
Change Impact Graphs: Determining the Impact of Prior Code Changes

Daniel M German
University of Victoria

dmg@uvic.ca

Gregorio Robles
Universidad Rey Juan Carlos

gregorio.robles@urjc.es

Ahmed E. Hassan
Queen’s University

ahmed@cs.queensu.ca

Abstract

The source code of a software system is in constant
change. The impact of these changes spreads out across
the software system and may lead to the sudden manifesta-
tion of failures in unchanged parts. To help developers fix
such failures, we propose a method that, in a pre-processing
stage, analyzes prior code changes to determine what func-
tions have been modified. Next, given a particular period
of time in the past, the functions changed during this period
are propagated throughout the rest of the system using the
dependence graph of the system. This information is visual-
ized using Change Impact Graphs (CIGs). Through a case
study based on the Apache Web Server, we demonstrate the
benefit of using CIGs to investigate several real defects.

1. Introduction

All too often when maintaining a large software system,
a bug report is submitted regarding changes in the behav-
ior of an unchanged functionality. Investigating this type of
bug reports is difficult and tedious, since the fix is frequently
in a different location than the location where the failure
manifests itself, i.e., the reported location in the bug report.
The failing behavior is usually due to the ripple effect of
another change in a different part of the system that prop-
agates along various dependencies, such as call and data
dependencies, and affects the unchanged code.

The maintainer in charge of fixing such failures starts
her investigation with the location where the failure man-
ifests itself. She then examines the dependency graph of
the reported failing function in an ad-hoc manner using her
knowledge and her experience about the software system
trying to pin down the actual location of the bug causing the
failure. A maintainer could use slicing techniques [22, 21]
to determine all the code locations which may affect the
reported location of a failure and are likely the source of
the bug causing the failure. However, slicing techniques
are known to report large slices [4, 3]. A single slice may
contain as much as as 30% of the source code of an ap-

plication. Maintainers would spend considerable time in-
vestigating such large slices for complex real-life software
systems. Approaches, such as dynamic slicing [1, 24], have
been proposed in literature to reduce the size of slices and
make them more accurate for large software systems. How-
ever most techniques require additional effort (e.g., execu-
tion of tests for dynamic slicing) and expensive analyses.

In this paper, we propose a method which determines the
impact of historical code changes on a particular code seg-
ment (e.g., a function). Given the reported location of a fail-
ure, a maintainer is particularly interested in being aware of
recent code changes which could have impacted the func-
tionality of the failing function—specially if that function
was not changed recently. Our method determines all the
part of the software system which affect the reported loca-
tion of a failure. The method then annotates these parts by
marking recent code changes and propagating the impact of
these recent changes. It then creates a change impact graph
to determine what areas might have been affected by certain
changes to help maintainers rapidly pinpoint the source of a
bug given the reported location of a failure. The maintainer
needs to only examine the marked up functions instead of
going through all the functions which would be produced
by a slicing technique.

We demonstrate the feasibility and possibilities of our
method with a case study using the call-graph informa-
tion. Our case study uses several real bug reports from the
Apache Web Server and demonstrates the benefit of using
our method to investigate the reported failures and fix the
corresponding bugs.

Organization of the Paper

The remainder of the paper is organized as follows: the
next section introduces the model used to track the impact
of historical code changes. Section 3 presents the method-
ology used to analyze historical code changes and recover
their impact on source code entities (i.e., functions). Sec-
tion 4 presents a case study of using our method to fix three
real bugs from the Apache Web Server using our proposed
method. Section 6 discusses the effectiveness, limitations,

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.33

184

and possible improvements for our method. Section 7 con-
cludes the paper.

2. A model to track the impact of historical
code changes

Historical changes to a function can be modeled as a
sequence where each element corresponds to the source
code of the function after each particular change. Formally,
for a function f we define its change history sequence as
Hf = 〈f0, ..., fm〉, where fi is the i-th instance of the func-
tion. Each element, i.e., instance of a function, can be an-
notated with metadata about the change such as the date of
the change, the name of the developer who performed the
change, and the purpose of the change.

The dependence graph of a function f , G(f), is mod-
eled as a directed graph. Its nodes are the functions that are
reachable from f and its edges are the direct calls between
any of these functions. If a function g is called from func-
tion f , the dependence graph of f contains the dependence
graph of g. The dependence graph can be considered a sim-
plified interprocedural dependence graph that only tracks
function invocation and does not track in or out parame-
ters nor variables [21]. The dependence graph of f includes
any function that could be called by f , including construc-
tors, destructors, and library functions. When a developer
peruses the source code of a function f , she is not usually
aware of all the contents (or the size) of this dependence
graph. She is only aware of the edges that start in f (the
function calls inside f).

The dependence graph of a function f can be created at
any time t (during the life of such a function). The graph
is built recursively as described above, using the latest in-
stance of every one of all the functions in the graph such
that their date of modification is less or equal to t. In other
words, if we want to build the dependency graph of f on
Dec. 31, 2007, then we will use the latest instance of f with
a date less or equal to Dec. 31, 2007. If it calls a function g
then we will use the latest instance of g with a date less or
equal to Dec. 31, 2007. This process will continue until the
dependence graph is completed.

The dependence graph of a software system is the union
of the dependence graphs of all its functions.

We illustrate our model with a simple example. Assume
a C source file that has had four changes recorded as de-
picted in Figure 1. The change history for its functions is
shown in Figure 2. The change history tracks when the
functions are added, deleted or modified.

2.1. Propagation of prior changes

A typical use-case involves a developer who is perusing
the source code of function f at time t, and who is interested

C0 C1 C2 C3
void a() {
b();

c();

}
void b() {
d();

e();

}
void c() {
var2=1;

}
int d() {
return 0;

}
int e() {
f();

}
int f() {
var1=0;

}

void a() {
b();

c();

}
void b() {
d();

e();

}
void c() {
var2=1;

}
int d() {
exit(1);

}
int e() {
f();

}
int f() {
var1=0;

}

void a() {
b();

c();

}
void b() {
d();

e();

}
void c() {
var2=1;

}
int d() {
exit(1);

}
int e() {
return 0;

}

void a() {
b();

c();

}
void b() {
d();

e();

}
void c() {
var1=5;

}
int d() {
exit(1);

}
int e() {
return 0;

}

Figure 1. Evolution of the source code of an
example system at four different points in
time. The areas affected by each change are
shown in bold.

