
Analysis and Transformations for Efficient Query-based Debugging ∗

Michael Gorbovitski K. Tuncay Tekle Tom Rothamel Scott D. Stoller Yanhong A. Liu
Computer Science Dept., State Univ. of New York at Stony Brook, Stony Brook, NY 11794

{mickg,tuncay,rothamel,stoller,liu}@cs.sunysb.edu

Abstract

This paper describes a framework that supports power-
ful queries in debugging tools, and describes in particular
the transformations, alias analysis, and type analysis used
to make the queries efficient. The framework allows queries
over the states of all objects at any point in the execution
as well as over the history of states. The transformations
are based on incrementally maintaining the results of ex-
pensive queries studied in previous work. The alias analysis
extends the flow-sensitive intraprocedural analysis to an ef-
ficient flow-sensitive interprocedural analysis for an object-
oriented language with also a form of context sensitivity. We
also show the power of the framework and the effectiveness
of the analyses through case studies and experiments with
XML DOM tree transformations, an FTP client, and others.
We were able to easily determine the sources of all injected
bugs, and we also found an actual bug in the case study on
the FTP client.

1. Introduction
Debugging is the process of determining the source of an

error given the symptoms of the error. While it is about pro-
gram executions on particular inputs, it is necessarily also a
process that requires significant effort analyzing the source
code and often manipulating the code, manually, even with
the help of good debugging tools. Methods and tools that
can help reduce the effort needed are greatly desired.

Query-based debugging is a framework that allows pow-
erful queries to be used in debugging. Unlike techniques
that allow only values in a single scope to be used, it al-
lows the use of all values in the program state, and even in
the history of states. The results of these queries are used
to watch conditions and trigger actions as the program exe-
cutes. Although powerful queries can help make debugging
much easier, they are also much more expensive to com-
pute, and the values that the queries depend on change con-
tinuously as the program executes. These powerful queries

∗This work was supported by NSF under grants CCF-0613913, CNS-
0509230, and CCR-0306399, and by ONR under grant N00014-07-1-
0928.

are far from being supported in debugging tools, because
of the significant overhead in computing the query results
from scratch and the sheer difficulty in manually writing
code that computes the query results incrementally as the
program executes.

This paper describes a framework that allows powerful
queries to be used in debugging tools, and describes in par-
ticular the transformations, alias analysis, and type analy-
sis used to make the queries efficient. The framework al-
lows queries over the states of all objects at any point in
the execution as well as over the history of states. The
transformations are based on incrementally maintaining
the results of expensive queries studied in previous work.
The alias analysis extends the algorithm for flow-sensitive,
context-insensitive, intraprocedural analysis in [12] to an ef-
ficient flow-sensitive interprocedural analysis for an object-
oriented language, with limited context sensitivity. The type
analysis uses iterative computation of abstract data values,
yielding more precise analysis results than standard type
analysis while keeping the analysis efficient. Both analyses
are critical in detecting precise changes where incremental
maintenance of query results should be performed.

We also describe an implementation and experiments that
show the power of the framework and the effectiveness of
the alias analysis and type analysis. Case studies in the ex-
periments include finding when certain properties of XML
DOM representations are violated, determining sources of
out of bounds exceptions for array indices, and finding out-
of-order commands sent by an FTP client. We were able
to easily determine the sources of all injected bugs, and we
also found a non-injected bug in the FTP client.

Query-based debugging has been studied for at least a
decade [19] and has received increased attention in recent
years [18, 24, 22, 30], and much other related work has also
been done, as discussed in Section 6. To the best of our
knowledge, no previous work supports the general forms of
queries that our framework allows and achieves the level of
efficiency that our methods do. Compared with our own
work on incrementalization and run-time invariant check-
ing [20, 11], this paper for the first time studies debugging
and describes our alias analysis and type analysis precisely,
and supports their efficiency as part of the experiments. Our

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.27

174

flow-sensitive alias analysis for an object-oriented language
extends prior work [12].

2. Framework
The premise of query-based debugging is that allowing

users to easily write expressive queries about the program
execution helps them find and diagnose bugs.

In this section, we describe the query language, its fea-
tures, and three classes of errors, as well as queries that help
to find the bugs that cause the errors. Then, we discuss the
efficient implementation of the language.

Debugging rules and queries. The general form of a de-
bugging rule is shown in Figure 1.

foreach(query) :
action

(de in scope (field decl |method decl)?)∗

(at update
(if condition)?
(de (in scope (field |method)+)∗)?
do (before maint (after maint)?) |

(instead maint)
)∗

Figure 1: General form of a debugging rule.

A query has the form (v1 in S1, . . . , vk in Sk: condi-
tion); condition is a conjunction where each conjunct has
the form e1 op e2, op is ==, !=, in, or not in, ei be-
ing v or v.f, with v a variable and f a field; or a boolean
expression whose value depends only the objects in the con-
tainers iterated over by the query (S1, . . . , Sk), the fields of
these objects, and any immutable objects. The set of tuples
of values of v1, ..., vk, such that condition holds is called
the query result. action is a sequence of statements to be
executed for each tuple in the query result.

The rest of the syntax is based on InvTS [20]. The at
clause contains a code pattern update that gets matched
against expressions in the program. The update clause may
contain Python code and meta-variables. Meta-variables are
denoted by prefixing their name with “$”, and they match
expressions in the program. For each part of the code in the
subject program that matches the pattern in the at clause,
if the condition in the if clause is satisfied, then the decla-
rations in the de clause are inserted into the program in the
specified scope, and the maint code in the do clause is in-
serted before, after, or instead of (i.e. replace) the
code matched by update. In the if clause, the condition
is built from standard logical connectives and functions de-
fined for the subject language. For example, class(expr)
returns the class in which expr appears, and type(expr)
returns the type of expr. In the de clause, scope can be
global or the name of a class, method, package, or file.

