
Precise Analysis of Java Programs using JOANA

Dennis Giffhorn
Universität Karlsruhe (TH)

Karlsruhe, Germany
giffhorn@ipd.info.uni-karlsruhe.de

Christian Hammer
Universität Karlsruhe (TH)

Karlsruhe, Germany
hammer@ipd.info.uni-karlsruhe.de

Abstract

The JOANA project (Java Object-sensitive ANAlysis) is
a program analysis infrastructure for the Java language. It
contains a wide range of analysis techniques such as depen-
dence graph computation, slicing and chopping for sequen-
tial and concurrent programs, computation of path condi-
tions and algorithms for software security. This demonstra-
tion presents the JOANA plugin for the Eclipse framework.
In the current version, a user can compute and navigate
through dependence graphs for full Java bytecode, analyze
Java programs with a broad range of slicing and chopping
algorithms, and use precise algorithms for language-based
security to check programs for information leaks.

1. Introduction

Dependence graphs are an established data structure
for program analysis. A dependence-graph-based program
analysis has basically a four-tiered architecture. The basic
layer consists of the dependence graph computation with
a broad range of issues such as points-to analysis, object-
sensitivity and concurrency analysis, to just name a few.
The second layer contains various algorithms to compute
reachability properties in dependence graphs, where slicing
is perhaps the best known of these algorithms. The applica-
tions of these algorithms form the third layer. There are nu-
merous applications such as debugging, testing, complexity
measurement, model-checking, and information flow con-
trol. The fourth layer addresses user interfaces, and con-
cerns with visualising data of the underlying layers.

Since dependence graphs have been used for program
analysis for more than 20 years, there exists a vast amount
of work on those topics. But unfortunately only a few com-
plete implementations came into existence – tools that con-
tain everything from dependence graph construction over
analysis algorithms and their applications to user-friendly
interfaces like the Code Surfer for C/C++ [1] or the Indus
Java slicer [7]. The JOANA plugin for the Eclipse frame-

Figure 1. Slicing algorithms and visualisation

work1 is such a tool for the Java language. The plugin fo-
cuses on information flow control (IFC), a method to en-
sure a program’s integrity and confidentiality [9]. Whereas
most current approaches for IFC are based on type systems,
JOANA’s slicing-based IFC is considerably more precise
due to flow-sensitivity [3, 4].

2. The JOANA Plugin for Eclipse

Our plugin currently offers the following features:

• A dependence-graph generator that can handle full
Java bytecode, including object-sensitivity, concur-
rency and exception handling [5]. In previous case
studies we were able to analyze programs of about
10kloc [2, 5].

• A broad range of slicing- and chopping algorithms for
both sequential and concurrent Java programs, from
standard algorithms over precise slicing algorithms
for concurrent programs [2] to special algorithms for
barrier- or level slicing and -chopping [8].

1www.eclipse.org

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.17

267

Figure 2. A possible information leak in a
password manager

• Algorithms for IFC that can check Java programs for
information leaks [3, 4].

• A user interface where the user can run all these algo-
rithms directly on the Java source code.

Furthermore, we are currently integrating a generator of
path conditions, which are precise correct conditions for in-
formation flow [6, 10].

Figures 1, 2 and 3 show parts of JOANA’s user inter-
face. In Figure 1, we see how slices are visualized in Java
source code (A) and a list of currently available slicing and
chopping algorithms (B). Part (A) shows a method which
converts input strings to floating-point numbers. The high-
lighted slice was computed by the standard two-phase slicer
for statement return -1.0 (this statement denotes an in-
valid input).

Figure 2 shows an excerpt of the user interface for our
IFC algorithms. The code in part (1) is a password manager
that offers a check method to verify a given user name
and password. A user of our IFC analysis has to identify
secret information – the passwords array – and at which
point there is information visible for unauthorized users –
the return value of check. Part (2) shows that the user has
classified passwords as ‘secure’ and the return value of
check as ‘public’. A combination of slicing and dataflow
analysis [3, 4] reveals that check might leak secret infor-

Figure 3. Defining a custom security lattice

mation: The return value is ‘true’ if the given password was
correct. Part (3) shows a summary of all detected infoma-
tion leaks. If the user selects one of the leaks, the path over
which the infomation is leaking is highlighted in the source
code. Part (1) shows that the password information flows to
the return statement via the if-structure.

Security classes for IFC are commonly arranged in a lat-
tice. Figure 3 shows an example of our lattice editor for
double-blinded reviewing: The chair may see all informa-
tion in the system, but reviewers and authors may not know
each other. The actual assignment of papers and notifica-
tion of authors requires declassification from the chair. If a
graph is defined that does not represent a valid lattice, the
checking routine will highlight the corresponding part(s) in
the graph representation.

References

[1] The Codesurfer Code Browser for C/C++.
http://www.grammatech.com/.

[2] D. Giffhorn and C. Hammer. An evaluation of slicing algo-
rithms for concurrent programs. In 7th IEEE SCAM, 2006.

[3] C. Hammer, J. Krinke, and F. Nodes. Intransitive noninterfer-
ence in dependence graphs. In ISOLA’06, pp. 136–145, 2006.

[4] C. Hammer, J. Krinke, and G. Snelting. Information flow con-
trol for Java based on path conditions in dependence graphs.
In IEEE ISSSE, pages 87–96, 2006.

[5] C. Hammer and G. Snelting. An improved slicer for Java. In
5th ACM PASTE, pages 17–22, 2004.

[6] C. Hammer, R. Schaade and G. Snelting. Static Path Condi-
tions for Java. In 3rd ACM PLAS, 2008.

[7] The Indus Slicer for Java. http://indus.projects.cis.ksu.edu/.

[8] J. Krinke. Barrier slicing and chopping. In IEEE SCAM, 2003.

[9] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Commu-
nications, 21(1), 2003.

[10] G. Snelting, T. Robschink, and J. Krinke. Efficient path
conditions in dependence graphs for software safety analysis.
ACM Trans. Softw. Eng. Methodol., 15(4):410–457, 2006.

268

