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Abstract

C preprocessor (CPP) is a major cause that makes it
much difficult to accurately analyze C source code, which
is indispensable to refactoring tools for C programs. To ac-
curately analyze C source code, we need to generate CPP
mapping information between unpreprocessed C source
code and preprocessed one. Previous works generate CPP
mapping information by extending the existing CPP, which
results in low portability and low maintainability due to the
strong dependency of CPP implementation.

To solve this problem, this paper proposes a novel ap-
proach (called TBCppA) based on tracer, which generates
CPP mapping information by instrumenting the unprepro-
cessed C source code using XML-like tags called “tracers”.
The advantage of TBCppA is high portability and high
maintainability, which the previous methods do not have.
We successfully implemented a first prototype of TBCppA,
and our preliminary evaluation of applying TBCppA to
gcc-4.1.1 produced promising results.

1. Introduction

The programming language C [22, 23] is widely used
even now, especially in operating systems, device drivers,
embedded systems, language processors like GCC, and
server applications like Apache. On the other hand, C is
widely criticized since it is very easy for programmers to
write undesirable code (e.g., buffer overflows). This im-
plies we need high-quality program development tools for
C to reduce undesirable code or bugs in C source code, but
there are, unfortunately, few good tools in practice, mainly
because it is very hard to cope with the problems of C pre-
processor (CPP), pointer aliases in C, etc. For example, [16]
reports the existing call-graph extractors are very imprecise,
and [7, 14, 19, 21] report the functionality of the existing
code refactoring tools is very limited due to the CPP prob-
lems. This paper focuses on the CPP problems.

In brief, the CPP problems are twofold: (See also Sec-
tion 2.2 for more details)

• It is very hard to directly parse unpreprocessed C pro-
grams like Fig. 1 (i.e., C programs with CPP direc-

/* gzip-1.2.4, gzip.c, line 888 */
#ifdef NO_FSTAT

if (stat(ofname, &ostat) != 0) {
#else

if (fstat(ofd, &ostat) != 0) {
#endif

fprintf(stderr, "%s: ", progname);
}

Figure 1. Example where braces are not bal-
anced in unpreprocessed C source code.

1 /* foo.c */
2 #define N 10
3 printf ("%d", N );

⇓
Step 1: TBCppA embeds XML-like tracers in C program.

⇓
1 /* TBCppA/foo.c */
2 #define N <d>10</d>
3 printf ("%d", <c> N</c> );

⇓
Step 2: native CPP (e.g., gcc -E) preprocesses the program
including the tracers.

⇓
1 /* foo.c.xml */
2
3 printf ("%d", <c> <d>10</d></c> );

⇓
Step 3: TBCppA generates the CPP mapping information by
analyzing the resulting tracers.

⇓
[CPP mapping info. (part)] Macro call N in line 3 was
expanded to 10, whose definition is in line 2.

Figure 2. TBCppA’s rough idea of how to use
tracers to observe macro expansions.

tives) using the C grammar, simply because they are
syntactically incorrect.

• It is possible to parse preprocessed C programs (i.e., C
programs with no CPP directives) using the C gram-
mar. But it is very hard to recover the unpreprocessed
version with CPP directives and macro calls from pre-
processed one, because the information about CPP
processing and macro expansions, which we call CPP
mapping information, is not available.

CPP mapping information includes the information
about macro definition, macro expansion, file inclusion,
conditional compilation, and their locations (line number
etc.) in the original source code.
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tadd.exe CPP(gcc -E) txml.exe tfix2.exefoo.c foo.c.xmlTBCppA/foo.c

TBCppA/foo.c.lex

Run native CPP.

TBCppA/db_file.xml

outputinput

Each location of comments, whitespaces,
and tokens is recorded to .lex file.

Embed tracers, and
use XML-escapes
for attributes.

Each filename is registered 
to the file db_file.xml.

External entity
references.

Convert tracers
to XML, and use
XML-escapes
for contents.

Eliminate duplicated ID attributes
and tracers for non-macro calls.
Replace doubled macros with
bare macros.

Figure 3. TBCppA’s components and process flow chart

Previous papers [1–4, 8, 9, 11–13, 15, 17–21, 25, 27, 28]
generate CPP mapping information using various methods,
but all of them have drawbacks, mentioned in Section 2.3.

To solve the CPP problems, this paper proposes a novel
approach based on tracer, which generates CPP mapping
information by instrumenting the unpreprocessed source
program using XML-like tags called “tracers”. We call the
approach TBCppA (tracer-based CPP analyzer) 1. TBCppA
generates CPP mapping information using the existing CPP
as is. Thus TBCppA does not suffer from almost all the
problems mentioned in Section 2.2.

The term tracer has been used, for example, in biologi-
cal or ecological fields to refer to an identifiable substance
(e.g., radioactive isotope), which makes it easy to observe
the behavior or distribution of the observee, by attaching
tracer to the observee and observing the tracer.
TBCppA generates CPP mapping information by attach-

ing special tokens as tracers to a sequence of tokens in the
unpreprocessed C source code, running native CPP “as is”
to preprocess the code including tracers, and finally observ-
ing the changes of tracers.

In Fig. 2, for example, TBCppA first attaches trac-
ers like <d> and </d>2 to the unpreprocessed C code,
and TBCppA runs the native CPP. As a result, the
macro N between the tracers <c> and </c> is ex-
panded to <c><d>10</d></c>. By comparing <c>
<d>10</d></c> with <c>N</c>, TBCppA knows that
the macro N is expanded to 10. See also Fig. 3 here. Fig. 3
illustrates the basic components and the process flow of
TBCppA, whose details are given in Section 4.2.