C0 C1 C2 C3

a A
b A
c A M
d A M
e A M
f A D

Figure 2. Depiction of the change history for
the functions of the example system. The
rows correspond to the functions and the
columns to the changes. A, M , D are, respec-
tively, Added, Modified and Deleted. exit is not
included because it is an external function.

to know any changes that might have had an impact on the
behavior of f during a particular time window [tb, te] (note
that the period of interest does not need to include t, e.g. the
graph can be created in December with changes performed
during April to May– the period of interest). To answer such
a question, the dependence graph of f is computed at time t
and its nodes are annotated according to any changes during
the period of interest [tb, te] as follows:

1. Mark all nodes in G(f) as unaffected.

185

a

b c

d e

Figure 3. Dependence graph of a immediately
after change C3.

2. For each node g in G(f): if it has been added or
changed during [tb, te], then annotate it as changed.

3. Repeat until the graph no longer changes:

• for any node that is still unaffected, mark it as
affected if at least one of its children is either
changed or affected.

In the resulting dependence graph (which we call a
Change Impact Graph or CIG) each node will be of one
of three types:

1. Unaffected. The function nor any of the functions it
can potentially call were affected by the changes.

2. Changed. The source code of the function has been
changed.

3. Affected. The source code of the function has not
changed, but at least one of the functions it can po-
tentially call has changed.

Figure 4 shows the CIG for the example of Figures 1 to
3. Notice how the change in d and e is propagated to b and
a (the functionality of both of these functions might been
affected), but not to c.

2.2. Quantifying the impact of changes

We define two metrics to quantify the effect of the
changes during a period of interest: the ratio of changed
functions and the ratio of affected functions in the CIG of a
function.
• The ratio of affected functions is the proportion of

changed and affected to total nodes in a CIG (of a
function or a system). It provides an overview of the
area impacted by the changes. If a set of changes have
a large ratio of affected functions, then such changes
have the potential to affect the functionality of a large

a

b c

d e

Figure 4. Change Impact Graph of a com-
puted using the source code immediately af-
ter C3 but only showing the propagation of
the changes C1 and C2 (the period of inter-
est includes only these two changes). Red
depicts changed functions, light blue corre-
sponds to affected functions, and white to unaf-
fected (changed will appear darker than affected
in black-and-white versions of these images).

proportion of the functions in the software system. Us-
ing our running example shown in Figure 4, the ratio
of affected functions is 4/5.

• The ratio of changed functions is the proportion of
changed nodes to total nodes in a dependence graph.
This ratio gives an overview of the proportion of func-
tions changed. Using our running example shown in
Figure 4, the ratio of changed functions is 2/5.

In practice, the higher the ratio of affected functions is, the
more areas a failure-inducing change could affect. By com-
puting the ratio of affected functions of a potential change a
developer could assess how critical a change is.

When a developer computes a CIG, she will want to min-
imize the ratio of affected and changed functions. She will
usually work with the current version of the source code,
and specify a period of interest in the past. She will want
to narrow potential areas of the code that would have been
affected during such changes. The longer the historical pe-
riod, the higher the ratio of changed functions, making this
method less effective. The major challenge of this proposed
method of dependence graph annotation is to find a suitable
period of interest such that the buggy change which intro-
duced the failure (or any other interesting functionality) is
within it, while minimizing the ratio of changed functions.

2.3. Annotating Source Code

Dependence graphs of real systems are usually complex
and difficult to read or visualize. We propose instead to an-
notate the source code of any function with the help of the
CIG. In its most simple conception, each line of code will

186

be tagged if it contains a call to a function that is marked af-
fected or changed (we call this the impact-annotated source
code). Figure 5 shows the source code of functions a and
b after change C3; the calls for both functions have been
colored according to their CIGs (for the same period of in-
terest) as depicted in Figure 3. The color scheme is the same
as the one used in the CIGaffected functions are shown in
blue, and changed functions in red. The color of the calls
give awareness to the developer that during the period of in-
terest there were changes that affected b, and both d and e
were changed.

void a()
{

b()
c();

}

void b()
{

d();
e();

}

Figure 5. Impact-annotated source code of
functions a and b after change C3 for pe-
riod for changes C1 and C2. Neither function
changed during the period, but the functions
they call (d and e) did change.

Let us assume that a failure was reported in a() after C2,
and that this failure did not exist before C1. In other words,
the failure is presumed to have been caused by a bug in-
troduced during changes C1 or C2 (or both –the graph pre-
sented in Figure 5 was created after C2 and its period of
interest includes C1 and C2 only). The developer will prob-
ably start by inspecting function a(). The c() function is
not likely to be the cause of the failure (it is not changed
nor affected) and could be ignored (or at least presumed to
have a lower probability of being the location of the bug).
On the other hand, function b() is marked as affected, so it
is worth exploring function b() to see if the change to one
of the functions in its dependence graph has introduced the
bug. The goal of highlighting affected and changed lines of
code is to guide the attention of the developer towards the
functions that are more likely to be responsible for a failure.

3. Recovering the impact of function evolution
from a version control system

In this section we present the implementation of the
model described in Section 2. We assume that the source
code history is stored in a version control system (such as
subversion or CVS). Although we discuss our imple-
mentation within the scope of C, it is could be extended to
other programming languages with minimal effort.

3.1. Recovering the change histories of functions

We use the information recorded in the version control
system to compute the history of each function. Since ver-
sion control systems track the evolution of a software sys-
tem at the line level instead of the function and dependency
level, we need to perform additional analysis and extrac-
tion in order to recover the history of code changes and the
function and dependency level.

For each version of every source code file in the history
of the system, including those files that have been deleted,
we recover the content of each instance of each function
using the following technique:
• We identify the location where the definition of a func-

tion starts. We use the exuberant ctags1 tool for this
purpose.

• For each function defined in a file, we look for its end-
ing location. The end of a function is assumed to be
the location of the last closing brace before the next
definition. When processing C source code we do not
consider macros as a definition, as macros can appear
in the middle of a C function.

