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Abstract

Programming embedded system software typically in-
volves more than one programming language. Normally,
a high-level language such as C/C++ is used for applica-
tion oriented tasks and a low-level assembly language for
direct interaction with the underlying hardware. In most
cases those languages are closely interwoven and the as-
sembly is embedded in the C/C++ code. Verification of
such programs requires the integrated analysis of both lan-
guages at the same time. However, common algorithmic
verification tools fail to address this issue. In this work
we present a model-checking based static analysis approach
which seamlessly integrates the analysis of embedded ARM
assembly with C/C++ code analysis. In particular, we show
how to automatically check that the ARM code complies to
its interface descriptions. Given interface compliance, we
then provide an extended analysis framework for checking
general properties of ARM code. We implemented this anal-
ysis in our source code analysis tool Goanna, and applied
to the source code of an L4 micro kernel implementation.

1 Introduction

Embedded system software differs from general appli-
cation software in that it is typically a part of the trusted
computing base, i.e., embedded system software has di-
rect access to the memory and the underlying hardware.
This makes its correctness crucial for the overall correct-
ness of the embedded system. However, embedded sys-
tem software is difficult to analyze as it is often highly
optimized, uses programming constructs that are hard to
analyze (such as pointer arithmetic), and typically imple-
ments the interaction with hardware as embedded assem-
bly code. Guaranteeing full functional correctness requires
proof-based methods such as interactive theorem-proving
which is labor- and time-intensive. However, product cycles
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in the embedded system industry are shrinking and a high
pressure-to-market calls for automated methods. Model
checking and static analysis are two algorithmic verifica-
tion techniques which are used to prove limited correctness
or at least to detect as many bugs as possible automatically.

Algorithmic analysis approaches for C/C++ programs
with embedded assembly code have mainly been pursuing
either of the following two approaches:

1. Whenever checkers encountered embedded assembly
code they have been optimistic in the analysis, i.e., do
not report any warnings around those embedded code
fragments, or they have been conservative by estimat-
ing any potential effect the embedded code can have
and raised many (unnecessary) warnings [10, 14, 17,
18]. Both approaches are not fully satisfactory.

2. Other checkers perform the analysis on the assembly
level for the whole program by analysing the disassem-
bled object code [2, 21] and, if possible, taking debug-
ging information into account. While this allows one
to deal with the embedded code, it creates problems of
re-discovering structures and data types of the original
high-level C/C++ code, which might be impossible in
the presence of optimizing compilers, and results in an
analysis that has to deal with partial information. It
also results in a much larger state space which can sig-
nificantly slow down model-checking.

This work presents a model-checking based static anal-
ysis approach for C/C++ programs with embedded assem-
bly code that is a compromise of the aforementioned solu-
tions. Our analysis is performed at the level of the higher-
level C/C++ code, while fully accounting for the connec-
tion between the two languages. We use the interface de-
scription of the embedded assembly code and map this by
operand aliasing to the higher-level C/C++ code. This en-
ables a seamless integration into the high-level analysis and
remedies many issues mentioned in item 1 of the previous
paragraph. Moreover, we extend the analysis framework to
assembly code and check for compliance of the embedded
code with its defined interface, which allows us to check
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for violations not addressed by the approaches 1 or 2. And,
finally, we introduce the possibility for statically checking
arbitrary properties of the assembly code by mapping the
assembly code to C, rather than mapping the surrounding
code to the lower assembly level.

This work specifically addresses embedded ARM as-
sembly [5], i.e., the ARMv6 instruction set, for the simple
reason that ARM has gained by far the largest market share
in the embedded systems sector. However, the general prin-
ciples are valid for most other architectures.

The remainder of this paper is organized as follows: In
Section 2 we give a presentation of our general analysis ap-
proach and extend this approach to embedded ARM assem-
bly in Section 3. We present qualitative results of our im-
plementation in the tool Goanna in Section 4, followed in
Section 5, by a discussion of related work. Finally, in Sec-
tion 6, we discuss current limitations of our tool, ideas for
future work and our conclusions.

2 Syntactic Software Model Checking

This section describes how to statically check proper-
ties of source code. We follow a model-checking based ap-
proach to solving static analysis problems as first introduced
by Schmidt et al. [23, 22]. A similar approach has also been
taken by [16, 11]. Using a model checker for solving static
analysis problems has a number of advantages. All proper-
ties can be expressed in a single, flexible analysis engine,
making it easy to add new checks by adding new check-
ing properties. In addition, the analysis scales well with
increasing number of properties. The details of our path-
sensitive, intra-procedural analysis can be found in [13].