Violation of invariants. Detecting violations of data
structure invariants as soon as they occur, instead of waiting

until incorrect output is produced, can make it much easier
to find and diagnose bugs.

For example, tree data structures in the Python XML
DOM implementation have the invariant that when node a
is in the children set of node b, a.parent must re-
fer to b. Finding the node that the child was added to us-
ing standard debugging techniques is difficult, due in part
to aliasing. For example, the following code aliases x to
parent.children, and then updates the set through x,
without accessing the children field:

x=parent.children
x.add(child)

The debugging rule in Figure 2 says to stop the DOM im-
plementation when a child and parent are inconsistent. For
simplicity, consistency is checked at every program point.
To check consistency only at specified program points (e.g.,
method return points), we could extend the action with an
if statement that checks whether we are at such a point.

foreach (n in extent(Node),
m in extent(Node) :
m in n.children and
m.parent != n):

report("Child ", m, "is a child of ",
n, ", but ", n, " is not the",
" parent of ",n)

stop()

Figure 2: A child’s parent field must point to its parent.

For every class T , extent(T) is a special set defined
by our framework to contain all currently existing objects
of type T. report and stop are functions in the subject
programming language: report takes any number of ar-
guments and prints the concatenation of their string repre-
sentations; stop stops the program and drops into a de-
bugger. The condition in this case is m in n.children
and m.parent != n. It is a conjunction of relational
joins (because each conjunct contains multiple variables).

It is easy to write this rule in our framework, but it is dif-
ficult to manually write code that would compute the value
of the query efficiently for the following reasons: (1) The
result of the query may be changed by any statement that
adds an object to a collection, such as : x=o.children;
...; x.add(o). It is tedious and error-prone to write
code to intercept all calls to add and determine whether
the target object equals the children field of some in-
stance of Node. (2) Efficiently maintaining the result of a
join over two changing sets is non-trivial, and involves the
maintenance of additional information, etc. In our frame-
work, the user writes the rule, and our system does the rest,
generating correct and efficient code for it and inserting that
code properly in the program to be debugged.

Violations of temporal properties. Bugs often manifest
themselves as violations of temporal properties. Detecting

175

foreach (c1 in $exec_commands,
c2 in $exec_commands :
c1.cmd == ’ls’ and
c2.cmd == ’cwd’ and

c1.host == c2.host
):

report(’ls and cwd being executed’,
’ at the same time.!’)

stop()
de in global:
$exec_commands=set()

at $x.cwd($dir):
if type($x) == ftplib.FTP:
do before:

$c=command($x,’cwd’)
$exec_commands.add($c)

do after:
$exec_commands.remove($c)

at $x.list():
if type($x) == ftplib.FTP:
do before:

$c=command($x,’ls’)
...

Figure 3: A rule that makes sure no new FTP ls commands are
sent while there are outstanding cwd commands.

these violations immediately, which may be well before in-
correct output is visible, can make it much easier to pin-
point the source of the error. Our framework allows users
to write queries that express temporal properties using de-
bugging rules that transform the program to maintain infor-
mation about past events. This is similar to aspect-oriented
programming [16]. We illustrate such a query with a case
study involving nftp, an FTP synchronization tool.

Nftp did not copy some directories that it should copy.
Inspection of the logs on the FTP server reveals that after
changing directories, nftp is trying to copy files from the
old directory, not the one it changed into. Since the nftp is
multi threaded, we guess it does not wait until the cwd com-
mand completes before enumerating the files and starting to
copy them. This bug is not obvious from inspection of the
nftp code, because the commands appear in the correct or-
der in the code; to realize the error, one needs to think about
the use of multiple threads and how they are synchronized.
It is also difficult to verify this hypothesis using standard
debugging techniques, as there is no easy way to find out to
which commands the tool has not yet received a reply to, as
the ftplib module that is used by nftp does not create an
object per sent command and does not internally maintain
the set of outstanding commands.

The rule in Figure 3 stops the program when a new ls
command is sent to a host while a cwd command to that
host is still outstanding. The rule maintains (and queries)
$exec_commands, a set of outstanding FTP commands.
At all places in the program where the cwd command is
executed by an ftplib.FTP object (at and if clauses),

it is added to $exec_commands immediately beforehand
(do before). It is removed from the set immediately af-
ter (do after) the cwd call returns. The same is done for
list and other FTP commands. The dollar sign indicates
that $exec_commands is a meta-variable; it will be in-
stantiated with a fresh program variable, whose value will
be set to a new empty set (de). command is a class we de-
fine, with fields cmd and host to store the command and
the host nftp is connected to, respectively.

Causes of uncaught exceptions. Many bugs manifest
themselves as uncaught exceptions. For example, in
Python, an expression $L[$R] throws an IndexError
if the index $R is out of bounds for the ordered collection
(e.g., a list) $L. To debug such an error, the user would like
to know which assignment led to it. The query in Figure
4 finds the earliest update after which the error became “in-
evitable”, i.e., $L[$R]would still throw IndexError af-
ter every subsequent update to $L or $R. This is difficult to
do with standard debugging techniques for two reasons: we
do not know the list object involved in the IndexError
until it occurs, and there might be multiple ways to update
the index if the index is inside an object, via aliasing of that

foreach (c in $C, i in $I :
c.value != None and
i.value != None) :

if outOfRange(c.value, i.value):
if (c.value,i.locId) not in $bad:

$bad[c.value,i.locId]=$LOCATION
else:

if (c.value,i.locId) in $bad:
del $bad[c.value,i.locId]

de in global:
$bad={}
$C=set()
$I=set()
def wrapper(L,R,locIdR):

try: return L[R]
except IndexError, error:

report ("Became inevitable at: ",
bad[L,locIdR])

stop()
var $L, $R
at $L[$R]:
if line(12) and file(’t.py’):
do instead:

wrapper($L,$R,locId(’$R’))
at $e:
if part($e,’$x’,’alias($x,$L)

and update($x)’):
do before:

$obj=Update(locId=locId(’$x’),value=$x)
$C.discard($obj)
$C.add($obj)

Figure 4: A rule that helps determine the cause of an uncaught
exception.