To show our idea of TBCppA is feasible, this paper pro-
vides the concrete design and implementation of TBCppA.
The preliminary results of evaluating TBCppA suggest that
TBCppA approach is quite feasible and useful both in
performance and functionality. The contributions of our
TBCppA in this paper are summarized as follows.

• High accuracy: TBCppA generates highly accurate
CPP mapping information, even about ambiguous se-
mantics in C (i.e., implementation-defined, and un-
specified behaviors in C) and CPP-specific predefined
macros, since TBCppA uses the existing CPP as is.

• High portability and high maintainability: TBCppA
does not emulate the existing CPP behaviors or does

1We also uses TBCppA to refer to our prototype implementation based
on TBCppA approach.

2Tracers used here are much simplified for readability. Actual tracers
defined in Section 3 are much more complex.

not modify the existing CPP implementations. In-
stead, to expand tracer-embedded macros, TBCppA
just uses the existing CPPs as is. Although the design
and implementation of TBCppA is not trivial, the code
size of TBCppA (ver 0.0.3b) is small; it consists of
only around 3,700 lines. These positive characteris-
tics makes TBCppA highly portable and maintainable.
Actually, our current TBCppA implementation runs on
Windows Cygwin, Linux and Mac OS X.

• Wide applicability for large open source code:
TBCppA can process almost all C programs. In our
preliminary evaluation, for example, TBCppA suc-
cessfully processed the source code of gcc-4.1.1
(around 630,000 lines).

• High applicabilitiy for C tools: The mapping in-
formation produced by TBCppA can be easily ap-
plied for C tools. To show this, we successfully
developed three small but practical tools (tmacro,
tifdef src2html, trecov demo) in our prelim-
inary evaluation.

This paper is organized as follows. Section 2 gives the
existing approaches and their drawbacks. Section 3 intro-
duces the definition of TBCppA tracers. Section 4 describes
the design and implementation of TBCppA. Section 5 gives
a preliminary evaluation of our TBCppA implementation
and its small but practical applications. Section 6 gives the
limitations of TBCppA. Section 7 describes related work.
Finally, Section 8 gives conclusion and future work.

2. Background: CPP problems

2.1. Overview of CPP

The main features of CPP are file inclusion, macro def-
inition and conditional compilation, which are specified by
CPP directives like #include, #define, #ifdef, re-
spectively. The C language has two grammars: CPP gram-
mar for CPP directives and macro calls, and C grammar for
other nonterminals like identifiers, expressions and state-
ments. First, C programs with CPP directives need to be
parsed by CPP using the CPP grammar and evaluated while
removing CPP directives and substituting macros. This pro-
cess is called preprocessing. After preprocessing, C pro-
grams have no CPP directives and thus can be parsed by the
C parser using the C grammar.

Using CPP is inevitable in real C programming, and ac-
tually almost all C programs use CPP features. An empiri-
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cal study by Ernst et al. [5], for example, reports that “pre-
processor directives make up 8.4% of program lines” and
“macros pervade the code, with 0.28 uses per line”. This
fact led them to say “an effective program analysis tool must
address the preprocessor” [5].

2.2. CPP problems

The problems of CPP is twofold: (Also refer to [5, 6].)

• CPP problem 1: It is very hard to parse unprepro-
cessed C programs (i.e., C programs with CPP direc-
tives) directly using the C grammar3. For example,
a code fragment in Fig. 1 is unpreprocessed and the
braces in the code are not balanced. Thus the code
fragment is syntactically incorrect, which means that
it cannot be parsed by the C grammar.
As shown in Fig. 1, a CPP directive with a preceding
newline can appear between any tokens. Furthermore,
CPP can replace a keyword (e.g., const) with any
sequence of tokens (e.g., empty string). Thus, CPP
is so powerful and unstructured, which provides great
flexibility for C programmers, and also great difficulty
of directly parsing unpreprocessed code.

• CPP problem 2: It is possible to parse preprocessed
C programs (i.e., C programs with no CPP directives)
using the C grammar. But it is very hard to recover the
unpreprocessed version with CPP directives and macro
calls from preprocessed one, because CPP mapping in-
formation, described in Section 1, is not available. For
example, GCC-3.4.3’s CPP expands the macro stdin
to (& iob[0]) on Solaris 10, but the compiler gives
no information about this macro expansion, which is
required to recover stdin from (& iob[0]).

Some tools (e.g., refactoring tool) require accurate CPP
mapping information. This is because, for example, refac-
toring tools must ensure program behavior is always pre-
served. For such tools, it is practically impossible to solve
the CPP problem 1. Tools like GNU GLOBAL approxi-
mately and partially parse the unpreprocessed C code, so
they can not provide accurate CPP mapping information due
to approximation. There is an approach that restricts CPP
directives to appear at certain places in the grammar. Un-
fortunately, there are many real-world source codes that this
approach cannot handle. Fig. 1 just shows the case. Thus,
both approaches are not acceptable.

2.3. The existing approaches and their
drawbacks

Solving the CPP problem 2 is important. Without
the CPP mapping information, the tool’s output lacks the
abstraction provided by CPP and thus it is not under-
standable nor readable. For example, the tool user sees
(& iob[0]), not stdin, as output.

Previous papers [1–4, 8, 9, 11–13, 15, 17–21, 25, 27, 28]
generate the CPP mapping information by the following
methods, but all of them have drawbacks mentioned below.