The basic idea is to annotate the control flow graph
(CFG) of a program by atomic propositions of interest. In
order, to check, e.g., for uninitialised variables, we can iden-
tify atomic propositions declx, readx and writex, repre-
senting program locations where a variable x is declared but
not initialised, read from, or written to, and we mark those
locations in the CFG accordingly. The resulting model can
be viewed as a Kripke structure and we can model check it
for properties of interest.

We specify these properties in Computation Tree Logic
(CTL). CTL uses path quantifiers A and E, and temporal
operators G,F,X, and U. The (state) formula Aφ holds
in a state if φ holds on all paths starting in that state, while
Eφ means that φ holds on some path. The (path) formulae
Gφ,Fφ and X hold for a path, if φ holds globally in all
states, eventually in some state, or in the next state of the
path, respectively. The (path) formula φUψ holds if until a
state occurs along the path that satisfies ψ, property φ holds.

We also use the weak until φWψ. It differs from the until in
that φ until ψ holds, or φ holds globally along the path. The
weak until operator does not require that ψ holds eventually
along the path, as long as φ holds everywhere. The weak un-
til can be expressed in terms of the other operators. In CTL
a path quantifier is always paired with a temporal operator.
For a formal definition of the CTL syntax and semantics we
refer the reader to [8].

Checking for uninitialised variables, for expamle, can be
expressed in CTL as:

AG declx ⇒ (A ¬readx W writex) (1)

This formula prescribes that on all program paths, if a vari-
able x is declared, it must not be read until it has a value
assigned or it is not read at all. The latter means that the
variable is unused, which is checked separately.

In the same style properties on correct pointer handling,
variable usage, or memory allocation and deallocation can
be expressed. Moreover, it allows specifying application
specific properties to handle programming guidelines, API-
specific rules or even hardware/software interface rules for
device drivers. For the sake of simplicity, however, we use
the example of uninitialised variables throughout this paper.

We now describe formally how to map programs to tran-
sition systems labeled with atomic propositions, and how to
derive the labels themselves from a program. To con-
struct a model from the program, requires a formal notion
of an abstract syntax tree (AST) and a labeled graph (the
annotated CFG). We define a labeled graph/tree and an at-
tributed tree as follows:

Definition. A labeled graph (L,E, μL) over the alphabet
ΣL is a finite and directed graph, where L is a set of nodes,
E ⊆ L × L is an edge relation between the nodes, and
μL : L→ ΣL is a node labeling function.

A labeled tree is a labeled graph T = (L,E, μL) if it has
a single root node root(T ) for which we have the following:
For each node l ∈ L there exists exactly one path from
the root to the node, i.e. exactly one sequence l0, . . . , ln,
such that l0 = root(T ), ln = l, and (li−1, li) ∈ E, for
i = 1, . . . , n.

An attributed tree (L,E, μL, μA) over the alphabets ΣL

and ΣA is a labeled tree where there is an additional labeling
function μA : L→ ΣA, assigning attributes to nodes.

Given two nodes l1 and l2 of a labeled tree (L,E, μL),
we call l1 the parent of l2 and l2 the child of l1 if (l1, l2) ∈
E. If there exists a (non-empty) path from l1 to l2, l1 is
called ancestor of l2, and l2 is a descendant of l1. �

An AST can be seen as an attributed tree where the nodes
are labeled with program statements and (sub)expressions
while the attributes describe the role of a node’s branch.
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1 int fibonacci(int n)
2 {
3 int x = 0, y = 1, q, i = 0;
4 do
5 {
6 int oldy = y;
7 y = x;
8 q = x + oldy;
9 x = q;
10 i++;
11 }
12 while(i < n);
13 return q;
14 }

(a)

Exp:y

Decl:x

Decl:y

Decl:q

Decl:i

Do

decl_q

Decl:oldy

Exp:q write_q

Exp:x

Exp:i

Cond

read_q

Return read_q (b)

Figure 1. (a) the original C program, and (b) a fragment of the annotated control flow graph (CFG).