Using the content of each instance of a function, we
can map each source control change to the particular func-
tion. However, whitespaces or comments of functions are
sometimes changed. For example, PostgreSQL reformats
its source code on a regular basis [9]. We do not want to
consider these changes since they do not have any effect on
the functionality. We developed a technique to remove com-
ments using the mangle tool; then we re-indent the source
code for each instance of a function using the indent tool.

We proceed to compare each instance of a function to
its predecessor, resulting in a list of unchanged, modified,
added, and deleted functions. We identify each function
uniquely by the filename where it is found, and its name.
This approach permits us to deal with multiply-defined
functions such as local static functions.

One major challenge is the detection of functions that
have been moved and/or refactored. It is interesting and
valuable to have a precise picture of the history of a func-
tion, but this analysis is not required for our method. Our
main goal is to provide awareness of changes, i.e., to know
that the dependence graph of a function has changed, not
necessarily how it has changed. Our method could be ex-
tended using one of several methods to recover renaming
and refactoring, such as the ones described in [23, 14] (we
discuss this issue further in section 6.4).

We annotate each instance of a function with the meta-
data of the change, such as the date and the developer. Fi-
nally, the change histories of each function that has been
present in the system are stored in a relational database.

1ctags.sourceforge.net

187

3.2. Creating the Change Impact Graph (CIG)

In addition to recovering the change history of each func-
tion in a software system, we need to create the CIG of the
software system at any moment in time. We used the fol-
lowing technique to create the dependence graph at a given
time:
• Using the version control system, we retrieve the

source code of the project as it was at a desired time.
• For each function in each source code file, we obtain

its explicit calls to other functions. We use CCFinder
[13] to extract the ASTs of each source file2. From
these ASTs we get the direct calls to other functions.

The CIG of any function is created and annotated using
the algorithms described in Section 2.

4. Case Study

We performed a case study to evaluate the feasibility of
our method and to investigate its possibilities and limita-
tions. For our study, we used the Apache Web Server ver-
sion 1.3. We selected Apache for several reasons: it is a
large, complex and well-known software system with a rich
history and a large number of developers. In addition, its
defect tracking database is publicly available.

Although version 1.3 is currently in its maintenance
phase, it is still widely in use. It has approximately 86
kSLOCs and is mostly written in C. It has 8,021 commits
and 29,999 revisions. A commit is a logical transaction that
consists of one or more changes, i.e., revisions, to a file.
More information about Apache, its community and its way
of development can be found in [16]. We made a copy of
its subversion repository to avoid overloading Apache’s
servers.

To demonstrate the usefulness of our method, we needed
to identify historical code changes that resulted in the man-
ifestation of a failure in a different area of the software sys-
tem. We searched the source control system for description
of changes (the commit logs) which included the words “in-
troduced”, “bug” and “PR” followed by a number. Changes
which fix a bug in Apache usually include a reference to
the bug in the defect system using the following syntax:
PR #<number>. We located seven such changes. We se-
lected the three most recent changes. These changes fixed
the following bug reports: PRs #3130, #5389, #10090 and
#10185. These reports are depicted in Table 1.

Our goal was to determine if we could use our method to
identify the prior code change, which may have introduced
the bug that caused the reported failure, given the location
of a failure as documented in the bug report. For each fail-
ure location, we used the time of the reported failure in the

2We use the tokenizer of ccfinder to extract the calls. Hence we are
capable of dealing with explicit calls only.

bug report as the end of the time window and we explored
various sizes for the time window.

PR #3130 The PR #3130 report documents a failure
which affected the mod autoindex module. We used the
date the failure was reported (Oct 3, 1998) to construct the
dependence graph of handle autoindex, the main entry
point of the module. The submitter of the report claimed
that the defect was not present in version 1.2.6 but occurred
in every one of the 1.3.x versions. Version 1.2.6 was de-
veloped in parallel to 1.3.x (1.2 was in maintenance mode
while 1.3.x was being started). This meant that we could
not use the date of the release of 1.2.6 as a guideline. So,
we used a period of 100 days up to the release 1.3.0 (June
1, 1998) to create the CIG of handle autoindex. The re-
sulting graph, shown in Figure 6 surprised us: almost every
node was marked as changed.

We knew that Apache 1.3 was a rehaul of Apache 1.2,
but we were not expecting to see almost every function
changed. We explored the annotated changes to the func-
tions and found the real reason: on April 11, 1998 there was
a major renaming of functions and variables in Apache3.
Hence, to avoid the effect of this major change, we recom-
puted the graph with a period of interest between April 12
and Jun 1, 1998; at the same time we restricted the expan-
sion of the CIG to those functions in the source code of the
mod autoindex module. We presumed since the bug only
affected this module, that the bug would be located inside
the CIG for that module. The resulting CIG is shown in Fig-
ure 7. This graph has significantly lower ratios of changed
and affected functions than the graph in Figure 6 and is
more readable than the full CIG of the software system.
The PR reported that the bug had been introduced during
this period and was located in one of the functions marked
as changed (make autoindex entry) in both of the CIGs.

PR #5389 To determine the potential cause of the failure
reported in this bug report, we proceeded to examine the
hook uri2file function, the reported location of the fail-
ure. The hook uri2file function is one of the three en-
try points of the mod rewrite module. We chose to use
a time window of seven days ending on the date of the
revision that was claimed to have broken the functional-
ity (Oct 22 to Oct 28, 1999). The CIG was computed on
the day of the report (Oct 29, 1999). The resulting CIG
is shown in Figure 8. Note that there are only four func-
tions changed in the system that affect hook uri2file

(which had changed as well). The bug was found to be in-

3We do not currently deal with function renames; we consider the func-
tion with the old name deleted and a one added with the new name, and
the function that was modified –usually only a token replace to reflect the
change in name of the called function– changed; this is an area that needs
further work.

188

Problem
Report

Date-
Reported

Category Main description

#3130 Oct 3 1998 mod autoindex Directories have size shown as “0k” instead of “-” in Fancy Heading.
#5389 Oct 29 1999 mod rewrite mod rewrite is *SEVERELY* broken by a one-character bug intro-

duced in version 1.148. The bug causes the next-to-last backref sub-
stitution to never happen... if you only have one backref, the $1 dis-
appears without a trace!