176

object. After determining that the exception occurs at line
12 in the file t.py, the program needs to be executed again,
after instrumentation with this query, to find the updates.

The rule works by replacing $L[$R]with a function call
that returns the result of the lookup if successful; otherwise
it prints the location at which the IndexError became in-
evitable. To accomplish this, the rule uses a query to main-
tain a map $bad from objects which may be aliased to $L,
and variables (e.g. fields) that could be aliased to $R to lo-
cations after which the error becomes inevitable. The query
is over $C (Collection) and $I (Index), sets that contain
the last place where variables and objects that $L[$R] de-
pends on were last updated. Computing bad using a query
allows us to write what bad is declaratively, instead of man-
ually incrementally computing changes to it whenever $C
or $I are updated. outOfRange(a,b) returns whether
a[b] will throw an exception. $LOCATION is a keyword
that expands to an object that identifies the statement be-
ing transformed. Update stores two fields: locId and
value store an object identifying an instance of variable,
and an arbitrary value, respectively. Only locId is used for
comparing instances of ID. Thus, $C.discard($obj)
removes the entry with the same locId as $obj from
$C, and $C.add($obj) adds to it $obj with the new
value. locId is a function that generates an identifier
that uniquely identifies an instance of an lvalue. Updates to
$R are handled in the same way as updates to $L, under the
substitutions $L⇒$R, $C⇒$I (This part of the rule is not
shown). part($e,’$var’,cond) is a special function
that, for each subexpression of $e, evaluates whether cond
is true for that subexpression, and binds $var to it. Note
that if there are no updates to either $L or $R, then code to
maintain $C, etc. is not inserted.

This rule can be reused by changing line(12) and
file(’t.py’) to indicate the file and line at which the
IndexError occurred. Similar rules can identify causes
of other kinds of exceptions and other invariants.

Implementation. The straightforward way to implement
this language is to evaluate every query at every program
point. This is very inefficient, especially if the size of the
collections queried over is large. Evaluating each query
only at program points that affect its result is more effi-
cient, yet still requires repeated reevaluation of the query.
For all queries specified by the programmer, our implemen-
tation incrementally maintains their results whenever a set
or object the queries depend on changes. The transforma-
tions used to achieve this are described in [11]. There are
two steps involved in this approach: (1) generating mainte-
nance code, and, (2) applying the maintenance code at the
appropriate places.

In step 1, we generate maintenance code that properly
maintains the query results in the face of all possible up-
dates to the data the query depends on. This is accomplished

by compiling the query into an InvTS rule [20], which
then transforms the subject program so that it incrementally
maintains the query result. The resulting rule looks like a
rule in Figure 1, except that it only consists of at, if, de,
and do clauses, and says “at a given update if a condition
holds do maintenance code”. InvTS (the Invariant-driven
Transformation System) is a program transformation sys-
tem geared towards source-to-source transformations that
maintain invariants.

In step 2, we apply the maintenance code at all places
where the query result might change. This involves de-
termining all locations that update the variables the query
might depend on. InvTS uses control-flow, data-flow, type,
and alias information to determine which updates do not
affect the query result, eliminating the need to insert main-
tenance code guarded by runtime checks (of aliasing, etc.)
at such updates. Also, it is often possible to statically eval-
uate the if clauses, especially if the condition consists of
only comparisons of type expressions. This has the effect of
reducing the number of needed runtime checks, thus reduc-
ing the overhead of maintaining the query result, as shown
in Section 5 (especially Figure 5). The next two sections
describe our alias analysis and type analysis. We call the
system we have implemented qbdPy (Query-based debug-
ging for Python).

3. Alias analysis
We use alias analysis to reduce the number of runtime

checks, as an update to a variable that is not aliased to any-
thing in the query cannot affect the query result. Clearly,
more precise alias analysis allows more runtime checks to
be eliminated.

Two variables in a program are aliased to each other if
they refer to the same location or object. Alias analysis of
a program computes pairs of variables that are aliased to
each other. Computing these pairs precisely is undecidable
[25], therefore only an over-approximation, called may-
alias analysis, is safely used for our purpose. A may-alias
analysis computes pairs of variables that may be aliased to
each other.

A may-alias analysis is flow sensitive if it computes pairs
at each program point. It is interprocedural if it prop-
agates these pairs (and changes to them) through proce-
dures (for example, by analyzing an inter-procedural con-
trol flow graph). The analysis is context insensitive if it
can not distinguish different calls of the same procedure.
Note that flow sensitivity, context sensitivity, and the analy-
sis being inter vs. intraprocedural are orthogonal [17]. Dur-
ing the development of InvTS, we have investigated flow-
insensitive [3] and flow-sensitive but context-insensitive
may-alias analysis algorithms. We found their precision to
be insufficient. We settled on the current flow-sensitive, par-
tially context-sensitive algorithm as sufficiently precise.

An intraprocedural, flow-sensitive, and context-

177

insensitive may-alias analysis has been described in [14],
and an optimally efficient algorithm for it is given by
Goyal [12]. However, this analysis is intraprocedural and
does not handle classes. To analyze an object-oriented
language such as Python or Java, the analysis needs to be
extended to handle interprocedural analysis and classes.
We describe how we handle these differences and give a
time complexity analysis compared with the algorithm in
[12]. We did not perform fully context-sensitive analysis
because it is much more expensive, and our analysis is
sufficiently precise for our purposes.