3This seems a matter of course, but some people say it is possible, since
some tools (e.g., GNU GLOBAL) attempt to do this (in inaccurate ways).

• Method 1: Partially and/or approximately parsing un-
preprocessed source code (e.g., srcML [3]).

• Method 2: Using compiler options (e.g., GCC op-
tions -E -dM) or using debugging information (e.g.,
DWARF2-XML [25]).

• Method 3: Implementing a CPP emulator with the fea-
ture of outputing CPP mapping information [4,8,9,11,
19–21, 27, 28].

• Method 4: Modifying a real CPP to output the CPP
mapping information [1,2,15,17,18] (e.g., PCp3 [1,2]
modified the GCC’s CPP called Cpplib).

• Method 5: Using API in some language environments
to obtain CPP mapping information (e.g., cppML [12,
13] for C++ uses the API in IBM VisualAge C++).

Each method above has the following drawbacks.

• Drawback of Method 1: Method 1 provides inaccu-
rate information, since parsing is incomplete. Typi-
cally, two different symbols with the same name (e.g.,
a variable foo and a function foo) are regarded as
the same, and scopes are incorrectly maintained (e.g.,
in the case of Fig. 1).

• Drawback of Method 2: Typical compilers (e.g.,
GCC) and debugging information (e.g., DWARF2) do
not provide the information about macro expansions,
which plays an important role in the CPP mapping in-
formation, although this method readily provides the
correct information about macro definitions.

• Drawback of Method 3: Method 3 provides inaccu-
rate information, since the accurate emulation of CPP
is difficult due to the following issues:

– Implementation-defined or unspecified behaviors
in the CPP specification. For example, the or-
der of evaluation of # and ## is unspecified
(6.10.3 in [23]). The search path for the files en-
closed with < and > in #include directives is
implementation-defined (6.10.2 in [23]).

– Compiler-specific CPP extensions. For example,
GCC supports #include next directive and
variadic macros. GCC’s variadic macros have
different syntax from C99’s.

– Platform-specific or implementation-specific
(pre-defined) macros. How system-defined
macros (e.g., stdin) are expanded varies
according to how they are defined in the system
header files (e.g., stdio.h). Some macros are
not defined in any header files. For example,
CPP of GCC-3.4.4/Cygwin-1.5.19 defines 79
pre-defined macros (e.g., unix, i386), all of
which are not defined in header files.

– Difficulty conforming to the CPP specification
and mimicking the existing implementation. At
a glance, the CPP behavior looks simple, but not
in practice. For example, CPP in GCC-3.4.4 con-
sists of around 15,000 lines (including comments
and empty lines). Thus the accurate emulation of
CPP is simply difficult because the CPP specifi-
cation and implementation is large and complex.

37



• Drawback of Method 4: This method suffers from
low portability and low applicability problems. Modi-
fied CPP can run often only on the specific platforms,
which results in less applicability. The cost of port-
ing the modified CPP and maintaining it continuously
(e.g., whenever new GCC or Linux is released) would
be expensive. For example, the source code of PCp3

is open to the public, but, as far as we know, PCp3 has
not been maintained since 1999. The source code of
PCp3 is based on very old CPP on GCC-2.7.2.2, so
we cannot use PCp3 as is.

• Drawback of Method 5: This method is only avail-
able in specific language environments like IBM Visu-
alAge C++ [12], and not available in major compilers
like GCC. To what extent this method is feasible when
using IBM VisualAge C++ is still unknown, since
sample cppML-tagged source code in cppML home-
page [13] seems not to include macro expansions.

1 /* foo.c */
2 #define N 10
3 printf ("%d", N );

⇓
Step 1: TBCppA embeds XML-like tracers in C program.

⇓
1 /* TBCppA/foo.c */
2 @"define id=’F4_1’ dir=’#define’ name=’N’
3 macro_body=’10’ first_line=’2’ /"
4 #define N @"macro_body ref=’F4_1’" \
5 10 @"/macro_body"
6 printf("%d",
7 @"macro_call name=’N’ first_line=’3’"
8 N
9 @"/macro_call" );

⇓
Step 2: native CPP (e.g., gcc -E) preprocesses the program
including the tracers.

⇓
1 /* foo.c.xml */
2 <define id="F4_1" dir="#define" name="N"
3 macro_body="10" first_line="2" />
4
5 printf (&quot;%d&quot;,
6 <macro_call name="N" first_line="3">
7 <macro_body ref="F4_1"> 10 </macro_body>
8 </macro_call> );

⇓
Step 3: TBCppA generates CPP mapping information by ana-
lyzing the resulting tracers.

⇓
[CPP mapping info. (part)] Macro call N in line 3 was
expanded to 10, whose definition is in line 2.

Figure 4. More actual analysis steps of
TBCppA

3. Definition of TBCppA tracers

Although the idea of tracers is quite simple as mentioned
in Section 1, the design and implementation of TBCppA is
not trivial, since the tracers must be transparent to CPP, i.e.,
the tracers must not affect the CPP behaviors. To achieve
this transparency, a special form of @"tag ..." is intro-
duced in Section 3.1. Fig. 4 shows an example of more ac-
tual (but still simplified) analysis steps of TBCppA, where
the form @"tag ..." is used.

The rest of this section covers the following important
issues in TBCppA implementation.