From the AST we can construct in a straightforward manner
the control flow graph (CFG). Note, that a CFG does not
contain all the information available in the AST, only the
control structure down to the level of statements, but not the
structure of expressions, types, and constant values. Later
we add labels making it a labeled graph. We denote the
labeled CFG of an AST T by CFGT . The labels show in
which node certain atomic propositions hold, for example,
if a particular variable is assigned a value, if it is used on the
right-hand side of an assignment, or if it is dereferenced.

In our framework, these labels are associated with tree
patterns on the AST. We define the syntax of a query lan-
guage to match tree patterns as follows:

P ::= ε | ∅ | σA | σL | ↓ | ↓∗ | P/P | P ∪ P | P [Q]
Q ::= P | label = σL | attr = σA | Q ∧Q | Q ∨Q

where σL ∈ ΣL and σA ∈ ΣA.

Given an (attributed) tree T and a node l, a pattern de-
fines a set of nodes in the subtree rooted in l. The pattern ε
defines the node l itself, ∅ the empty set, and pattern σA and
σL children labeled σA or σL respectively. The patterns ↓
and ↓∗ stand for the children and descendants of l, / and ∪
for concatenation and union. Finally, pattern P [Q] filters all
nodes satisfying Q.

This tree query language is the downward, recursive
fragment of the language defined in [4]. We refer the reader
to this paper for formal semantics and a discussion on ex-
pressiveness. The only difference is that we allow for two
types of labels, which however, does not add expressivity.

Given an atomic proposition p, we associate a tree pat-
tern P with it. We label every node l that matches P , in the
AST T with respect to the root node of T , with p. In the
case that l is not in CFGT , we label its closest ancestor in
T which is in CFGT .

Example. Assume an atomic proposition declx used to la-
bel declarations of variable x that omit initialisation. This
proposition is associated with pattern ↓∗ (Decl[Var:x ∧
Nil[attr = init]], i.e. it matches all nodes (descendants of
the root node) in the AST labeledDecl, that have a child la-
beled Var:x, and a child labelled Nil with attribute init. The
latter filters declarations that do not include initialisation. �

Once the patterns relevant for matching atomic proposi-
tions have been defined and the CFG has been annotated,
it is straightforward to translate the annotated graph auto-
matically into a Kripke structure which can be analyzed by
a model checker. Adding new checks only requires to de-
fine the property to be checked and the patterns representing
atomic propositions. All other steps are fully automatic.

Example. Consider the contrived program of Figure 1.a. In
the case of uninitialised variable analysis, our approach in-
troduces at most three atomic propositions for each variable.
The declaration of variable q in line 3 of the code fragment
omit the optional declaration. The corresponding node in
the CFG will therefore be labelled declq (Figure 1.b). Sim-
ilarly, nodes that correspond to a use and an assignment
of variable q are labelled readq and writeq , respectively.
These labels are identified as patterns on the AST as de-
scribed in Example 2 for label declq . Each of these labels
will be an atomic proposition in the model checking frame-
work. Model checking of property (1) shows that variable
q is correctly initialised before use. �

3 Analysing Embedded Assembly

In this section we describe how assembly is embedded
in C/C++ code, why it breaks the standard analysis, how
we can use readily available interface information to res-
cue most of our checks, and how we can extend our model-
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1 int fibonacci asm(int n)
2 {
3 register int x = 0, y = 1, q, i = 0;
4 do {
5 asm(" mov r1, %[reg y] \n"
6 " mov %[reg y], %[reg x] \n"
7 " add %[reg r], %[reg x], r1 \n"
8 " mov %[reg x], %[reg q] \n"
9 " add %[reg i], %[reg i], #1 \n"
10 : [reg x] "+r" (x), [reg y] "+r" (y),
11 [reg q] "=r" (q), [reg i] "+r" (i) /* out reg */
12 : "[reg x]" (x), "[reg y]" (y), "[reg i]" (i) /* in reg */
13 : "r4" /* clobber reg */ );
14 } while(i < n);
15 return q;
16 }

Figure 2. Example including assembly

checking based framework to check compliance of embed-
ded code with its interface definition, which, in addition al-
lows us to check arbitrary, often architecture specific, prop-
erties of the embedded assembly.