Interprocedural analysis. Extending the intraprocedural
analysis to an interprocedural one requires handling the fol-
lowing features: function calls and function parameters. We
rename variables such that same named variables are named
differently if their scopes are different. Then we build the
control-flow graph except for the function calls and param-
eters, and modify the control-flow graph as follows:

For each parameter p of a function and its argument a at
a call to p, we create a control flow graph node n for a new
statement p = a, add an edge from the function call node to
n, and add an edge from n to the entry point of the function.

For each function call appearing on the right hand side of
an assignment, we replace the call with a fresh variable v;
for each return statement return r, we create a node for a
new statement v = r, add an edge from the return statement
to the new statement, and consider the new statement as an
exit point of the function. We then add edges from all exit
points of the function to the statement that follows the call.

Classes. To add classes to the analysis, we handle con-
structors, member function calls, and field accesses. We
flatten classes in the sense that we remove class definitions
and turn member functions into regular functions and en-
sure that they take the object that they are invoked on as
a parameter (this in Java, self in Python). We rename
all variables and functions to reflect their enclosing classes.
For each field f of an object o, we treat o.f as a possible
name for a variable and handle it as described below.

For each reference to an object in the program we proceed
as follows. If we encounter an object construction, o =
c(p1,p2,..), in order to maintain a persistent reference
to a created object, we replace the statement with two state-
ments: ref o = c(p1,p2,..); o = ref o, where
ref o always refers to the object created at this program
point. For each constructor and member function, we build
the control-flow graph as described.

To handle fields, at a call to a member function on an
object o, if o is an object of class c, then for each field f
of c, we create a node n for a new statement self.f = o.f ,
add an edge from the function call node to node n, and add
an edge from n to the entry point of the function. We also
create another node m for a new statement o.f = self.f , add
an edge from each exit point of the called member function

to m, and add an edge from mi to the next statement at the
call site. The self object is handled in the same way, by
introducing the statement self = o before the function.

Other features. We can also handle languages that allow
nested function declarations such as Python, where a func-
tion f nested inside another function g can read the vari-
ables of g that are in scope at the declaration of f . We take
each such function declaration to the global scope, add the
variables in the local scope as parameters to f , and also add
those variables as arguments to the calls of f . Similar mod-
ifications combined with handling of classes allow handling
of nested classes as in Java.

For languages that allow polymorphism, at a call to a
polymorphic method, we add edges from the call to all pos-
sible methods. We reduce the set of possible methods by
type analysis.

By similar extensions, the methods described above
can be used to perform may-alias analysis on any object-
oriented programming language.

Optimizations. For a language that does not allow arbi-
trary type-casting such as Python, we utilize the type system
described in this paper, and disallow the addition of pairs of
variables which are of incompatible type to the analysis.

Other optimizations based on static analysis are also pos-
sible. In particular, if the value of the condition of an if
statement can be determined statically (this is often possi-
ble if the condition only involves const... types) then we
eliminate the dead branch.

Summary and time complexity. By handling the above
discussed features and then using Goyal’s algorithm, we ob-
tain a flow sensitive, interprocedural may-alias analysis for
an object-oriented language.

Goyal [12] gives an O(N × V 2) algorithm for the in-
traprocedural analysis, where N is the size of the program,
and V is the number of variables, so it is bounded by
O(N3). With the extensions above, assuming that the arity
of functions and the number of fields per class are bounded
by constants, we obtain an O(N×V 2) algorithm for the ex-
tended analysis where N is the size of the program and V is
the number of original variables. Note that this is optimal,
as Goyal’s algorithm is, because the output size is bounded
by O(N × V 2)

Extensions. The analysis discussed so far is context in-
sensitive. A form of context sensitivity can be added to
make the analysis more precise but keep the analysis result
to be one set of alias pairs per program point: after vari-
able renaming, make a copy of the function for each call
to the function, but do not rename local variables to be dis-
tinct again; do everything else as before; and finally union
results from copies for each function. An optimization for
space is to not make the copy until the call is analyzed and
not to keep the copy after it is analyzed. The code size be-
comes O(N2) but the number of variables stays the same,

178

so the time complexity is O(N2 × V 2), which is bounded
by O(N4). This is the algorithm we implemented.

Another possible way of adding of context sensitivity is
by inlining non-recursive functions. This makes the analy-
sis more precise by limiting propagation of may-aliases that
are not possible in the calling contexts. If each function is
of size O(s), there are O(c) calls to each function, and the
depth of calls for non-recursive functions is O(d), then the
analysis now takes O((N +(s×c)d)3). If one assumes that
the depth of calls and the number of calls to functions are
bounded by constants, then this analysis is O(N3).

4. Type analysis
Our system uses static type analysis to reduce the number

of runtime checks. If a variable is being updated, and vari-
ables (or fields) of the same type are not used in the query,
then the update cannot affect the result of the query, and the
corresponding runtime check can be eliminated.

The goal of our type analysis for Python is not to stati-
cally ensure type safety, but to obtain type information that
can be used in various analyses, such as may-alias analy-
sis. Thus, the type system for Python we propose collects
as much information in its types as possible. For example,
if a variable v can only evaluate to 1 or 2, we infer that v
has the type union(intconst(1), intconst(2)).

First, we present a type system for Python, and a type in-
ference algorithm for it. Then, we give an extension for the
type system and show the necessary changes to the infer-
ence algorithm for this extension.

Basic type system. A Python expression’s value, eval-
uated at runtime, can be put into one of the following
groups: int, float, boolean, string, list, tuple, set, dict
(a map), class, function, instance (an instance of a class),
methodbound, module (similar to a package in Java), or
none. We make each of these groups a type.

A Python expression can evaluate to values of different
types each time it is evaluated. To accommodate this, we
introduce the union type union(type1, · · · , typek), where
each type is any type other than a union type. The type in-
ference rules define a multimap at each program point from
expressions to their possible types. Most of the rules mirror
Python semantics in a straightforward way. For example, a
rule for handling addition of two ints is

z = x + y, int ∈ in[x], int ∈ in[y]
out = in ∪ {z → int}

x, y, and z are expressions in the program, in is the mul-
timap from expressions in scope to their types right before
the current program point. out is the multimap from expres-
sions in scope to their types right after the current program
point. Other rules are similarly straightforward. Encoding
Python semantics into rules resulted in 67 rules. We do not
need rules for union types, because they are represented im-
plicitly by using a multimap to allow an expression to have

multiple types.