• The special form @"tag ..." to achieve tracer
transparency, described above. (Section 3.1)

• Encoding CPP directives in tracers to preserve the in-
formation of CPP directives even after C preprocess-
ing. (CPP eliminates all CPP directives during C pre-
processing.) (Section 3.2)

• Doubling macros for conditional directives. (Sec-
tion 3.3)

3.1. Basic syntax of tracers

Tracers in Fig. 2 use XML-like representation like <c>.
XML formats are convenient in general, but not appropriate
for the tracers in practice, since XML tags might be inter-
preted by CPP. For example, c in <c> might be expanded
to other tokens by macro substitution, and < in <c> might
be interpreted as the less-than operator in #if directives,
which causes CPP error or inaccurate results. Therefore
the tracers should be stable during CPP preprocessing. To
achieve the stability of tracers, we define the basic syntax
of TBCppA tracers as follows 4.

@"tagname attrname=’value’ . . . "
content

@"/tagname"

where value must be XML-escaped5, content must
not be XML-escaped yet, and . . . represents 0 or
more repetitions of attrname=’value’. After XML,
we abbreviate a tracer without content as @"tagname
attrname=’value’ . . . /".

The above tracer is straightforwardly translated to the
following XML element after CPP preprocessing, by ba-
sically replacing @" and " with < and >, respectively, and
XML-escaping content.

<tagname attrname=’value’ . . . >
content

</tagname>

The basic syntax of TBCppA tracer is simple, but quite
powerful. The first reason is that the form @"tag ..."
never appears in syntactically correct C source code, so
TBCppA tracers are not confused with C source code. The
second reason is that TBCppA tracers are stable and trans-
parent to CPP. By the C specification (6.4 and 6.10.3 in
[23]), the character @6 and the string literals7 do not change
during CPP preprocessing and do not affect CPP prepro-
cessing except the following contexts: constant expressions
in conditional directives like #if, the # and ## operators,
and the macros that are expanded to function-like macro
names. These exceptions will be solved or discussed in Sec-
tion 3.3, Section 4.5, and Section 6, respectively.

4For the comprehensive and formal definition of TBCppA tracers, refer
to the source code in TBCppA homepage [26].

5XML-escaping converts the characters <, >, &, ’, " to &lt;, &gt;,
&amp;, &apos;, &quot;, respectively.

6The GCC-specific extension allows the programmer to use the charac-
ter $ in identifier names, so we cannot use $ for this purpose.

7Some pre-ANSI compilers expand macro parameters even inside
string literals (11.18 in C FAQ [24]), but we ignore such old compilers.
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3.2. Tracers for macro definitions and
macro calls

For the following function-like macro definition and
macro call,

#define F(x) ((x)+10)
F(20)

TBCppA attaches the tracers as shown in Fig. 5, consist-
ing of the following three parts: (Double macros introduced
in Section 3.3 are not used in Fig. 5, but they should be used
in actual use.)

• Line 1-3: CPP eliminates all CPP directive lines
like #define F(x) ((x)+10) through CPP pre-
processing. But we need the information in those
lines even after CPP preprocessing to generate CPP
mapping information. To preserve the information,
TBCppA adds tracers that have the information of
CPP directive lines. For example, the tracers in
the line 1-3 of Fig. 5 express the macro definition
of F with its type (function-like), unique identifier
(F23 1), macro name (F), argument lists (x), macro
body (((x)+10)), etc. locinfo will be explained later.

• Line 4-8: To know what parts are substituted in
macro calls, TBCppA surrounds the whole macro
body and each macro parameter in a macro defi-
nition with the tracers like @"macro body" and
@"/macro body".

• Line 9-11: Similarly to the tracers for macro defini-
tions above, TBCppA surrounds the whole macro call
and each macro argument in a macro call with the
tracers like @"macro call and @"/macro call.
Note that it is impossible to statically know if a given
identifier (e.g., F, printf, or if) is a macro call
or not. So TBCppA takes the conservative approach;
TBCppA always adds the tracers to all identifiers as
macro calls (without maintaining the list of all macro
definitions), and the redundant tracers for non-macros
will be removed after CPP preprocessing.

locinfo in Fig. 5 means the location information,
and has the following attributes and their values, ex-
pressing the unique identifier for the source file (e.g.,
filename ref=’F23’) and line information (e.g.,
first line=’1’)8.

filename_ref=’F23’
first_line=’1’ first_column=’6’
last_line=’3’ last_column=’7’

We obtain the XML document in Fig. 6, by preprocess-
ing the code fragment that has the tracers shown in Fig. 5
and by translating the preprocessing result into the XML
format.

The first XML element with define tag in the line 1-3
of Fig. 6 keeps the information of the macro definition of
#define F(x) ((x)+10).

8first column and last column are required to accurately re-
cover the original unpreprocessed source code from preprocessed one.

The second XML element with macro call tag in the
line 4-10 of Fig. 6 keeps the essence of the CPP mapping
information. That is, it tells that the macro call F(20)
was expanded to ((20)+10) using the macro defini-
tion #define F(x) ((x)+10), known by tracing the
ID/IDREF link with the value F23 1, where the macro pa-
rameter x was substituted to the actual argument 20.

The example given here is simple, but this method of
tracing macro expansions also works well for more compli-
cated macro calls (e.g., deeply nested macro calls), except
the cases relating to double macros (Section 3.3) and some
limitations (Section 6).

3.3. Doubling macros for conditional direc-
tives

The method of tracing macro expansions, given in Sec-
tion 3.2, does not work when a tracer occurs in expressions
of conditional directives like #if and #ifdef, since CPP
cannot evaluate expressions including the tracer. Let’s con-
sider the following CPP directives, for example.

#define VER 2
#if VER >= 2
#else
#endif

By attaching the tracers to the above, we obtain the fol-
lowing (where all attributes are omitted for simplicity).