For the remainder of the paper we will use the ARM
architecture as our driving example. ARM is a particu-
lar RISC architecture most common for embedded systems.
Typically, ARM has 16 32-bit processor registers, of which
three are special: register 13 is typically the stack pointer,
register 14 holds the return address from the current func-
tion, and register 15 is the program counter. We imple-
mented the checks we discuss below for the ARMv6 in-
struction set. However, the general principles of the ap-
proach are applicable to most inline assembly programs
supported by modern compilers.

3.1 Motivation for Extending the Analysis
Framework

Consider the example code presented in Figure 2. It is
essentially the same program as the one in Figure 1, the
core of the loop has been replaced by an assembly block.
Although this example is contrived, in embedded real-time
systems where every clock cycle counts, code that is exe-
cuted frequently may be replaced by more efficient assem-
bly code in a similar fashion. Anything in the asm() block
is typically not visible by a C/C++ parser and is ignored in
standard C/C++ static analysis.

What remains visible is that a variable q is declared in
the function and its value is returned at the end. However,
on the C/C++ level it appears that q has never been initial-
ized. Typically, a warning will be raised such as the follow-
ing by the GNU C compiler:

% arm-linux-gcc -Wall -g -c fibonacci.c

In function ‘fibonacci_asm’:
fibonacci.c:3: warning: ‘q’ might be used

uninitialized in this function

As we will see later, q is in fact initialized before being
returned, however, this is done within the asm() block.
Therefore, the warning is a false alarm. Note, the assembly
block also contains a subtle bug involving register r4, lead-
ing to register corruption. We will explain this in detail later
in this section.

3.2 Embedded Assembly Interfaces

As shown in the example in Figure 2 assembly is em-
bedded through compiler extensions into the source code.
These compiler extensions define interfaces between the
variables of the high-level source code and the embedded
assembly. In particular, they define mappings between vari-
ables in the C/C++ source code and the registers or memory
locations used in the assembly. To define interfaces we in-
troduce the following notations: We denote the set of possi-
ble variable names in C/C++ by V ars and the set of hard-
ware registers names in ARM by Regs. Moreover, for a
function f we write V arsf for the set of variable names
occurring in f and V arsreg for the set of variable names
occurring in an embedded assembly block. Note, that every
variable name r ∈ V arsreg is implicitly mapped to a pro-
cessor register by the compiler. In assembly terminology
the set of Regs ∪ V arsreg are called operands. We denote
this set by Ops.

Definition. An assembly interface is defined by

(Output, Input, Clobber)

where

• Output : Ops→ V arsf is a partial function mapping
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registers and register variable names in the assembly
to variable names in C/C++ code, and

• Input : V ars → Ops is a partial function mapping
variable names in C/C++ to register names and register
variable names,

• Clobber ⊆ Reg is a subset of hardware register
names. �

The input function passes a variable name to some as-
sembly register or register variable, like a parameter in a
call-by-name function call. The output function, on the
other hand, is used to pass a register name or register vari-
able from the assembly code back to a C/C++ variable
name. The clobber function defines the additional registers
that are used inside the assembly block. This tells the com-
piler that any values in these registers may be changed by
the assembly code, and are not conserved across the block.
In addition, it tells the compiler that it may use registers that
do not appear in the clobber list for other purposes. In par-
ticular it may map register variables to any of those regis-
ters. This means, if a register name is part of the output, but
not clobbered, it can be internally overwritten at any time.

For the GNU C compiler those interfaces have the fol-
lowing syntactic format:

asm(<code>
: <output operands>
: <input operands>
: <clobber list>);

In the example in Figure 2 the variables x, y, q, and i are
the output of the corresponding register variables reg x,
reg y, reg q, and reg i. The r-flag specifies that a vari-
ables maps to a register and additionally indicates whether
a variable is write only (“=”) or read and write (“+”). More-
over, x, y, and i are also input variables, which are mapped
to the correspondingly named register variables. The regis-
ter r4 is part of the clobber list and is not guaranteed to be
preserved by the assembly block. The compiler can use all
other registers for other purposes. The code itself consists
of a number of copy instructions and additions and intends
to mimic the original C/C++ program from Figure 1.

Next, we define how inline assembly code is checked in
two complementary ways: by introducing operand aliasing
and checking for interface compliance. Operand aliasing
makes the links between C/C++ variables and the interface
explicit in the C/C++ code. Subsequent analysis then takes
automatically into account that all inputs to the interface are
initialized properly, and assumes that all outputs are written.
Note, that operand aliasing relies upon an accurate interface
and does not check whether the output operands are actually
initialised in the assembler block—this is done by the inter-
face compliance check.