Type inference. We implement an algorithm based on it-
erative type inference in order to infer the multimap out
for every node in the control flow graph (CFG). The algo-
rithm starts by converting the CFG to three address code
(3AC) and assigning types to every literal constant in the
program. Then, the least fixed-point of the typing rules
is computed. For a node m, inm, a multimap contain-
ing the types of expressions that are in scope at m, is
computed: inm =

⋃
n∈pred(m) inscopem(outn), where

inscopem(outn) contains the types of expressions in outn
that are in scope at m, and pred(m) is the set of predeces-
sors of m in the CFG. The sizes of inm and outm are lim-
ited to the number of expressions in scope at m, called S.
outm is computed by evaluating the typing rules under the
substitution {in → inm, out → outm}. The output of the
algorithm is O(N) multimaps, with at most O(S) entries
per map, where N is the size of the CFG. An incremental
workset algorithm that incrementally maintains out for each
node is used to compute the least-fixed point in O(N × S)
time.

Extended type system. We extend the basic type sys-
tem to distinguish different integers, different classes, dif-
ferent functions, etc. For all the basic types presented
above except none, we introduce some subtypes. We de-
fine type T to be a subtype of T ′, denoted as T ≺ T ′, if
values(T) ⊂ values(T ′), values(T) defined as the set of
Python values that have type T .

For int, we create the following subtypes intconst(x),
intrange(from, to) and intnon neg , with the obvi-
ous meaning; x, from, and to denote integer con-
stants. We introduce similar subtypes for bool and
float. For string, we differentiate between strings
of known content (stringconst(x)) and known length
(stringfixed length(n)). For lists, we introduce sub-
types that represent lists of known content, lists of known
length, and lists of unknown length but known homo-
geneous type. The same is done for tuple, set, and
dict. module has two subtypes. The first is when the
module name and all the module variables are known
(moduleconst(name, (v1 : t1, v2 : t2, . . .)), name is
the given name of the module, (v1 : t1, v2 : t2, . . .)
is the set of variable:type pairs that represent the bind-
ings exported by the module); the second, where just
the module name is known (moduleknown name(name)).
functions whose bodies are known are represented by the
subtype funcconst(treturn, (tp1, tp2, . . .), [name]), with
treturn being the return type, tp1 being the type of the first
parameter, and name being the optional (hence in []) name
of the function. A similar encoding to funcconst is used
for bound methods (methodbound). For brevity, we omit
the precise types of the parameters, such as a boolean for
boolconst, and a floating-point number for floatconst.

179

Extended type inference. Most of the new typing rules
are straightforward. For example,

z = x + y, intconst(p) ∈ in[x], intrange(f, t) ∈ in[y]
out = in ∪ {z → intrange(f + p, t + p)}

The extended type system contains 312 rules. Many rules
are needed to capture the semantics of builtin functions,
such as range, a function that takes one integer p, and
returns a list containing integers 0 to p− 1, in order. One of
the rules for range is:

z = range(x), intconst(p) ∈ in[x]
out = in ∪ {z → listconst((intconst(i) | i ∈ 0..p − 1))}

Note that the list comprehension (intconst(i) | i ∈ 0..p−1)
gets evaluated to listconst during type inference. Similar
rules exist for handling list and set operations.

The following rule handles a two-parameter function call.
It iterates over all possible types of parameters (the ∀A ∈
in[a], · · ·) , matching it to existing funcconst signatures for
f , and adding all possible types of the return value to out.

z = f(a, b), out = {} ,

∀A ∈ in[a], B ∈ in[b] :
funcconst(tr, (A, B)) ∈ in[f]
out = out ∪ in ∪ {z → tr}

We extend the type inference algorithm for the basic type
system to infer extended types. Changes are needed for two
reasons. (1) The basic algorithm does not terminate because
there are now an infinite number of types (intconst(1),
intconst(2), etc.). (2) The algorithm can be made more pre-
cise by computing an out multimap per outgoing edge of
each node.

We call the process of adding another type to an expres-
sion due to a type judgement type extension. The type
complexity of a union type is the sum of the type com-
plexities of its members. The complexity of a type with
type parameters (such as list) is one more than the sum of
the complexities of its type arguments. The complexity of
other types is 1, except for intrange, whose complexity is
one more than the number of times that the range of val-
ues has been extended. To ensure termination, we intro-
duce a cutoff c, and whenever the type of an expression e
has complexity > c, we apply generalization rules that
either replace two or more of e’s types with a single super-
type of the replaced types (e.g., intconst(x), intconst(y) ⇒
intrange(min(x, y), max(x, y))) or replace one of e’s ex-
tended types with an unparameterized basic type (e.g.,
intrange(min(x, y), max(x, y)) ⇒ int). The following
sequences of types represent (in a simplified way) other
generalization rules in our system: intconst ⇒ intrange ⇒
intnon neg ⇒ int, listconst ⇒ listhomogeneous ⇒ list,
and listconst ⇒ listunknown ⇒ list. When more than one
generalization rule applies, we use a heuristic to prioritize

them. As an optimization, every time we run generalization
on a node replacing some of its types with a supertype T ,
we also delete all of its types that are subtypes of T . This
removes redundant entries from ine and oute.

To make type inference more precise, we modify it to
store distinct outs for each edge coming out of a node. To
see how this can help, consider the following code:
if x == 1: ...
else: ...