#10090,
#10185

Mar 14 2002 mod rewrite rnd map type balancing broken; ReWriteMap MapType ’rnd’ not
working.

Table 1. Latest three problem reports in Apache that were solved with a commit that included the
following keywords: log, introduced and PR followed by a number. The date reported, category and
main description come from Apache’s GNATs defect system.

ap_sub_req_lookup_file (49.50)

ap_note_cleanups_for_file (49.50)

emit_preamble (49.50)

table_push (49.50)

ap_push_array (49.50)

ap_pfclose (49.50)

ap_block_alarms (49.50)

ap_kill_cleanup (49.50)

ap_unblock_alarms (49.50)

ap_pvsprintf (25.74)

ap_vformatter (24.45)

ap_bclose (15.31)

ap_pcloseh (15.31)

ap_pclosef (49.50)

ap_bflush (49.50)

ap_pclosesocket (49.50)

malloc_block (25.73)

index_directory (45.29)

ap_popendir (49.50)

ap_kill_timeout (49.50)

output_directories (47.25)

make_autoindex_entry (15.12)

ap_getword (49.50)

ap_send_http_header (49.50)

ap_palloc (49.50)

ap_psignature (26.80)

ap_hard_timeout (49.50)

ap_escape_html (49.50)

insert_readme (49.50)

ap_rvputs (49.50)

ap_rputs (49.50)

readdir (316.06)

ap_pclosedir (49.50)

ap_snprintf (61.94)

end_chunk (61.94)

ebcdic2ascii (125.30)

handle_autoindex (49.50)

ap_allow_options (49.50)

ap_get_module_config (49.50)

ap_pstrcat (49.50)

ap_log_error (27.31)

ap_find_pool (49.50)

write_with_errors (23.05)

doerror (129.12)

buff_write (23.05)

conv_in_addr (41.19)

conv_10 (157.81)

write_it_all (23.05)

clean_child_exit (49.50)

ap_destroy_pool (49.50)

ap_child_exit_modules (49.50)

ap_pfopen (45.29)

ap_slack (49.50)

large_write (61.94)

writev_it_all (158.91)

start_chunk (23.05)

conv_sockaddr_in (41.19)

conv_fp (63.08)

conv_p2 (63.08)

ap_gcvt (20.26)

strdup (22.40)

ap_clear_pool (49.50)

ap_acquire_mutex (49.50)

free_proc_chain (332.15)

run_cleanups (867.72)

free_blocks (49.50)

ap_release_mutex (49.50)

map_rv (345.19)

ap_destroy_sub_req (49.50)

ap_set_keepalive (49.50)

ap_table_get (49.50)

ap_table_setn (49.50)

ap_find_token (49.50)

ap_psprintf (49.50)

ap_find_last_token (49.50)

ap_table_mergen (49.50)

ap_send_fd (49.50)

sendwithtimeout (23.05)

ap_write (15.31)

waitpid (867.72)

c2x (77.11)

chk_on_blk_list (25.73) debug_verify_filled (226.99)

ap_gm_timestr_822 (49.50)

ap_bputs (49.50)

ap_bwrite (49.50)

ap_os_escape_path (47.25)

find_title (49.50)

ap_ind (49.50)

ap_pstrdup (49.50)

timeout (49.50)

ap_log_transaction (49.50)

ap_bsetflag (49.50)

signal (195.20)

ap_register_cleanup (49.50)

opendir (22.40)

ap_send_header_field (49.50)

ap_bvputs (49.50)

ap_set_callback_and_alarm (49.50)

ap_rputc (33.71)

ap_make_sub_pool (49.50)

ap_send_size (49.50)

ap_getparents (49.50)

find_default_icon (28.30)

emit_link (49.50)

ap_rprintf (49.50)

terminate_description (201.14)

ap_make_full_path (49.50)

ignore_entry (49.50)

ap_pcalloc (49.50)

strcasecmp (867.72)

ap_pool_is_ancestor (49.50)

ap_get_server_port (4.42)

ap_strcmp_match (49.50)

ap_strcasecmp_match (49.50)
find_item (28.30)

ap_array_cat (49.50)

ap_pstrndup (49.50)

ap_index_of_response (49.50)

strncasecmp (867.72)

ap_default_type (49.50)

ap_bsetopt (49.50)

ap_table_unset (49.50)

terminate_header (49.50)

ap_basic_http_header (49.50)

ap_overlay_tables (49.50)

use_range_x (49.50)

ap_table_do (49.50)

ap_table_addn (49.50)

new_block (25.73)

ap_get_server_name (49.50)

ap_ecvt (63.08)

ap_fcvt (63.08)

ap_cvt (63.08)

bcwrite (61.94)

ap_vbprintf (49.50)

bflush_core (23.05)

ap_bgetopt (49.50)

ap_check_alarm (49.50)

closedir (316.06)

ap_get_server_version (20.16)

copy_array_hdr_core (127.21)

Figure 6. CIG of handle autoindex (depicted
as a circle) on Oct 3, 1998 showing the prop-
agated changes for the last 100 days. Almost
all nodes have been changed! Looking at the
logs the answer is clear: a commit on April
11, 1998 reads ”THE BIG SYMBOL RENAM-
ING FOR APACHE 1.3”. This illustrates the
main limitation of CIGs: if too many functions
change most of the graph is annotated.

side expand backref inbuffer, a function that had large
sections rewritten a few days earlier, and is at a distance of
two nodes from hook uri2file. Noteworthy is a change
to a function in the top right (ap write) that propagates
through a large proportion of the graph.