#define VER @"macro_body" 2 @"/macro_body"
#if @"macro_call" VER @"/macro_call" >= 2
#else
#endif

CPP cannot evaluate the above expression
@"macro call" VER @"/macro call" >= 2
in #if directive, since it is just an illegal expression.
Without the tracers, however, we cannot generate the CPP
mapping information for the expression. To solve this
dilemma, we introduce macro doubling. The key idea of
macro doubling is to define the following two macros for
each macro:

• Bare macro has the same macro definition as the orig-
inal one, which is used to evaluate the expressions in
conditional directives.

• Double macro has the same macro definition as bare
macro except that double macro also has the tracers,
which is required to observe the macro expansion.

Fig. 7 shows an example of macro doubling for the above
code with #if directive, simplified for explanation pur-
pose. VER is the bare macro, and VER 1528552 is the
double macro. 1528552 is used here for the suffix of dou-
ble macros, but any suffix can be used as long as it does not
conflict to other names. The following explains the tracers
and macro doubling in Fig. 7 in more detail.

• Line 1: Just like the define tag in the line 1-3 of
Fig. 5, the define tag in the line 1 of Fig. 7 keeps in
the tracers the information of the macro definition VER
not to lose even after CPP preprocessing.
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1 @"define type=’func’ id=’F23_1’ name=’F’ args=’x’ macro_body=’((x)+10)’ locinfo"
2 @"param name=’x’/"
3 @"/define"
4 #define F(x) @"macro_body ref=’F23_1’" @"param name=’x’" x @"/param" \
5 ((@"macro_call type=’param’ name=’x’ locinfo" \
6 x \
7 @"/macro_call" )+10) \
8 @"/macro_body"
9 @"macro_call type=’func’ name=’F’ args=’20’ locinfo"
10 F(@"arg exp=’20’ locinfo" 20 @"/arg")
11 @"/macro_call"

Figure 5. Function-like macro definition/call, where tracers are attached, but not preprocessed.

1 <define type=’func’ id=’F23_1’ name=’F’ args=’x’ macro_body=’((x)+10)’ locinfo>
2 <param name=’x’/>
3 </define>
4 <macro_call type=’func’ name=’F’ args=’20’ locinfo>
5 <macro_body ref=’F23_1’> <param name=’x’> 20 </param>
6 (( <macro_call type=’param’ name=’x’ locinfo>
7 <arg exp=’20’ locinfo> 20 </arg>
8 </macro_call> )+10)
9 </macro_body>
10 </macro_call>

Figure 6. The result that CPP preprocessed the code fragment with the tracers in Fig. 5

• Line 2: Bare macro definition of VER.
• Line 3: Double macro definition of VER.
• Line 4-23: The cond tag encloses the whole of a

block of conditional directives like #if . . . #else . . .
#endif, to identify the conditional directives.

• Line 5-14: Managing the #if part:

– Iff VER >= 2 in the line 5 is evaluated to true
by CPP, cond selected element in the line
6-14 will remain and will be traced through CPP
preprocessing.

– Line 7-12: In the exp element, the macro call
VER is doubled: bare macro call (line 9) and dou-
ble macro call (line 10). As will be mentioned
in Section 6, there is a case where double macro
calls cannot be correctly traced, so bare macro
calls are also placed.

• Line 15-18: The #else part is managed in the same
way as the #if part in the line 5-14.

• Line 20-22: The if, else, and endif elements
keep the information of #if, #else, and #endif
directives, respectively, not to lose through CPP pre-
processing. After CPP preprocessing and converting
the result to the XML format, we obtain the XML
document in Fig. 8. As shown in Fig. 8, only one
<cond selected> element remains and it corre-
sponds to the <if> element in the line 12, which is
known by following the XML ID/IDREF link with the
value F1 3.

The XML document in Fig. 8 also tells the following:

• In the line 5 of Fig. 7 (#if VER >= 2), using bare
macro, not double macro, allows CPP to preprocess the
conditional directives without causing CPP error.

• The double element in the line 7 of Fig. 8 tells
the macro VER in #if VER >= 2 is expanded to 2
using the macro definition #define VER 2. This
shows double macros are effective to trace macro ex-
pansions.

Thus, the macro doubling method for tracing conditional
directives works fine. Unfortunately, the method cannot
trace the conditionally excluded code (e.g., the code be-
tween #else and #endif in Fig. 7), since TBCppA is
based on the analysis of the result of CPP preprocessing.
Analyzing conditionally excluded code is extremely diffi-
cult and thus out of the scope of this paper.

4. Design and implementation of TBCppA

4.1. Design policy

The design policy of TBCppA is roughly as follows.

• No CPP modification: We never modify the existing
CPP implementation. As mentioned in Section 1, the
major advantages of TBCppA are high portability and
high maintainability. If we modify the CPP, the advan-
tages will be simply lost.

• Emphasis on practicability: TBCppA should process
as many real-world C programs as possible, run as fast
as possible, using as little memory as possible. To
achieve the requirements,

– TBCppA supports as many features of C99 [23]
and GCC-specific extensions as possible.

– TBCppA does not use the libraries that consume
much memory (e.g., XML’s DOM).

• Low development/maintenance cost: We keep
TBCppA implementation simple and compact.

4.2. TBCppA components and process flow

Fig. 3 illustrates the basic components and the process
flow of TBCppA.