The if statement forms a CFG node nif with two outgo-
ing edges. If innif

contains the entry x → intconst(1), the
basic inference algorithm must include this entry in outnif

,
while the extended inference algorithm can omit it from the
out multimap on nif ’s outgoing edge to the false branch.
A similar approach can be used to split the out of for and
while loops. if, for, and while nodes have O(1) out-
going edges, so the number of multimaps produced is still
O(N). Other optimizations include the sharing of type sig-
natures between multiple in and out maps when the signa-
tures are the same (a variation of copy-on-write).

Extending our analysis of the running time to the ex-
tended type inference algorithm, we note that an expression
may not have more than c types, and that an expression can
not be generalized more than g times, where g is the height
of (i.e., length of the longest chain in) the subtype relation
with all intrange to intrange relationships of length greater
than c truncated to length c. Thus, the total number of dis-
tinct types that an expression may assume is O(g×c). Thus,
the size of each out multimap is still O(S), and the worst-
case running time is still O(N × S). S typically does not
grow much with program size. This is experimentally ver-
ified in Section 5, where the running time shows linear be-
haviour in N .

5. Experiments on overhead
Overhead of debugging has two components: the slow-

down incurred due to running the program in qbdPy, and the
time it takes for qbdPy to instrument the program to be de-
bugged. To show that our technique does not introduce ex-
cessive overhead, we perform two sets of experiments. The
first set of experiments measures the slowdown due to the
program running in qbdPy; the second measures the time to
instrument the program and also contains experiments that
verify the running times of analyses derived in sections 3
and 4.

All experiments were performed on Windows Vista, run-
ning on a Core 2 Duo (Q6600@3.0GHz) machine with 8GB
of memory, of which 6GB were free. For all examples,
Python 2.5.1 was used.

5.1. Slowdown due to running program in qbdPy
We demonstrate that qbdPy does not introduce excessive

slowdown due to the program running in it, by using qb-
dPy to find different bugs in programs from multiple do-
mains: violations of data structure invariants in XML DOM

180

transformations, violation of specifications in an FTP client,
and uncaught exceptions in an XML DOM transformation
benchmark program due to injected bugs. For each pro-
gram, we report the performance of the program outside of
qbdPy; the program’s performance in qbdPy when it uses
incremental checking and maintenance; the program’s per-
formance when static analyses are individually disabled;
and the program’s performance when it does not use incre-
mental checking and maintenance.

XML DOM transformations. For a program that uses an
XML DOM tree to be correct, there are a number of proper-
ties that must not be violated for the tree to avoid bugs. Usu-
ally, such bugs will manifest themselves in a further stage
in the program after a property has been violated. We take
the lxml Python XML library, and, for its benchmark pro-
grams detect violations of the following properties of the
XML DOM tree: (1) if an element is a child of another ele-
ment, then its parent field must reference the element whose
child it is; (2) no two elements may have the same element
as their child, nor may an element have itself as a child. As
the lxml benchmark code does not itself contain these bugs,
we have injected the appropriate bug for each experiment.

Parent field must be valid. In an XML tree, all non-
root nodes must have a valid parent field, i.e., element e has
a child c iff c.parent is e. The rule in Figure 2 stops
the program when an element that violates that property is
found. Figure 5 shows that the overhead of running the
incrementally instrumented program in qbdPy is 67%. It
also shows that type and alias analysis decrease overhead
from 109%-176% to 67%. In contrast, non-incremental in-
strumentation is quadratic in the number of elements alive
in the program as it iterates over two extents of elements.
The benchmark times out after 20 minutes with the non-
incremental instrumentation, since it does O(#element2)
additional work per update, and the benchmarked document
has 10 million XML elements.

No shared child and not own child. In an XML doc-
ument, an element may be either a root, or a child of at
most one element. Also, an element cannot be a child of
itself. We omit the actual rule, as it is very similar to the
previous rule. Figure 5 shows that the overhead of run-
ning the program in qbdPy, with all analyses enabled, is
85%. It also shows that type and alias analysis both provide
a significant reduction of overhead, just like the previous
example. The non-incremental version times out after 20
minutes because it iterates over three extents of elements,
doing O(#element3) extra operations per update, and the
benchmarked document has 10 million XML elements.

These experiments show three things: query-based de-
bugging that incrementally maintains its results can be ef-
ficient even for complex queries that involve multiple joins
and membership tests. We also see that when joins used
by the query have a high selectivity, as these do, the run-

ning time of the instrumented program is not very depen-
dent on the query, but more so on the number of objects
(and classes) for which we maintain extents. Finally, these
experiments show that maintaining the query results non-
incrementally is infeasible, as the experiments time out
whenever query results are computed non-incrementally.

XML DOM
Valid parent

XML DOM
No shared child

FTP XML DOM
Exception Detection

0

1

2

3

4

5

6

7

8

9

10

R
u
n
n
in
g
ti
m
e
ra
ti
o
to

"N
o
d
e
b
u
g
g
in
g
"

No debugging

Efficient debugging

Type analysis off

Alias analysis off

All analysis off

Figure 5: Running times of applications in qbdPy, normalized to
the running time of the applications outside of qbdPy.

A Python FTP client. We found a bug in a program that
downloads directories from multiple machines [15]. This
bug involve directories being omitted from synchronization.
The bug is due to the FTP client issuing commands before
receiving the reply for those commands. The query in Fig-
ure 3 finds the location at which a command of ls is exe-
cuted when a cwd is pending.

We ran the program with 10 threads, with 30 directories
totaling 20GB over a 1GBit connection, ensuring that the
program would be CPU bound. Figure 5 shows that the
overhead introduced by the query is 73%. It also shows
that type and alias analysis both provide a significant im-
provement, reducing overhead from 173% to 73%. The
non-incremental version is considerably slower, as there
are many threads running, and $executing_commands
contains many elements. This accounts for it timing out af-
ter 20 minutes. Precise time taken by all versions of the
program can be seen in Table 1.