Interface compliance complements operand aliasing. It
checks that the assembly code conforms to its interface by
examining the assembly instructions themselves. It checks
that the input operands are actually used by an assembly
instruction, that the output operands are assigned a value
by an assembly instruction and that the assembly code only
changes the registers in the clobber list.

3.3 Operand Aliasing

The idea of operand aliasing is to create stub C code1

which mimics the interface. For each operand (input or
output) we introduce a local declaration of a fresh auxil-
iary variable to the C/C++ code. Each fresh variable repre-
sents an operand in the interface. For each input operand
we initialize the auxiliary variable with the value of the
corresponding C-variable as defined through Input and for
each output operand according to Output we introduce an
assignment mapping it to the corresponding auxiliary vari-
able. This will enable us to check if all inputs are initialized
properly and carry over the information that all outputs have
at least been modified once.

We denote the set of fresh variables by V arsfresh and
define a mapping between the variables in the program
to the fresh ones by aux : V arsf → V arsfresh. Let
V arsout = {v | ∃r. v = Output(r)} and V arsin =
{v | ∃r. r = Input(v)} denote the sets of output and in-
put variables for a given interface. Moreover, let decl(x) be
a function generating a C declaration for a variable x and
assign(x, y) be a function generating a C assignment of
the form x = y. We create the stub code adhering to the
following rules:

• for all v ∈ V arsin ∪ V arout we create decl(aux(v)),

• for all v ∈ V arsin we create assign(aux(v), v), and

• for all v ∈ V arsout we create assign(v, aux(v)).

Example. For the example in Figure 2 operand aliasing in-
serts the following stub code before the ASM block:

int asm_operand_0;
int asm_operand_1;
int asm_operand_2;
int asm_operand_3;

asm_operand_0 = x;
asm_operand_1 = y;
asm_operand_2 = i;

and the following after:

1Stub code is used to simplify the presentation. To keep our analysis
non-intrusive and only modify the AST, not the source code itself.
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ASM

Decl:x

Decl:y

Decl:r

Decl:i

Do

decl_q

Cond

Return read_q (a)

ASM

Cond

Return read_q

Exp:x

Exp:y

Exp:i

Exp:q write_q

Decl:asm_op_0

Dec:asm_op_1

Decl:asm_op_2

Decl:asm_op_3

Decl:x

Decl:y

Decl:r

Decl:i

Do

decl_q

Exp:asm_op_1

Exp:asm_op_0

Exp:asm_op_2

(b)

Figure 3. (a) CFG before operand aliasing (b) CFG after operand aliasing

x = asm_operand_0;
y = asm_operand_1;
i = asm_operand_2;
q = asm_operand_3;

The generated stub code ensures that q, as an output
operand, is identified as initialized before its value is re-
turned (Figure 3.b). �

3.4 Interface Compliance

While operand aliasing lifts some of the interface behav-
ior to the C/C++ level, it relies on the assumption that the
interface is accurately defined and the assembly code ad-
heres to the input, output, and clobber specifications. The
compiler sees only the connections between variable names
and register names, but it does not check whether the as-
sembly code complies to the interface. By compliance we
mean:

• all registers mapped to input variables are read

• all input variables that are not output variables are not
written

• all output variables are written

• no non-clobber register is written to

We check interface compliance using the framework de-
fined in Section 2 by generating a CFG for the embedded
assembly code, and identifying syntactically for every reg-
ister name and register variable r if it writes to or reads
from r. Assume, readr or writer are the two propositions

stating that register r is read or written, respectively. In ad-
dition, we introduce a label asmend to mark the end of the
assembly block.

For ARM assembly the read and writes are determined
in a straightforward manner using the semantics of the in-
structions. For example, the MOV, MVN, TEQ, TST, CMP,
and CLZ instructions all overwrite the first operand and use
the second. Other instructions, such as MLA overwrite the
first operand while using the second, third and fourth. For
a register r all nodes are labelled readr that match the
query ↓∗ (MOV∪· · ·∪CLZ)[Reg:r[attr = ”2nd op”]]

⋃ ↓∗
MLA[Reg:r[attr = ”2nd op” ∨ attr = ”3rd op” ∨ attr =
”4th op”]]. Writes to this register are matched by query
↓∗ (MOV ∪ . . . ∪ MLA)[Reg:r[attr = ”1st op”]]. Building
and annotating the CFG is obviously platform specific.

