categories using a Mann-Whitney two-
tailed test. Although for the purpose of such a comparison
it is not strictly necessary, we applied the Bonferroni cor-
rection that, considering the number of tests performed on
each data sets, decreases the p-value significance threshold
to 0.005 for Splint vulnerabilities and 0.0024 for Rats vul-

nerabilities.
Results are shown in Table 5 and Table 6 for Rats and

Splint respectively. The significant values (without Bonfer-
roni correction) are shown in boldface; where the value is
significant even after the correction the value is followed by
a star (*) symbol. The tables also reports the Cohen d ef-
fect size (negative values indicate that the row-vulnerability
mean decay is smaller than the column-vulnerability mean
decay).

For Samba-Splint we found that Buffer Overflows dis-
appeared significantly faster than Control Flow, Memory
and Type Mismatch vulnerabilities, suggesting the partic-
ular attention paid by developers to this kind of vulnera-
bility, while others such as Memory and Type Mismatch
can be considered a kind of physiological and not neces-
sarily harmful vulnerability for C programs. Also, Dead
Code disappeared faster than Memory and Type Mismatch
vulnerabilities, indicating the execution of activities such as
refactoring aimed at improving the code quality (confirm-
ing what found in RQ1 related to periodic patches that de-
crease vulnerabilities. For Samba-Rats, it emerges that FS
problems disappeared significantly faster than all other vul-
nerabilities; this can be due to the specific characteristics of
the application (distributed file sharing). Results for Buffer
Overflows obtained with Splint were not confirmed with
Rats, since the latter detects a larger number of Buffer Over-
flow vulnerabilities, many of which not necessarily harmful.

For Squid-Splint vulnerabilities, results obtained for
Samba are partially confirmed, i.e., Buffer Overflows dis-
appeared significantly faster than Control Flow, Dead Code
and Type Mismatch vulnerabilities. For Squid-Rats vulner-
abilities, Buffer Overflows decay significantly faster than
FS, Memory, Net and Random Generation problems. FS
problems disappeared faster than Input, Net, and Race
Check problems. Buffer Overflow represents the kind of
vulnerability developers tend to remove faster, because of
its harmfulness; this is particularly true for a Web proxy
like Squid where it can be a major cause of attacks.

6.3 RQ3: How can vulnerability decay
be modeled with a statistical distribu-
tion?

Finally, we investigated, according to the method de-
scribed in Section 5.2, whether the vulnerability decay can
be modeled using any particular statistical distribution. Ta-
ble 7 reports distribution parameters and KS test p-values
for vulnerability categories where a fitting distribution was
found. As it can be noticed, in most cases the vulnerability
decay fits an exponential distribution, but in two cases —
Control Flow Problems and Dead Code for Samba-Splint
— where data fitted a Weibull distribution. Comparing this
result with existing literature modeling defects decay with
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Figure 5. Boxplot of decays for different vulnerabilities

Table 5. Comparing decay of Rats vulnerabilities: p-value (Cohen d effect size)
SAMBA

FS I M NET RND RC
BO <0.001* (0.60) <0.001* (0.10) 0.08 (0.31) 0.97 (0.21) 0.20 (0.11) 0.71 (0.18)
FS – <0.001* (-0.39) <0.001* (-0.28) <0.001* (-0.51) <0.001* (-0.52) <0.001* (-0.46)
I – – 0.74 (0.15) 0.27 (0.05) 0.67 (-0.01) 0.15 (0.03)

M – – – 0.17 (-0.15) 0.34 (-0.21) 0.23 (-0.15)
NET – – – – 0.88 (-0.09) 0.65 (-0.01)
RND – – – – – 0.80 (0.07)

SQUID

FS I M NET RND RC
BO <0.001* (0.63) 0.14 (-0.37) 0.05 (0.75) <0.001* (-0.50) 0.91(0.03) 0.65 (0.07)
FS – <0.001* (-0.88) 0.14 (0.22) <0.001* (-1.06) 0.13 (-0.66) <0.001* (-0.73)
I – – 0.03 (0.96) 0.59 (-0.10) 0.33 (0.42) 0.31 (0.46)

M – – – 0.01 (-1.14) 0.09 (-0.80) 0.03 (-0.89)
NET – – – – 0.06 (0.56) 0.06 (0.62)
RND – – – – – 0.84 (0.62)

Table 6. Comparing decay of Splint vulnera-
bilities: p-value (Cohen d effect size)

SAMBA

CF DC M TM
BO 0.04 (0.25) 0.83 (-0.31) <0.001* (-0.86) < 0.001* (-0.75)
CF – 0.69 (-0.39) 0.49 (-0.94) 0.49 (-0.84)
DC – – 0.01 (-0.31) 0.03 (-0.15)
M – – – 0.60 (-0.21)

SQUID

CF DC M TM
BO 0.012 (-1.05) 0.04 (-0.77) 0.14(0.00) 0.02 -(0.48)
CF – 0.53(0.11) < 0.001* (0.87) 0.11 (0.28)
DC – – < 0.001* (0.66) 0.35 (0.16)
M – – – < 0.001* (0.43)

statistical distributions [12, 16, 25], it can be noted that vul-
nerabilities — i.e., possible causes of reliability or security
problems — decay following laws similar to defects.