PRs #10090 and #10185 These two bug reports docu-
mented a failure which also affected the rewrite module
(mod rewrite.c). The submitter of one of these reports
claimed that a change between versions 1.3.22 (Oct 12,
2001) and 1.3.23 (released Jan 24, 2002) had broken the
“rand map type”. The failure was reported March 14, 2002.
As shown in Figure 10 only four functions of the depen-

ap_allow_options (49.50)

handle_autoindex (26.80)

index_directory (26.80)

ap_pstrcat (49.50)

ap_get_module_config (49.50)

ap_rprintf (49.50)

ap_popendir (49.50)

ap_hard_timeout (49.50)

emit_preamble (49.50)

ap_palloc (49.50)

ap_getword (49.50)

ap_psignature (26.80)

ap_rvputs (49.50)

ap_escape_html (49.50)

ap_pclosedir (49.50)

make_autoindex_entry (15.12)

output_directories (33.71)

ap_send_http_header (49.50)

readdir (316.06)

ap_rputs (49.50)

ap_kill_timeout (49.50)

insert_readme (49.50)

ap_pfopen (45.29)

ap_make_full_path (49.50)

ap_pcalloc (49.50)

ap_getparents (49.50)

ap_clear_pool (49.50)

ap_sub_req_lookup_file (49.50)

find_default_icon (28.30)

find_item (28.30) ap_strcasecmp_match (49.50)

ap_strcmp_match (49.50)

ap_pfclose (49.50)

find_title (49.50)

ap_ind (49.50)

ap_pstrdup (49.50)

ignore_entry (49.50)

ap_destroy_sub_req (49.50)

ap_send_size (49.50)

emit_link (49.50)

terminate_description (201.14)

ap_rputc (33.71)

ap_make_sub_pool (49.50)

ap_os_escape_path (47.25)

ap_send_fd (49.50)

Figure 7. CIG of handle autoindex on Oct 3,
1998 showing the propagated changes for
the last 45 days. The bug was found in
the make autoindex entry function (the sec-
ond red node starting from the top). For this
dependence graph only functions inside the
mod autoindex.c) file are expanded.

dence graph of the hook uri2file function (the main en-
try point of the module) were changed during those two
dates. One of the four functions: the rewrite rand func-
tion is the location of the bug. This change took place on
Jan 20, 2002, just 4 days before the release of 1.3.23.

The impact-annotated source code of rewrite rand is
presented in Figure 9. The error was introduced when a
developer added the typecast (int) to the front of the expres-
sion; the priority of this operator applied the typecast to the
denominator of the expression only. The log of this change
reads: “Dispatch 26 compiler emits into oblivion. Vetting

189

strstr (507.44)

ap_table_merge (6.78)

ap_pstrdup (6.78)

ap_pstrcat (6.78)

table_push (6.78)

strcasecmp (475.51)

add_env_variable (6.78) rewritelog (6.78)

ap_cpystrn (613.44)

ap_table_set (6.78)

get_path_info (6.78)

ap_os_is_filename_valid (250.54)

ap_log_rerror (6.78)

ap_make_sub_pool (6.78)
ap_unblock_alarms (6.78)

ap_release_mutex (562.75)

ap_acquire_mutex (562.75)

new_block (537.98)

ap_block_alarms (7.13)

expand_map_lookups (6.78)

lookup_map (6.78)

ap_destroy_sub_req (562.75)

ap_parse_hostinfo_components (6.78)

ap_pstrndup (6.78)

ap_push_array (6.78)
ap_pcalloc (6.78)

ap_palloc (6.78)

conv_sockaddr_in (156.52)

conv_10 (156.52)conv_in_addr (156.52)

ap_parse_htaccess (6.78)

ap_create_per_dir_config (562.75)

ap_getword_conf (6.78)

ap_make_full_path (6.78)

ap_pcfg_openfile (40.54)

ap_srm_command_loop (6.78)

ap_table_setn (6.78)

ap_cfg_closefile (417.41)

ap_set_config_vectors (171.99)

ap_get_module_config (562.75)

ap_set_module_config (562.75)

timeout (6.78)

clean_child_exit (6.78)

ap_note_cleanups_for_socket (562.75)

ascii2ebcdic (355.08)

cache_tlb_replace (231.25)

cache_tlb_hash (231.25)

store_cache_string (6.78)

ap_make_array (6.78)

cache_tlb_lookup (231.25)

ap_ecvt (575.33)

ap_cvt (575.33)

ap_bsetflag (6.78)

start_chunk (6.78)

end_chunk (621.37)

OnlyDots (353.16)

ap_make_dirstr_parent (6.78)

ap_run_fixups (562.75)

reduce_uri (6.78)

strncasecmp (475.51)

ap_matches_request_vhost (562.75)

ap_check_auth (562.75)

write_with_errors (6.78)

doerror (641.37)

buff_write (6.78)

make_array_core (6.78)

log_error_core (181.14)

syslog (1333.63)

ap_get_time (562.75)

ap_vsnprintf (575.19)

strerror (1342.26)

ap_snprintf (575.19)

sendwithtimeout (7.13) ap_check_alarm (7.13)

ap_log_error (257.32)

ap_rfc1413 (6.78)

ap_set_callback_and_alarm (7.13)

get_rfc1413 (57.82)

ap_pclosesocket (6.78)

ap_psocket (6.78)

ap_sync_scoreboard_image (562.75) force_read (848.62)

ap_strcasecmp_match (475.51)

run_cleanups (1379.97)

ap_check_access (562.75)

get_cache_string (6.78)

retrieve_cache_string (231.25)

ap_find_command (562.75)

ap_os_systemcase_filename (6.78)

ap_pool_is_ancestor (562.75)

directory_walk (6.78)

ap_no2slash (353.16)

ap_allow_options (562.75)

ap_merge_per_dir_configs (6.78)

ap_count_dirs (562.75)

check_symlinks (7.13)

ap_os_is_path_absolute (355.08)

ap_os_case_canonical_filename (6.78)

check_safe_file (6.78)

ap_fnmatch (449.69)

ap_make_dirstr_prefix (562.75)

ap_regexec (157.49)

ap_os_canonical_filename (6.78)

lookup_map_txtfile (6.78)

ap_pfopen (6.78)

ap_pfclose (6.78)

ap_slack (496.96)

ap_note_cleanups_for_file (562.75)

ap_bclose (7.13)

ap_log_transaction (562.75)

ap_destroy_pool (6.78)

chdir_for_gprof (6.78)

ap_child_exit_modules (562.75) signal (708.45)

fully_qualify_uri (1.67)

ap_psprintf (6.78)

ap_get_server_port (126.96)

ap_get_server_name (6.78)

fd_unlock (6.78)

ap_get_gmtoff (562.75)

substring_conf (6.78)

rewrite_rand_init (609.59)

ap_get_remote_logname (6.78)