Given an annotated CFG for the assembly block we de-
fine interface compliance as follows.

Definition. We say an interface is compliant if its embedded
assembly block satisfies the following checks:

Input I: for all v∈V arsin, r = Input(v) check:

A ¬asmendW readr

Input II: for all v ∈ V arsin\V arout, r = Input(v)
check:

AG ¬writer

Output I: for all v ∈ V arsout\V arin, r = Output(v)
check:

A ¬readrW writer

Output II: for all v∈V arsout, r = Output(v) check:

A ¬asmendW writer
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1 int f(int x)
2 {
3 int i, y;
4
5 asm(" mov %[reg i], #1 \n"
6 " cmp %[reg i], %[reg x] \n"
7 " bge .end \n"
8 ".loop: add %[reg i], %[reg i], #1 \n"
9 " mul %[reg y], %[reg x], %[reg y] \n"
10 " add %[reg i], %[reg i], #1 \n"
11 " cmp %[reg i], %[reg x] \n"
12 " blt .loop \n"
13 ".end: \n" :
14 [reg y] "+r" (y),
15 [reg i] "+r" (i):
16 [reg x] "r" (x)
17 ); return y;
18 }

Figure 4. A C program implementing a loop.

Clobber: for all r∈Regs\Clobber check:

AG ¬writer

The properties for the output operands are similar to
the property of the uninitialized use of a variable of C-
variables. They differ, since operand aliasing ensures that
all v ∈ V arsout have been declared before the assembly
block, and will be used right after. The property ensures
that output registers have been written, before the end of
the assembler block.

While operand aliasing can be done for most assembly
dialects easily, interface compliance requires the parsing of
a specific assembly dialect, the analysis of its AST and the
construction of the CFG. As such, interface compliance re-
quires a separate parser for every assembly dialect.

Example. Operand aliasing deals successfully with the false
alarm that variable q was used uninitialised in the example
(Figure 2). Operand aliasing relies on the assumption that
the assembly code assigns a value to output register reg q.
Interface checking shows that this is indeed the case.

Register r1 is not on the clobber list, although it is used;
the clobber list protects register r4 instead. The clobber
property is violated, as r1 has been written to. This is a po-
tential bug since the compiler could map, for example, reg-
ister variable reg y to register r1, whose value would then
be destroyed by the first instruction in the asm() block. �

3.5 High-level Language Mapping

General checks of the assembly code can be performed
using the same methodology we use on C/C++ code and
interface compliance. To achieve this goal we map the as-
sembly code to C/C++ code. This mapping is strictly speak-

ing not to C/C++, but to an equivalent representation in the
annotated CFG.

In a first step every construct on assembly level is di-
rectly translated into a corresponding C/C++ construct.
However, it is possible to recognize that certain combina-
tions of low level language constructs actually implement
a more complex high level language construct. Control-
flow statements like if-then-else or loop statements have
no simple equivalent in assembly code, multiple low level
language instructions are required to implement these con-
structs. In a second step of the mapping from assembly
code to C/C++ these are recognized and collated into a sin-
gle equivalent C/C++ construct. By transforming the low
level code to the high level and thereby detecting the loop
structure, the subsequent static analysis can include, for ex-
ample, loop-related checks.

The mapping to a high level language differers in one im-
portant aspect from straightforward decompiling to C/C++,
in that it also deals with special assembly instructions that
have no equivalent in C/C++. Examples are instructions
that read or modify the stack pointer, or modify the program
counter. Since we are not mapping to actual C/C++ but only
to a representation of it in the annotated CFG, we can map
these instruction to statements that express enough about
their effects to make them meaningful for further analysis.