• tadd.exe embeds TBCppA tracers to unprepro-
cessed C source code, and then native CPP (e.g., gcc
-E) preprocesses the code. txml.exe converts the
preprocessed code (including the embedded tracers)
into XML format.
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1 @"define type=’obj’ id=’F1_1’ name=’VER’ macro_body=’2’ locinfo/"
2 #define VER 2 /* bare macro definition */
3 #define VER_1528552 @"macro_body ref=’F1_1’" 2 @"/macro_body" /* double macro definition */
4 @"cond id=’F1_2’"
5 #if VER >= 2 /* bare macro is used here not to cause CPP error */
6 @"cond_selected type=’if’ ref=’F1_3’ locinfo"
7 @"exp orig=’VER &gt;= 2’" /* orig keeps original expression */
8 @"macro_call type=’obj’ name=’VER’ locinfo"
9 @"bare" VER @"/bare" /* bare macro call */
10 @"double" VER_1528552 @"/double" /* double macro call */
11 @"/macro_call" >= 2
12 @"/exp"
13 /* here comes the code exclusively between #if and #else with the tracers attached */
14 @"/cond_selected"
15 #else
16 @"cond_selected type=’else’ ref=’F1_4’ locinfo"
17 /* here comes the code exclusively between #else and #endif with the tracers attached */
18 @"/cond_selected"
19 #endif
20 @"if id=’F1_3’ dir=’#if’ exp=’VER &gt;= 2’ locinfo/"
21 @"else id=’F1_4’ dir=’#else’ locinfo/"
22 @"endif id=’F1_5’ dir=’#endif’ locinfo/"
23 @"/cond"

Figure 7. Example of Macro Doubling (before CPP preprocessing)

1 <define type="obj" id="F1_1" name="VER" macro_body="2" locinfo/>
2 <cond id="F1_2">
3 <cond_selected type="if" ref="F1_3" locinfo>
4 <exp orig="VER &gt;= 2">
5 <macro_call type="obj" name="VER" locinfo>
6 <bare>2</bare>
7 <double><macro_body ref="F1_1">2</macro_body></double>
8 </macro_call> &gt;= 2
9 </exp>
10 /* here comes the code between #else and #endif with XML tags converted
11 from the tracers */
12 </cond_selected>
13 <if id="F1_3" dir="#if" exp="VER &gt;= 2" locinfo/>
14 <else id="F1_4" dir="#else" locinfo/>
15 <endif id="F1_5" dir="#endif" locinfo/>
16 </cond>

Figure 8. Example of Macro Doubling (after CPP preprocessing)

• Finally tfix2.exe slightly adjusts the resulting
XML data, eliminating duplicated ID attributes, elimi-
nating tracers for non-macro calls, and replacing dou-
bled macros with the corresponding bare macros. The
output foo.c.xml becomes valid for TBCppA’s
DTD (TBCppA.dtd) [26]. Against our intuition,
tfix2.exe takes the most time in TBCppA compo-
nents (about 50% time for bash-3.1).

• All lexical tokens including whitespaces and com-
ments in unpreprocessed C source code are recorded
with their location information in another file
foo.c.lex, not in foo.c.xml. This is done on
each file basis. For example, all tokens in stdio.h
are recorded in stdio.h.lex, not foo.c.lex,
since this information is not affected by the preprocess-
ing environment. This considerably achieves file size
reduction and makes TBCppA implementation simple.

• Each filename and pathname9 are recorded to the file
db file.xml to assign a short unique identifier to
each file. This just follows the compression mecha-
nism of DWARF2 debugging information to reduce the
resulting XML file size.

• foo.c.xml includes foo.c.lex and
db file.xml using XML’s external entity ref-
erence, which corresponds to CPP’s #include.

4.3. TBCppA Parser in tadd.exe

First, tadd.exe parses unpreprocessed C source code
before embedding the tracers. The parser in tadd.exe

9TBCppA uses realpath to normalize the pathname.

is the most difficult part in TBCppA implementation. This
section explains this difficulty.

The parser in tadd.exe is not a C parser, nor a CPP
parser, since:

• The parser in tadd.exe parses CPP directives and
(potential) macro calls, ignoring the C keywords and
C syntax.

• The parser in tadd.exe does not evaluate CPP direc-
tives and does not expand any macros in parsing, while
CPP parsers do.

As an example of the latter case, consider the code frag-
ments in Fig. 9(a) and (b). The parentheses do not match in
the code fragments, but CPP processes them with no prob-
lems, since, in Fig. 9(b) for example, CPP first evaluates
#ifdef, obtains FOO(10,30) if WIN32 is true, and fi-
nally parses FOO(10,30) where the parentheses match.

Unlike CPP, tadd.exe needs to directly parse the code
fragments where CPP directives remain, which makes the
parsing of tadd.exe much difficult.

Context dependency is another reason of the difficulty.
As an example of context dependency in unpreprocessed C
source code, parentheses have to match in the context of
actual arguments in macro calls (e.g., parentheses have to
match in the actual argument (2,3) in FOO(1,(2,3))),
while not in the other contexts. As mentioned in Bison
[10]’s manual, the context dependency is very likely to vio-
late the LALR(1) paradigm, and some “kludge” techniques
are often required.

After many trial-and-errors, we practically and success-
fully implemented the parser in TBCppA by dealing with
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#define FOO(x) (x)
#define PAREN (
PAREN )
FOO(10)

(a) tadd.exe can parse
this.

#ifdef WIN32
FOO (10,

#else
FOO (20,

#endif
30)

(b) tadd.exe cannot
parse this, but continue the
parsing by error recovery.