conv_fp (156.52)

ap_fcvt (575.33)

ap_parse_uri (6.78)
ap_parse_uri_components (6.78)

expand_backref_inbuffer (1.62)

ap_pregsub (6.78)

select_random_value_part (6.78)

rewrite_rand (504.85)

ap_update_child_status (6.78)

ap_get_remote_host (6.78)

ap_unparse_uri_components (6.78)

force_write (848.62)
put_scoreboard_info (764.46)

ap_get_server_version (403.80)

set_cache_string (6.78)

prefix_stat (497.74)

ap_find_types (562.75)

ap_handle_command (6.78)

invoke_cmd (6.78)

ap_find_command_in_modules (562.75)

rewritelock_free (6.78)

getstr (475.51) hextoint (475.51)

make_sub_request (6.78)

rewritelock_alloc (6.78)

fd_lock (6.78)

ap_pvsprintf (6.78)

ap_vformatter (155.29)

lookup_variable (6.78)

ap_table_get (500.61)

lookup_header (6.78)

ap_document_root (480.55)

conv_p2 (156.52)

free_blocks (188.31)ap_clear_pool (6.78)

lookup_map_dbmfile (6.78)

ap_default_port_for_scheme (562.75)

current_logtime (6.78)

ap_set_sub_req_protocol (6.78)

ap_copy_table (6.78)

ap_make_table (6.78)

ap_some_auth_required (482.36) ap_requires (480.55)

ebcdic2ascii (355.08)

ap_gcvt (475.51)

ap_kill_cleanup (562.75)

do_double_reverse (764.46)

ap_str_tolower (475.51)

compare_lexicography (497.74)

bflush_core (6.78)

map_rv (863.69)

rangematch (449.69)

conv_p2_quad (56.31)

matches_aliases (562.75)

ap_server_root_relative (6.78)

debug_verify_filled (744.49)

waitpid (507.44)

conv_10_quad (56.31)

ap_create_request_config (562.75)

ap_find_pool (6.78)

apply_rewrite_list (1.67)

apply_rewrite_rule (1.67)

lookup_map_program (6.78)

malloc_block (188.31)

ap_check_user_id (562.75)

ap_write (6.78)

splitout_queryargs (6.78)

lookup_map_internal (610.90)

free_proc_chain (7.13)

ap_os_kill (177.78)

hook_uri2file (1.66)

expand_tildepaths (6.78)

getpwnam (788.80)

ap_sub_req_lookup_uri (231.37)

ap_cfg_getline (228.49)

file_walk (6.78)

ap_satisfies (480.55)

expand_variables (6.78)

apply_rewrite_cond (1.62)

expand_variables_inbuffer (6.78)

ap_sub_req_lookup_file (6.78)

chk_on_blk_list (537.98)

ap_table_unset (562.75)

Figure 8. CIG of hook uri2file on Oct 29,
1999 showing the propagated changes for the
last 7 days. The failure described in PR#5389
was found in expand backref inbuffer (third
red function from left to right).

is desired, please post to the list if you participate. They
are all blindingly obvious, but extra eyes always help. This
eliminates all but the regex emits and MSVC’s borked mis-
declaration of FD SET.”.

Changes like these are probably riskier than traditional
changes because they are done in mass (26 compiler errors
fixed in one change). It is clear that the developer did not
fully test this change. Otherwise the bug would have been
discovered almost immediately; instead it resulted in a fail-
ure almost three months after the bug was introduced.

Impact-annotations can be very useful in these situations,
because people affected by any of these changes will know
it and might be more inclined to check it for correctness.
Otherwise, as in the case of this bug, nobody reviewed this
line of code (or if it was reviewed, the reviewer failed to
catch the bug).

5. Related Research

Change propagation is a central activity during software
development. As developers modify code to introduce new
features or fix bugs, they must ensure that other parts of
the software system are updated to be consistent with these
new changes. For example, if the interface for a function
changes, its callers have to be modified to reflect the new
interface, otherwise the source code won’t compile nor link.

Many hard to find bugs are introduced by developers

ap_push_array

store_cache_string

cache_tlb_replace

cache_tlb_lookup

ap_make_array

ap_pstrdup

ap_regexec

current_logtime ap_get_gmtoff

ap_snprintf

ap_document_root

ap_table_get cache_tlb_hash

do_expand_env
add_env_variable

do_expand

ap_get_server_version

apply_rewrite_rule

ap_palloc

splitout_queryargs

rewritelog

is_absolute_uri

ap_table_unset

ap_table_setn

ap_pstrcat

ap_pcalloc

fully_qualify_uri

ap_table_merge

reduce_uri

apply_rewrite_cond

ap_psprintf

rewrite_rand_init

apply_rewrite_list

getpwnam

lookup_map_internal

lookup_map_dbmfile

ap_pfclose

ap_vsnprintf

strncasecmp

prefix_stat

ap_cpystrn

subreq_ok

ap_destroy_sub_req

ap_pstrndup

ap_get_module_config

fd_unlock

ap_get_server_name

fd_lock

ap_get_remote_host

ap_log_rerror

ap_pfopen

rewritelock_free

ap_matches_request_vhost

lookup_map

get_cache_string

lookup_map_txtfile

set_cache_string

select_random_value_part

lookup_map_program

find_char_in_brackets

rewritelock_alloc

compare_lexicography

ap_sub_req_lookup_file

expand_tildepaths

retrieve_cache_string

hook_uri2file

ap_get_server_port

lookup_header

strcasecmp

ap_table_set

rewrite_rand

ap_get_remote_logname

lookup_variable

find_closing_bracket

ap_sub_req_lookup_uri

Figure 10. CIG of hook uri2file on March 14,
2002, showing the propagated changes be-
tween Oct 12, 2001 and Jan 24, 2002. The
failure described in PRs #10090 and #10185
was found in the rewrite rand function (sec-
ond red function from top to bottom). In this
CIG only functions in the file mod write.c are
expanded.

who did not notice dependencies between entities, and
failed to propagate changes correctly. Our proposed method
provides a practical and simple technique which mine his-
torical code changes to help maintainers in fixing bugs
caused by mis-propagation of changes.