The FTP client example shows that querying a complex
program over a view that has to be created (i.e., in ways
not assumed by the program’s creator) is easily done with
our framework by specifying complex program transforma-
tions, such as maintaining the set of outstanding commands.

Automated determination of causes of exceptions. In
the final case study in Section 2, Figure 4, we presented
a query that, given an IndexError caused by an expression
of type A[B], and the line and file it occurred on, will
tell the programmer where all variables in the expression
were modified when it became inevitable that the exception
would occur. We injected a bug that would cause an Index-

181

Running time Instrumentation + running time
No debugging All analysis No type analysis No alias analysis No analysis All Analysis No analysis

lxml - Valid Parent 21s 35s 49s 44s 58s 70s 78s
lxml - No shared child & no self child 21s 39s 53s 43s 61s 77s 83s
nftp - Wait until commands complete 326s 563s 790s 690s 891s 594s 912s
lxml - Exception cause detection 21s 39s 85s 103s 190s 92s 215s

Table 1: Time taken for experiments under differing optimizations.

Error into lxml, and ran it after applying this debugging rule
to it. The result, as can be seen in Figure 5 and Table 1, is
that the slowdown incurred by such a query is 85%, which
is surprisingly low given the low selectivity of the join con-
dition. The drastic increase of the overhead when type and
alias analyses are turned off (from 85% to 805%), as seen
from Figure 5, explains the high performance of the query.

5.2. Running time of the qbdPy
To verify that the running time of qbdPy instrumentation

is not prohibitive, for each of the programs in the previ-
ous section we perform the following experiments: measure
time taken by qbdPy instrumentation with all static analysis
turned on, with all static analysis turned off, and with type
and alias analysis turned on individually. Table 1 presents
the results. None of the programs take longer than 1 minute
to instrument with all analyses turned on, and none took less
than 15 seconds with all analyses turned off. This indicates
qbdPy is fast enough to be used as part of the edit-compile-
debug cycle, and that all available analyses should be per-
formed due to the great increase in runtime performance.

Figure 6: Running times of type and alias analysis.

Complexity of type and alias analysis. To verify the run-
ning time complexity of type and alias analysis, we measure
the time of running type and alias analysis on a represen-
tative set of Python programs, with program sizes varying
from 493 to 15955 CFG nodes. From Figure 6, we can see
that the running time is quadratic for alias analysis and lin-
ear for type analysis. For type analysis, this is better than
the theoretical worst-case O(N ×S), and is in line with the

expectation that S is typically a constant. For alias analysis,
this is much better than the worst-case O(N4).

6. Related work
Query-based debugging has recently received a great deal

of attention [18, 24, 22, 30], mostly in the form of query
languages that query over a given program state. These lan-
guages allow one to specify an assertion for a bug, and then
stop execution when the assertion holds. These systems
primarily differ in the range of specification, and the time
complexity. Our work was inspired by the work of Lence-
vicius et al. [18], and our language is an extension of the
query-based debugging language of [18]. The method in
[18] allows non-nested comprehensions over extents, with
the condition being a join or a side-effect free function over
a single variable of the comprehension, and recomputes the
entire query whenever sets that the query depends on are up-
dated. Our method avoids recomputing the query when the
sets it depends on are updated, while increasing the expres-
sive power of the allowed queries by including predicates
over multiple variables and joins of membership tests. We
also add features that allow arbitrary program transforma-
tions, e.g., to maintain history.

Potanin et al. [24] allows querying snapshots of object
graphs, and also performs these queries non-incrementally.
PQL [22] allows queries over past states of the program, but
not over extents. It uses BDDs to efficiently compute the
query results. PTQL/PARTIQLE [10] allows queries over
sequences of past actions (such as variable assignment) of
the program, but not over sets/extents in the program. It
uses join ordering to efficiently evaluate these queries at
run-time, but does so non-incrementally. JQL [30] extends
Java to support both comprehensions and extents, with ex-
pressive power similar to our system, for introducing com-
prehensions as a first-class construct into Java, rather than
debugging. Recent work on JQL [31] adds incremental
maintenance of JQL queries for updates to the data they de-
pend on. We support a larger set of conditions on queries:
we can incrementally maintain query results for queries that
contain a condition of the form a in b.f. The at and de
clauses allow us to do program transformations that main-
tain data structures that would be unavailable to a query lan-
guage, such as a set of outstanding FTP commands.

Aspect-oriented programming. An important feature
of an aspect-oriented programming language is its lan-

182

guage for defining pointcuts. The pointcut language of
AspectJ[16] is somewhat limited; other proposals [2, 27] are
more expressive. In particular, these proposals allow advice
to execute based on the history of program execution.

The goals of our system are similar to the goals of lan-
guages for specifying pointcuts. The similarities are be-
tween at/do clauses and pointcuts/advices. The differ-
ences come from the inability of AOP to derive how to
maintain query results; reasonable performance requiring
the currently lacking consideration of the same problems as
our system (type and alias analysis of dynamic languages).

Alias and type analysis. Alias analysis has been stud-
ied extensively [14], in different flavors. Context and flow
insensitive methods include Andersen’s [3], Deutsch’s [7],
and Steensgaard’s [28]. Context sensitive methods include
Whaley [29] and Emamil [9]. Two flow sensitive methods
are Choi et al.’s [4] and Lundberg and Lowe’s [21], with
running times of O(N7) and O(N4), respectively.

Intraprocedural flow-sensitive methods include
Hind’s [14], which takes O(N5) time, and Goyal’s [12]
method that takes time O(N3). We take Goyal’s algorithm,
make it interprocedural and slightly context-sensitive, and
apply it to Python, where the running time of our method is
O(N4). The method we use for the handling of classes is
similar to [21]. Our extended method of handling function
calls is similar to summaries with weak updates by Wilson
et al.[29], with the distinction that instead of computing
summaries and then using them in the analysis, at each
call site, we analyze the function, and, after each analysis,
incrementally maintain the function summary.