Figure 9. Examples that mismatching paren-
theses make parsing difficult.

the four contexts in the grammar rules, whose detailes are
omitted due to the lack of space10.

As a result of taking this approach, the parser in
tadd.exe copes with both of two different structures:
the line-oriented structure in CPP directives and the
parenthesis-oriented structure in macro calls.

Generally speaking, tadd.exe cannot embed the trac-
ers when a CPP directive occurs in the middle of macro ar-
guments like Fig. 9(b). In this sense, tadd.exe is imper-
fect, but this imperfectness very little affects the accuracy of
TBCppA. For example, there are about 140,000 macro calls,
including the macro calls in included header files, in gzip-
1.2.4 (consisting of around 7300 lines) and bash-3.1 (around
70,000 lines), but tadd.exe only reported 10 parse errors
in the preliminary experiment (Section 5.2).

4.4. TBCppA code size and development
time

The code size of TBCppA(ver 0.0.3b) is small; it consists
of only 3,700 lines, using several programming languages
including Bison, Lex, C, csh, XSLT and Graphviz’s dot.
The development time was two months by one programmer.
In TBCppA components, tadd.exe (Fig. 3) is the largest
one; it consists of 3,000 lines including tadd.y with 101
grammar rules and 1,300 lines of code.

4.5. The devil is in the details

The idea of TBCppA is novel, but quite simple, as
TBCppA just embeds the tracers, runs native CPP as-is, and
generates CPP mapping information by analyzing the re-
sulting tracers. But, as is often the case in software engi-
neering, there are a lot of small issues that we had to solve
in implementation. Here we enumerate a part of them, but
we do not describe their details due to the lack of space.

• Error handling in TBCppA parser.
• Eliminating duplicated ID attributes.
• Coping with # and ## operators.
• Identifying macro calls.
• Avoiding erroneous macro redefinition.

There are other issues not listed here. See Section 6 for
unsolved issues.

10Due to the context dependency, it is very difficult to implement the
TBCppA parser simply using the string pattern-matching given in some
script languages.

5. Preliminary evaluation

This section provides a preliminary evaluation of
TBCppA’s performance (its execution speed and the file
sizes of the resulting CPP mapping information) to demon-
strate that TBCppA is highly practical in the sense that
TBCppA processes even large open source software like
GCC in a reasonable speed. This section also provides three
applications using TBCppA’s CPP mapping information to
demonstrate the output of TBCppA is useful enough.

All the performance given in this section is measured in
the Notebook PC platform (Intel Pentium M 1.2GHz, 1GB
RAM, Windows XP SP2, Cygwin 1.5.19, GCC 3.4.4, Bison
2.1, Flex 2.5.4, Libxml 2.6.22, Graphviz 2.8).

5.1. Execution time of tadd.exe’s embed-
ding the tracers

The execution speed of tadd.exe’s embedding the
tracers is very fast. To show this, we measured the exe-
cution time of tadd.exe’s embedding the tracers in 480
system header files including /usr/include/*.h. The
result shown in Table 1 is very good; tadd.exe processed
the total of 140 KLOC 11 (including empty lines and com-
ments) only in 89 seconds.

As far as we know, the result of embedding the tracers is
correct except three header files, all of which use the GCC-
specific variadic macros. This is simply because the cur-
rent version of TBCppA cannot cope with the GCC-specific
variadic macros.

5.2. Execution time of TBCppA’s generat-
ing CPP mapping information

The execution speed of TBCppA’s generating the CPP
mapping information is reasonably fast. To show this, we
measured the execution time of TBCppA for several pro-
grams including gzip-1.2.4, bash-3.1 and gcc-4.1.4 . The
result is shown in Table 2.

Before TBCppA processes the file foo.c, TBCppA
needs to embed the tracers in all the header files
#included in foo.c. So, in Table 2, the processing
time of embedding the tracers in the header files (except
the system header files) and the processing time of generat-
ing the CPP mapping information for foo.c are separately
measured. The execution time for gcc-4.1.1 (consisting of
around 630 KLOC) is about one hour. This result demon-
strates that TBCppA runs fast enough for non-interactive
applications. TBCppA can be acceptable even for interac-
tive applications, since the CPP mapping information can be
updated incrementally for each file (i.e., translation unit).

Table 2 also shows the file size of the CPP mapping in-
formation, which is 13 to 25 times as large as the file size
of the preprocessed source code. XML technology often
increases the file size by 10 to 100 times, so this result is
natural.

11KLOC: 1,000 lines of code.
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Table 1. Execution time of TBCppA’s embedding tracers in system header files and the resulting file
size

# of files original size of *.h execution time size of *.h+ tracers
480 140 KLOC (5.0MB) 89 sec 73.8MB

Table 2. Execution time of TBCppA generating CPP mapping information and the generated file size
size of
*.h

size of *.c
before CPP

size of *.c
after CPP ¶ processing

time of *.h
processing

time of *.c
size of *.c+ tracers ¶ generated file size

*.c.{xml,lex}
hello.c† — 5 lines (76B) 76B — 0.45 sec 2.8KB 0.8KB+4.4KB
hello2.c† — 5 lines (63B) 24KB — 1.4 sec 1.7KB 520KB+3KB

gzip-1.2.4 7.4KB 7.3 KLOC (230KB) 1.5MB 0.6 sec 32 sec 3.1MB 11.9MB+7.0MB
bash-3.1‡ 420KB 70 KLOC (1.8MB) 10MB 13 sec 485 sec 33MB 191MB+61MB
gcc-4.1.1§ 3.7MB 630 KLOC (18MB) 102MB 72 sec 3,602 sec 332MB 1.2GB+554MB

† hello.c does not #include <stdio.h>, while hello2.c #includes <stdio.h>.
‡ The files under lib directory in bash-3.1 are not analyzed here.
§ The files of gcc/{,cp/}*.c are analyzed here after configured with the options --enable-threads=win32
--with-cpu=i686 --with-arch=i686 --with-tune=i686 --enable-languages=c,c++.