The dangers of mis-propagating changes has been noted
by many researchers. For example, Parnas tackled the is-
sue of software aging and warned of the ill-effects of Igno-
rant Surgery, code changes done by developers with lim-
ited knowledge of the system [18]. Arnold and Bohner give
an overview of several formal models of change propaga-
tion [2, 5]. The models propose several tools and techniques
that are based on code dependencies and algorithms such as
slicing and transitive closure [21, 22] to assist in code prop-
agation. Rajlich proposes another formal model for change
propagation [19]. In contrast, we propose a simplified prac-
tical model and implementation which developers can use to

190

static int rewrite rand(int l, int h) {
rewrite rand init();

/* Get [0,1) and then scale to the appropriate range. Note that using

* a floating point value ensures that we use all bits of the rand()

* result. Doing an integer modulus would only use the lower-order bits

* which may not be as uniformly random. */

return (int)((double)(rand() % RAND MAX) / RAND MAX) * (h - l + 1) + l;

}

Figure 9. Annotated source code of rewrite rand init. Its first source code line was not modified
nor affected; the second—the cause of the failure– was modified on Jan 20, 2002, when the typecast
operator (int) was inserted. The log of the change explains: “Dispatch 26 compiler emits into
oblivion. Vetting is desired... They are all blindingly obvious, but extra eyes always help...”.

identify possible mis-propagation of changes when working
on fixing bugs.

Several researchers have proposed the use of historical
data related to a software system to assist maintainers of
large software systems. Cubranic et al. present a tool which
uses bug reports, news articles, and mailing list posting to
suggest pertinent software development artifacts [7]. Chen
et al. attach the comments associated with source code
changes to each code statement and use these comments to
index the code and help in locating the lines of code associ-
ated with a particular feature [6]. Hassan and Holt propose
annotating the dependency graph of a software system with
historical information to assist architecture in understanding
the rationale for the current design [11]. Mockus et al. use
historical code changes to help identify code experts based
on prior changes for a particular code segment [17]. Rel-
ative to previous work on the use of historical information
we recognize the importance of historical information and
we integrate the historical information into the commonly
used dependency information (i.e., the dependence graph).

Much of the intuition and driving force behind our work
stems by the following two related works. Graves et al.
show that surprisingly most bugs are not due to complex
code instead they are usually due to frequently changing
code [10]. Given the location of a reported bug, our method
flags statements which depend directly or indirectly on
changing code. Sliwerski et al. present a procedure which
identifies risky code regions using information from version
history and from the bug tracking system [20]. They present
an Eclipse plug-in which informs developers about the
risk of a location on a statement basis. The risk is calculated
based on the number of times a particular statement was
part of a change that was later identified as being a buggy
change. Similar to Sliwerski et al., our method helps de-
velopers identify risky parts of the code. In contrast, our
definition of risk is a second-order definition: instead of
identifying risky code, we identify code that depends on
risky code by, for example, calling code which tends to have

many buggy changes.

6. Discussion

6.1. Limitations

Figures 6 and 7 computed for PR #3130 illustrate two of
the major shortcomings of our method: 1) a single change
can result in too many marked nodes in the dependence
graph that it becomes impractical; and 2) it is sometimes
not easy to determine the period of interest for which the
dependence graph should be created. Table 2 gives an ex-
ample of this shortcoming. The first graph had a ratio of
changed functions of 81.7%, and the second had a ratio of
8.8%. The developer needs to experiment and apply her
experience and insight in the selection of the period of in-
terest. In the case study, we removed a wide change that
had affected most of the functions in the system.

Systems with a very good suite of tests will benefit from
CIGs. Failures are likely to be found early, making the pe-
riod of observation very small. The annotations will point to
the few areas of the system that are likely to have changed
in such a small period.

Another method to deal with changes that affect many
functions is to select only a subset of changes based on cer-
tain criteria – as described in [15]. For example, “select
all commits during the period of observation except the one
that renamed all symbols”. The risk of using this method
is that one might inadvertently skip the commit that intro-
duced the bug which caused the reported failure. This is not
an issue when one is interested only in being aware of what
areas of the system have changed (and which have been af-
fected). For example, a developer might be interested to get
an idea of what areas have been affected by the changes per-
formed by another developer; in this case the criteria is to
select only the changes authored by the latter author.

191

6.2. Extraction of the Dependence Graphs

The effectiveness of CIGs depends heavily on the quality
of the extraction of the dependence graphs created from the
source code of the system. In our current implementation
we use a simple fact extractor that does not take into ac-
count function pointers nor polymorphic function calls. Our
method to create CIGs, however, can work with any depen-
dence graph extractor that generates a graph where func-
tions are represented as nodes, and function calls as edges.

6.3. Effectiveness of CIGs

The examples above are too few and lack the neces-
sary rigor to be considered a formal evaluation of CIGs.
Nonetheless the examples demonstrate that dependence
graphs can narrow the search space for the source of a fail-
ure by highlighting areas of the code that have changed and
that might have an impact on a failing function. Table 2
shows the ratios of changed and affected functions for each
of the CIGs presented in our case study. Although the CIGs
are relatively large, the ratio of changed nodes is very small
(as small as 2.3%) for three out of the four graphs.

However even if a graph contains few changed nodes,
the number of affected nodes (functions where a failure can
occur) can be large. In other words, a bug introduced in
a function has the potential to present itself as a failure in
many other functions.

PR Total nodes Ratio Ratio
Affected Changed

#3130 142 88.7% 81.7%
45 17.7% 8.8%

#5389 206 46% 2.3%
#10090,#10185 75 30% 5.3%

Table 2. Effectiveness of CIGs for the exam-
ples presented in our case study.

6.4. Improving the tracking of a function’s evolution

Some functions are renamed, merged, split or their code
cloned. We believe it will be worthwhile to track this evo-
lution and use the resulting information in the creation of
CIGs.

Similarly, the analysis we present relies on a textual com-
parison (comments are removed, code re-indented and then
renamed). A more powerful approach would involve com-
paring the ASTs of the function and after the change (using
methods such as [8]). Did the change affect the AST of the
code? Was it a change to a constant (such as a string to be
printed)? Was it a change to a token (perhaps the result of a

rename of a function in the same commit). This information
could be useful to include and exclude some changes when
building a CIG.