All queries that have been developed for C/C++ now ap-
ply also to the annotated CFG that was generated from the
assembly code. These include general checks for unused or
dead variables, unreachable code, superfluous assignments,
or problematic operations on loop-counter. Moreover, we
can introduce architecture specific checks. For instance, we
can check for locations where pipeline stalls may occur in
ARM code. Such stalls negatively affect performance and
may be caused by branch instructions.
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1 int f(int x)
2 {
3 int i, y;
4
5 i = 1;
6 if(i >= x ) goto end;
7 loop:
8 i++;
9 y = x * y;
10 i++;
11 if(i < x ) goto loop;
12 end:
13 return y;
14 }

1 int f(int x)
2 {
3 int i, y;
4
5 for(i = 1; i < x; i++) {
6 i = i + 1;
7 y *= x;
8 }
9
10 return y;
11 }

(a) (b)

Figure 5. The program after (a) the first step, and (b) after the second step of mapping it to C

On some architectures, such as MIPS, it can actually be
an error to put certain instructions consecutively, since the
processor does not contain logic to resolve pipeline errors.
Additionally, on the Intel architecture we could check that a
disable interrupts instruction is followed by a corresponding
enable interrupts instruction.

Example. Figure 4 shows an example of embedded assem-
bly code, and Figure 5 the two steps of mapping it to C.
The assembly block uses a few instruction and conditional
jumps to implement a for-loop on loop-counter i. After the
second step of the mapping to C we can apply all checks
that have been developed for this language. In certain ap-
plications, for example, one might envision a defensive cod-
ing rule that the loop-counter should not be modified in the
loop. By mapping the assembly to C, we can apply this
check also to the block of assembly code, and discover that
this rule has been violated. �

4 Implementation and Experiments

4.1 Implementation

The model-checking based analysis framework pre-
sented in this paper has been implemented in our analy-
sis tool called Goanna. We use the symbolic CTL model
checker NuSMV [8] as the analysis engine. Goanna is im-
plemented in OCaml and can be used in standard develop-
ment environments such as Eclipse.

To integrate assembly into our framework, we internally
create new nodes in the AST according to the definitions in
Section 3.3 on operand aliasing. For interface checking and
general assembly checking we introduce a new ARM entry
node in the C/C++ AST and insert the assembly AST there,
creating one data structure for analysis.

We currently support almost all of the ARMv6 assembly

instruction set. To support different assembly architectures,
Goanna requires different parser front-ends, as well as ad-
justments to the pattern matching queries for the assembly
specific checks. While this can entail some non-negligible
effort, it would not require us to change our analysis frame-
work as such.

4.2 Experiments

First, we summarize prior evaluation results of Goanna
for C/C++ programs, then we present new results for anal-
ysis which includes embedded assembly.

An evaluation of our approach to program analysis in
general is given in [13], where we analyze OpenSSL, a
260 kLoC2 software package with an unoptimized proto-
type of Goanna. For the benefit of the reader, we briefly
summarize the results: We found that (a) the analysis time
is well within the same order of magnitude as the compile
time and that the vast majority of source files of OpenSSL
are analyzed in under two seconds, (b) the memory require-
ments of the analysis fit well in the RAM of current de-
veloper machines, and (c) it scales well with an increasing
number of properties.

To demonstrate the difference between taking interface
information in Goanna into account or not, we first have
a look at the example code given in Figure 2. An anal-
ysis with assembly checking disabled prints—as expected
and similar to other static analyzers—the following warn-
ing, which is of course a false positive:

% goanna -Wall -g -c fibonacci_asm.c
fibonacci_asm.c:3: Warning: Variable ‘q’ might

be uninitialized

The example also nicely shows that we can invoke

2LoC = Lines of Code
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Goanna exactly like a compiler. Enabling operand alias-
ing correctly detects that the variable q is in fact initialized
and no longer reports a warning.

In order to test our additions to Goanna for assembly
checking in a more realistic scenario, we chose the L4
microkernel as workload. L4 is a small microkernel that
is well suited for—and used in—embedded systems. It
is mostly written in C++ (with critical parts in assembly)
and has been ported to a number of different architectures,
including ARM. More specifically, we analyze the Pista-
chio 0.4 implementation3 of L4 when compiling for an
ARM SA1100 architecture. In this setup, Goanna analyzes
54 C++ files, two of which have embedded assembly blocks
(3.7%). These C++ files use the #include directive to in-
clude a total of 72 header files, of which 10 have embedded
assembly blocks (13.8%).

We first build Pistachio and let Goanna analyze the code
with assembly checks disabled, then we build it again with
Goanna’s operand aliasing enabled and compare the two
cases. When enabling operand aliasing, the time to build
and analyse Pistachio raises from 75.9 seconds to 77.3 sec-
onds, which is a very small increase of only 1.4 seconds or
1.8%. While not fully implemented yet, interface checking
also creates only a minimal overhead.