Examples of Cumulative Distribution Functions (CDFs)
are shown in Figure 6, where the actual CDF (thick line)
is compared with the the theoretical CDF (thin line). The
fitting with both exponential and Weibull distribution can
be explained as follows: vulnerabilities have a high like-

Table 7. Results of distribution fitting
SYSTEM TOOL VULN. FITTED PARAM KS TEST

CATEG. DISTR. λ (1/β) k P-VALUE

Squid Splint CF Exp 0.0014 – 0.77
Squid Rats I Exp 0.00093 – 0.23

M Exp 0.0054 – 0.08
NET Exp 0.00083 – 0.21
RC Exp 0.0016 – 0.31

RND Exp 0.0016 – 0.16
Samba Splint BO Exp 0.012 – 0.53

CF Weibull 0.16 0.27 0.65
DC Weibull 0.024 0.35 0.32

Samba Rats M Exp 0.0037 – 0.054
NET Exp 0.0031 – 0.55

Horde Rats CI Exp 0.0032 – 0.54
RC Exp 0.004 – 0.51

lihood to disappear — i.e.., developers remove or protect
them — shortly after vulnerabilities have been introduced
in the system. As time increases, the likelihood a vulnera-
bility has to be removed decreases following an exponential
or Weibull probability density function. This can suggest
that developers do not care about vulnerabilities which re-
main in the system for a long period of time because they
believe that such vulnerabilities are not particularly harm-
ful, i.e., would not cause serious security or reliability prob-
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Figure 6. Examples of theoretical (thin line) and empirical (thick line) CDF

lems. Indeed, further investigation is needed to confirm this
interpretation.

7 Threats to Validity

This section discusses threats to validity that can affect
the results reported in Section 6, following guidelines pro-
vided for case study research [26].

Construct validity threats concern the relationship be-
tween theory and observation; in this context they are
mainly due to errors introduced in measurements. In par-
ticular, our results can be affected by performances of the
adopted static vulnerability detection tools. Although tools
can detect false positives — i.e., vulnerabilities that do not
really cause problems — most of our study (RQ2 and RQ3)
focuses on vulnerabilities that disappear, thus vulnerabili-
ties that actually required preventive or corrective mainte-
nance activities aimed at removing them. Also, there may
be false negatives — i.e., vulnerabilities not detected —
although we limited this problem by performing the anal-
ysis with two different tools (Rats and Splint for C code,
Rats and Pixy for PHP code) working in different ways and
detecting different kinds of vulnerabilities. Also, although
some false negatives can still be present, the number of de-
tected ones is enough to make some considerations about
their evolution. Another measurement problem can be due
to the fact that we considered a vulnerability as removed
either when its source code line was maintained, or when
the line was removed from the system. Especially in the
second case, it is likely that the vulnerable instruction was
removed for purposes different from security improvement
(e.g., system evolution or refactoring). However, in this pa-
per we prefer to make a comprehensive analysis considering
all causes of removal, and leaving further analyses for future
work.

Threats to internal validity did not affect this particular
kind of study, being it an explorative study [26].

Reliability validity threats concern the possibility of

replicating this study. Analysis tools are available for down-
loading, as well as code and bug repositories of the ana-
lyzed systems. The data extraction process is detailed in
Section 4.

Threats to external validity concern the possibility of
generalize our findings. The study was performed on three
different systems representative of different kinds of net-
work applications. Nevertheless, analyses on further sys-
tems are desirable, as well as the use of vulnerability detec-
tion tools different from those we adopted.

8 Conclusions

This paper reported a fine-grained analysis, performed
on three different software systems, of the evolution of
statically detected source code vulnerabilities. We found
that the vulnerability density is often stationary, with in-
creases occurring in correspondence of system pre-releases,
followed by decreases made possible by security patches
or other maintenance tasks aimed at improving the system
quality. Some vulnerability categories (e.g., buffer over-
flows) tend to have, in some cases, a shorten decay time due
to their potential harmfulness. Finally, the decay of several
vulnerability categories can be modeled with exponential or
Weibull distributions, used in the past to model defect de-
cay. These distributions indicate that the likelihood a vul-
nerability has to disappear from the system exponentially
decreases with the time.

Future work aims at performing further investigations
about modeling vulnerability decays with statistical dis-
tributions, at relating the vulnerability decay with the oc-
currence of bugs, and in general at performing a qualita-
tive analysis of vulnerability evolution by using data from
source code repositories and bug tracking systems.
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