6.5. Improving the annotations

The changed functions of the dependence graph can be
further annotated with a measure of the change, such as the
number of LOCs changed, the difference of the complex-
ity between before and after, a likelihood that the change
is a risky one (based on the type of change, who made the
change, when the change was performed, etc.). Such infor-
mation can then be propagated to the callers.

6.6. Support for annotations during edit-
ing/debugging of source code

The annotated source code could be computed on-
demand within a typical IDE (such as Eclipse) or a de-
bugger. In a preparation stage, the history of the project is
analyzed, and the change history of each function is created.
The latest dependence graph of the system is computed. At
this point it is possible to incrementally continue updating
the change histories of functions and the latest dependence
graph as the version control system detects a new source
control change. When perusing source code, the developer
will select the period of interest (either by time, or by speci-
fying two different changes). If the code being browsed has
not changed (with respect to the latest version in the source
control repository), the pre-computed CIGs would be used,
otherwise a new one will be computed. The source code
will be annotated using these CIGs.

6.7. Annotation of other program representations

It is possible to apply the same annotation method to
more complex program representations, such as system de-
pendence graphs that track variables and in-and-out param-
eters to functions [12]. Code slicing will provide a more in-
depth analysis of impact of the changed code. Slicing will
track indirect calls via parameters, and changes to variables,
in contrast to our method which is based only on tracking
function calls. Historical annotation will likely highlight
small areas of a slice, making them more manageable when
a developer is looking for a particular bug. The annotations
of the slice could be applied dynamically by allowing the
developer to change the period of observation as she finds it
appropriate.

7. Conclusions

All too often developers must investigate failures in
functions and features that have not changed. Investigating

192

such failures is challenging and time consuming since these
failures are usually due to bugs introduced by prior code
changes. In this paper we present a technique which guides
developers in their investigation of such failures by annotat-
ing the dependence graph and the source code of a function
with the impact of prior historical changes. Using the anno-
tation, developers can quickly pinpoint the changes which
most likely introduced the bug, causing the reported failure.
We demonstrate the feasibility of our method through a case
study on the Apache Web Server. Our method speeds up the
process of identifying the location of bugs by considerably
reducing the number of functions which should be investi-
gated.

8. Acknowledgements

We would like to thank our anonymous reviewers for
their helpful comments.

The work of D. German and A. Hassan is funded in part
by the Natural Sciences and Engineering Research Council
of Canada. The work of G. Robles has been funded in part
by the European Commission, under the FLOSSMETRICS
(FP6-IST-5-033547), QUALOSS (FP6-IST-5-033547) and
QUALIPSO (FP6-IST-034763) projects, and by the Spanish
CICyT, project SobreSalto (TIN2007-66172).

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
PLDI ’90: Proceedings of the ACM SIGPLAN 1990 confer-
ence on Programming language design and implementation,
pages 246–256, New York, NY, USA, 1990. ACM.

[2] R. Arnold and S. Bohner. Impact analysis - toward a
framework for comparison. In IEEE International Confer-
ence Software Maintenance (ICSM 1997), pages 292–301,
Montréal, Quebec, Canada, 1993.

[3] D. Binkley, N. Gold, and M. Harman. An empirical study of
static program slice size. ACM Trans. Softw. Eng. Methodol.,
16(2):8, 2007.

[4] D. Binkley and M. Harman. A large-scale empirical study of
forward and backward static slice size and context sensitiv-
ity. In ICSM ’03: Proceedings of the International Confer-
ence on Software Maintenance, page 44, Washington, DC,
USA, 2003. IEEE Computer Society.

[5] S. Bohner and R. Arnold. Software Change Impact Analysis.
IEEE Computer Soc. Press, 1996.

[6] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang,
and A. Michail. CVSSearch: Searching through source code
using CVS comments. In IEEE International Conference
Software Maintenance (ICSM 2001), pages 364–374, Flo-
rence, Italy, 2001.

[7] D. Cubranic and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proceedings of
the 25th International Conference on Software Engineering
(ICSE 2000), pages 408–419, Portland, Oregon, May 2003.
ACM Press.

[8] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Softw. Eng., 33(11):725–
743, 2007.

[9] D. M. German. A study of the contributors of Post-
greSQL. In 3rd International Workshop on Mining Soft-
ware Repositories–MSR Challenge Reports (MSR 2006),
May 2006.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Pre-
dicting fault incidence using software change history. IEEE
Trans. Software Eng., 26(7):653–661, 2000.

[11] A. E. Hassan and R. C. Holt. Using development history
sticky notes to understand software architecture. In IWPC,
pages 183–193, 2004.

[12] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. SIGPLAN Not., 39(4):229–243,
2004.

[13] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(7):654–670,
2002.

[14] M. Kim, D. Notkin, and D. Grossman. Automatic inference
of structural changes for matching across program versions.
In Proceedings of the 29th International Conference on Soft-
ware Engineering (ICSE 2007), pages 333–343. IEEE Com-
puter Society, 2007.

[15] A. McNair, D. M. German, and J. Weber-Jahnke. Visual-
izing software architecture evolution using change-sets. In
”Proc. 14th Working Conference on Reverse Engineering”,
pages 140–149, 2007.

[16] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[17] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proc Intl Conf Softw
Maintenance, pages 120–130, October 2000.

[18] D. L. Parnas. Software aging. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE 1994),
pages 279–287, Sorrento, Italy, May 1994.

[19] V. Rajlich. A model for change propagation based on graph
rewriting. In IEEE International Conference Software Main-
tenance (ICSM 1997), pages 84–91, Bari, Italy, 1997.

[20] J. Sliwerski, T. Zimmermann, and A. Zeller. Hatari: raising
risk awareness. In ESEC/SIGSOFT FSE, pages 107–110,
2005.

[21] M. Weiser. Program slicing. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE 1981),
pages 439–449, 1981.

[22] M. Weiser. Programmers use slices when debugging. Com-
mun. ACM, 25(7):446–452, 1982.

[23] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. In ASE, pages 231–240, 2006.

[24] X. Zhang, N. Gupta, and R. Gupta. A study of effective-
ness of dynamic slicing in locating real faults. Empirical
Software Engineering, 12(2):143–160, 2007.

193