¶“size of *.c after CPP” refers to the size of preprocessed source code in normal compilation (i.e., tracers are not included),
while “size of *.c + tracers” refers to the size of TBCppA/foo.c in Fig. 3.

5.3. Applying CPP mapping information to
tools

[func macro]
STREQ(temp, RESTRICTED_SHELL_NAME)

#define STREQ(a, b) ( ( a ) [ 0 ] == ( b ) [ 0 ] && strcmp ( a , b ) == 0 )

( (
[param]

a
) [ 0 ] == (

[param]
b

) [ 0 ] && strcmp (
[param]

a
,

[param]
b

) == 0 )

[arg]
temp

temp

[arg]
RESTRICTED_SHELL_NAME

[obj macro]
RESTRICTED_SHELL_NAME

#define RESTRICTED_SHELL_NAME 

[arg]
temp

temp

[arg]
RESTRICTED_SHELL_NAME

[obj macro]
RESTRICTED_SHELL_NAME

#define RESTRICTED_SHELL_NAME 

Figure 10. tmacro visualizing macro expan-
sion of STREQ in shell.c (line 1104 of bash-
3.1)
To show how the CPP mapping information generated

by TBCppA (e.g., in Section 5.2) is practical and useful, we
experimentally developed the following small but practical
applications that utilize the TBCppA’s output:

• tmacro visualizes the macro expansion. A screen
snapshot is shown in Fig. 10.

• tifdef src2html grays the conditionally excluded code
as shown in Fig. 11.

• trecov demo recovers the original file from the CPP
mapping information generated by TBCppA and the
preprocessed source code, not using the token level
information in *.c.lex (Section 4.2) for recover-
ing the macro calls. In Fig. 12, the same file as the
original shell.c of bash-3.1 is identically recovered
from shell.c.xml, shell.c.lex, and the pre-
processed shell.c.

The above tools are all small; 65 lines in csh and 136
lines in XSLT for tmacro, 22 lines in XSLT and 160 lines in
C for tifdef src2html, and 755 lines in C for trecov demo.

Figure 11. tifdef src2html gray-
ing the conditionally excluded code in
execute cmd.c of bash-3.1.

Figure 12. trecov demo recovering the orig-
inal file (shell.c of bash-3.1) using CPP
mapping info.

The development time for them was short; each of them
only required 0.5 to 4 man-days.

6. Limitations

Although TBCppA has many positive characteristics,
TBCppA has several limitations. Here we enumerate the
major limitations12:

12Many other CPP analyzers do not state their limitations, but the limi-
tations should be more open to the public.
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• The current TBCppA does not support the GCC-
specific variadic macros.

• The current TBCppA provides the wrong information
about the macro parameters ( VA ARGS ) of C99
variadic macros in the <double> element.

• In the macro calls like F1(a) in the following,
TBCppA reports the wrong process of macro expan-
sion in the <double> element, although TBCppA
reports the correct result of macro expansion in the
<bare> element.

#define F1 F2
#define F2(x) (x)
F1 (a)

• It can be time-consuming for the user to collect all the
CPP command options (e.g., -I and -D in GCC) given
in the original build, which is required to use TBCppA.

• TBCppA does not analyze conditionally excluded
code.

• TBCppA’s CPP mapping information does not include
the macro definitions given by the CPP command line
(e.g., -DNDEBUG in GCC) and the macro definitions
that CPP pre-defined in an implementation-specific
manner (e.g., unix, i386 mentioned in Section 2.3).

7. Related work

To our knowledge, this is the first paper that proposes a
method using tracers to generate CPP mapping information.

Previous works [1–4, 8, 9, 11–13, 15, 17–21, 27, 28] im-
plement CPP emulators or modify real CPPs to generate the
CPP mapping information, which all causes problems like
inaccuracy or low portability as mentioned in Section 2.

Garrido proposed CRefactory to analyze multiple con-
figurations introduced by #ifdef directives [8, 9]. The
idea of CRefactory is very attractive because it analyzes all
possible configurations simultaneously by completing (or
normalizing) preprocessor conditionals and directly parsing
unpreprocessed source code. As far as we know, CRefac-
tory has not been released yet to the public, which might
imply the difficulty of implementing CRefactory that can
handle real-world C programs.

[14] proposed a new AST-based macro language
ASTEC that causes less CPP problems, but the ASTEC ap-
proach requires to rewrite all the existing code to ASTEC.

The method using DWARF2 debugging information [25]
simply lacks the information about the macro expansions.

8. Conclusion

This paper proposed a novel approach based on tracer
to generate CPP mapping information, which is indispens-
able to accurately analyze C source code. To demonstrate
our approach, we developed TBCppA, and applied it to
gcc-4.1.1. We also developed three small tools using
TBCppA’s CPP mapping information. The preliminary re-
sult suggests that our tracer approach works fine for large
software products like gcc-4.1.1.

As future work, we need to relax the limitations given
in Section 6, although we believe the limitations very little
affect the accuracy and usability of TBCppA. We also need
to provide more development tools using TBCppA’s CPP
mapping information.
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