Type analysis originated from the work by Curry and
Feys on simply typed lambda calculus [5]. Progress
by Hindley, Milner, and Damas produced a type infer-
ence algorithm that supports polymorphic references [6].
This algorithm is the standard type inference algorithm
for ML [6]. This was extended later by works of Ple-
vak [23], Rémy [26], and Graver [13] to object-oriented
languages, such as ML with OO extensions and a subset
of Smalltalk. These works were based on representing the
program as a set of constraints, and solving these constraints
via unification and similar methods. The Cartesian product
method [1], and its successor, iterative type analysis [8], use
abstract interpretation for type analysis, where the program
is executed, and the type signature of each encountered ex-
pression is generalized until it no longer violates the typing
rules. We use this approach and extend it to handle multiple
possible types of an expression and constant propagation in
complex data structures such as lists and maps.

References
[1] O. Agesen. The Cartesian product algorithm. Proc. of ECOOP, 95:2–26, 1995.
[2] C. Allan, J. Tibble, P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins,

O. Lhoták, O. de Moor, D. Sereni, and G. Sittampalam. Adding trace matching
with free variables to AspectJ. Proc. of the 20th Annual ACM SIGPLAN Conf.
on Object oriented Programming Systems Languages and Applications, pages
345–364, 2005.

[3] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[4] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In POPL ’93: Proc. of
the 20th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pages 232–245, New York, NY, USA, 1993. ACM.

[5] H. Curry. Combinatory Logic. North-Holland, 1972.
[6] L. Damas and R. Milner. Principal type-schemes for functional programs. Proc.

of the 9th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pages 207–212, 1982.

[7] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.
Proc. of the ACM SIGPLAN 1994 Conf. on Programming Language Design and
Implementation, pages 230–241, 1994.

[8] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for ob-
jects. Proc. of the tenth annual Conf. on Object-oriented Programming Systems,
Languages, and Applications, pages 169–184, 1995.

[9] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. Proc. of the ACM SIGPLAN
1994 Conf. on Programming Language Design and Implementation, pages
242–256, 1994.

[10] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over program
traces. In OOPSLA ’05: Proc. of the 20th Annual ACM SIGPLAN Conf. on
Object Oriented Programming, Systems, Languages, and Applications, pages
385–402, New York, NY, USA, 2005. ACM.

[11] M. Gorbovitski, T. Rothamel, Y. A. Liu, and S. D. Stoller. Efficient runtime
invariant checking: A framework and case study. In Proc. of the 6th Sixth Intl.
Workshop on Dynamic Analysis, Seattle, Washington, July 2008.

[12] D. Goyal. Transformational derivation of an improved alias analysis algorithm.
Higher-Order and Symbolic Computation, 18(1-2):15–49, 2005.

[13] J. Graver. Type-Checking and Type-Inference for Object-Oriented Program-
ming Languages. PhD thesis, University of Illinois, 1989.

[14] M. Hind. Pointer analysis: haven’t we solved this problem yet? In PASTE ’01:
Proc. of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, pages 54–61, NY, USA, 2001. ACM.

[15] R. Kazhankodathed. http://tinyurl.com/5b9qfe.
[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.

An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355,
2001.

[17] W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. In Proc. of the Conf. on Programming Language Design and
Implementation (PLDI), volume 27.7, pages 235–248, New York, NY, 1992.
ACM Press.

[18] R. Lencevicius, U. Hölzle, and A. Singh. Dynamic Query-Based Debugging of
OO Programs. Automated Software Engineering, 10(1):39–74, 2003.

[19] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic query-based debugging.
Lecture Notes in Computer Science, 1628:135–149, 1999.

[20] Y. Liu, S. Stoller, M. Gorbovitski, T. Rothamel, and Y. Liu. Incrementaliza-
tion across object abstraction. Proc. of the 20th Annual ACM SIGPLAN Conf.
on Object Oriented Programming Systems Languages and Applications, pages
473–486, 2005.

[21] J. Lundberg and W. Lowe. A scalable flow-sensitive points-to analysis. Com-
piler Construction–Advances and Applications, Festschrift on the occasion of
the retirement of Prof. Dr. Dr. hc Gerhard Goos, Lecture Notes in Computer
Science (LNCS), to appear in, 2007.

[22] M. Martin, B. Livshits, and M. Lam. Finding application errors and secu-
rity flaws using PQL: a program query language. ACM SIGPLAN Notices,
40(10):365–383, 2005.

[23] J. Plevyak and A. Chien. Precise concrete type inference for object-oriented
languages. Proc. of the Ninth Annual Conf. on Object-oriented Programming
Systems, Language, and Applications, pages 324–340, 1994.

[24] A. Potanin, J. Noble, and R. Biddle. Snapshot query-based debugging. Proc.
of Australian Software Engineering Conf., pages 251–259, 2004.

[25] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang.
Syst., 16(5):1467–1471, 1994.

[26] D. Rémy and J. Vouillon. Objective ML: a simple object-oriented extension of
ML. Proc. of the 24th ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages, pages 40–53, 1997.

[27] J. Robert and K. Viggers. Implementing Protocols Via Declarative Event Pat-
terns. ACM SIGSOFF Software Engineering Notes, 29(6):1–21, 2004.

[28] B. Steensgaard. Points-to analysis in almost linear time. Proc. of the 23rd ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages 32–
41, 1996.

[29] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. Proc. of the ACM SIGPLAN 2004 Conf. on
Programming language design and implementation, pages 131–144, 2004.

[30] D. Willis, D. Pearce, and J. Noble. Efficient object querying for Java. Proc. of
the European Conf. on Object-Oriented Programming, pages 28–49, 2006.

[31] D. Willis, D. Pearce, and J. Noble. Caching and Incrementalisation in the Java
Query Language. Technical Report WPN07, 2007.

183