Comparing the results for Goanna on Pistachio, once
without assembly checks, and once with assembly checks,
reveals a number false positives that are ruled out by the
assembly checks. An example are variables that have been
assigned a value, but never used afterwards, i.e. the variable
is not read anymore after an assignment4. Goanna issues a
total of 7 warnings of this property when analysing Pista-
chio, of which 3 are correct warnings and 4 are false posi-
tives due to variables that are only used in assembly blocks
after their last assignment. Operand aliasing removes all 4
false positives without creating any additional alarms.

While this is only an indicator of the newly added tech-
niques it demonstrates the value of the solution.

5 Related Work

Model checking has made great advances in the recent
years to cover realistic C/C++ programs and led a number
of powerful tools [15, 3, 9, 7]. However, they are not yet
well-suited for embedded system code containing hardware
references and in particular embedded assembly. As shown
in [20], these tools either ignore embedded assembly and
continue the analysis or abort the analysis all together. The

3http://l4hq.org/
4Note that this is not strictly a bug in the program, but assigning a value

to a variable that is never used indicates a problem in the program’s logic,
which might well indicate a real bug somewhere else in the program.

same holds for the most prominent static analysis tools [10,
14, 17, 18] working on C/C++ level.

The picture is different for tools working directly on the
assembly level though. Balakrishnan, Reps et al. [2] devel-
oped a framework to analyse x86 assembly in the absence
of source code and debugging information. The authors cre-
ate an intermediate presentation of the disassembled object
code and use weighted push down systems [19] to model
program behavior. The analysis is done using model check-
ing techniques. The advantages of this approach are that
embedded assembly can be analysed the same way as the
rest of the code, hardware dependencies are taken into ac-
count, and compiler specifics are naturally taken care of. On
the downside, some structural information available on the
C/C++ level is lost, as are type and boundary information,
which complicates the analysis [1].

A similar approach relying on less stringent assumptions
has been developed by [21]. The authors use disassembled
ELF files for hardware-depended program analysis. In con-
trast to [2] the authors assume the availability of the C pro-
gram. The analysis framework is based on on-the-fly model
checking and can analyse deep semantic properties. This,
however, results in very large state spaces and creates the
challenge of finding suitable sound abstractions automati-
cally.

At the current stage both approaches above address pro-
gram analysis on a finer semantic level than we do, but both
approaches also have to deal with partial information no
longer available at the pure assembly level. It remains to
be seen which approach is more practical or more suitable
for certain systems. A discussion on the depth of an analysis
framework can be found in [12].

Other work on static program analysis problems for as-
sembly code include the following: In [24] the authors fol-
low the disassembling approach and apply abstract interpre-
tation to check for coding conventions such as the absence
of hard coded pointers for a specific hardware platform. Yu
and Shao developed a type system for the static analysis
of concurrent assembly programs applying Hoare style in-
ference for verification [25] and Brylow et al. [6] check
for stack sizes and interrupt latencies of Z86 platforms by
model checking push-down systems. Those approaches are
all on a pure assembly level and as such are less suited for
the program analysis of C/C++ source code.

6 Future Work and Conclusions

Summary. In this work we presented an approach to ex-
tend static program analysis of C/C++ programs to sup-
port embedded ARM assembly code. On the one hand we
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took readily available interface information into account,
enhancing the precision of the analysis, and on the other
hand we demonstrated how to check for the compliance of
the embedded code with its interfaces. The overall approach
is based on model checking and can be applied to stand-
alone high-level C/C++ code as well as low-level assem-
bly code. The checks have been integrated into our Goanna
program analyzer and we presented examples of checking
real-life microkernel code.

Current limitations and future work. While at the current
prototype stage the Goanna tool is already fast enough for
practical use, it still lacks some advanced analysis features.
In particular, we are currently not performing any value
tracking of variables. This will be important on the C/C++
level for having improved array bounds checking, pointer
value approximation, and infeasible path pruning, and on
the assembly level for tracking register values. Moreover,
while in principle our approach extends to classic inter-
procedural analysis, we still have to develop heuristics to
deal with the combinatorial blow up in order to keep the
analysis to a similar speed as it is for intra-procedural anal-
ysis. We are in the process of creating a two-pass analysis
by making use of summaries which can be generated from
the intra-procedural stage.
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