
From Indentation Shapes to Code Structures

Abram Hindle, Michael W. Godfrey, and Richard C. Holt

Software Architecture Group (SWAG)

School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

{ahindle,migod,holt}@cs.uwaterloo.ca

Abstract

In a previous study, we showed that indentation was reg-

ular across multiple languages and the variance in the level

of indentation of a block of revised code is correlated with

metrics such as McCabe Cyclomatic complexity. Building

on that work the current paper investigates the relation-

ship between the “shape” of the indentation of the revised

code block (the “revision”) and the corresponding syntac-

tic structure of the code. We annotated revisions match-

ing these three indentation shapes: “flat” (all lines are

equally indented), “slash” (indentation becomes increas-

ingly deep), or “bubble” (indentation increases and then

decreases). We then classified the code structure as one

of: function definition, loop, expression, comment, etc. We

studied thousands of revisions, coming from over 200 soft-

ware projects, written in a variety of languages. Our study

indicates that indentation shape correlates positively with

code structure; that is, certain shapes typically correspond

to certain code structures. For example, flat shapes com-

monly correspond to comments while bubble shapes com-

monly correspond to conditionals and function definitions.

These results can form the basis of a tool framework that

can analyze code in a language independent way to sup-

port browsing targeted to viewing particular code struc-

tures such as conditionals or comments.

1. Introduction

Software developers often track the recent history of a

project by tracing through the trail of revisions that have

been committed since the last baseline. This task is time

consuming and tedious, as there are often a large number

of revisions to sift through, and only a small percentage of

them are likely to be relevant to the task at hand. Addition-

ally, revisions themselves can be difficult artifacts to work

with: if one wants to fully understand the design change

implied by the revision, the revision must be merged back

into the source code, and the code then parsed and analyzed.

This is not very convenient.

A strong motivation for our work is to help developers

better understand the nature of revisions through the use of

simple analysis tools whose effectiveness has been estab-

lished by empirical study. In this paper, we provide a char-

acterization of the underlying distributions of code struc-

tures represented by various indentation shapes and the vari-

ance of indentation depth. Using this knowledge a devel-

oper could write tools to sift through revisions quickly and

pick out revisions that contained changes to comments or

conditionals based on the shape of the indentation depicted

in the revision.

Our contributions consist of:

• the concept of indentation shapes;

• a characterization of the structure of the code that is

represented by different shapes, lengths, and magni-

tudes of variance of indentation;

• a case study of revisions, annotated by their code struc-

tures.

We measure revisions (diff-chunks of the UNIX diffs of

CVS revisions) by their revision length (lines of code per re-

vision) and their variance of indentation (variance of the in-

dentation of each line in a diff-chunk). We manually anno-

tate each revision with a tag (annotation) that indicates the

kind of code structure the revision is an instance of (loop,

comment, etc).

Our indentation shapes are simple spatial patterns found

in the indentation of revisions: in a flat revision the depth of

indentation is constant for all lines; in a slash revision the

indentation level progressively increases; and in a bubble

revision the indentation increases and then decreases. We

chose those shapes as they are simple to visualize and iden-

tify in code, and because our preliminary studies found that

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.31

111

#Read/ St r i p STDIN
@a = <STDIN>;
chomp(@a) ;

(a) Flat Indentation

(i f (nu l l ? l)
#f
(begin

(s e t ! o
(cons l o))))

(b) Slash Indentation

i n t sqr (i n t x) {
i n t s = x ∗ x ;
re turn s ;

}

(c) Bubble Indentation

Figure 1. Examples of Flat, Slash and Bubble indentation shapes

they were common. An example of the 3 indentation shapes

can be found in Figure 1.

In this study we sampled many revisions from many

projects; we selected those revisions that matched our three

indentation shapes and manually tagged these revisions

with annotations that indicate the code structures within the

revisions. We then analyzed these revisions and compared

them against a control sample of revisions. We observed

that the shape of a revision correlates with certain annota-

tions like conditionals or comments.

1.1. Previous Work

Indentation is used in multiple languages as integral part

of good programming style. Indentation is often promoted

as helping program readability [13] and for emphasizing

and defining structure in code [14]. Indentation measure-

ments can be used to trace a program’s control flow [10]

and has been shown to aide program comprehension [11].

Indentation can be in software visualization, for instance,

DrScheme [4] provides a birds eye view of code by show-

ing whitespace and text characters with coloured pixels. As-

pects of indentation have been measured: poor indentation

as a code quality metric [6]; comparisons of indentation

characters to the non-indentation characters [1]; horizon-

tal spacing of source code [3]; and to indicate authorship in

plagiarism detection [2]. Others have correlated complex-

ity, nesting and modularity [7, 12], but did not specifically

address indentation.

This work builds up on our previous work where we

compared indentation measurements to McCabe Cyclomet-

ric Complexity (MCC) and Halstead complexity when ap-

plied to source code revisions [9]. This complexity com-

parison worked ties in with other work which discussed

how lines of code (LOC) correlate with various metrics [8].

These revision metrics are essentially modification-aware

change metrics as discussed by German et al.[5].

1.2. Motivation

Our motivation is to analyze revisions and patches using

their indentation. We have previously shown that measuring

indentation is almost as cheap and easy as measuring lines

of code [9]. We also showed that indentation measures such

as the sum indentation, the variance, and the standard devia-

tion of indentation were correlated with complexity metrics.

We feel that indentation measurements are worthwhile

to study and use because indentation gives structural hints

about the code. It typically implies the context of the re-

vision and how deeply nested the code truly is. It can be

efficiently parsed and measured. It does not need tokeniza-

tion, but it retains the nesting depth that tokenization often

throws away.

One of our inspirations for investigating indentation

shapes is a code browser in DrScheme [4], it has a small

window where text is depicted as coloured pixels and

whitespace as white pixels. Just from the indentation of text

pixels in the tiny image one can see the structure of the file.

It is obvious where functions and deep blocks were. Based

on these observations we moved forward to investigate in-

dentation shapes.

Indentation measurements require very little knowledge

of the source code they are extracted from. In many cases

you do not need to know the language or dialect (e.g., C++

and QT’s moc, a preprocessor of C++ for the QT library) of

the code itself.

This paper extends our previous work on indentation

metrics and measurements [9] to include consideration of

indentation shapes. Indentation shapes have the potential

to support searches for certain kinds of code. We felt that

complexity metrics were not enough, because sometimes

one wants to look for comments, sometimes one wants to

look for code that matched a certain description.

2. Methodology

We used the following methodology:

• A list of most active and most downloaded projects

from SourceForge was retrieved.

• The CVS repositories of these projects were mirrored

locally.

• Individual revisions were extracted from each file.

• The indentation of the revisions was analyzed.

• Histograms of frequency of each indentation depth

were created and analyzed.

112

• Indentation shapes were created and defined.

• Revisions were sampled that matched our chosen in-

dentation shapes.

• The sampled revisions where analyzed and annotated.

• The annotations were aggregated and the results ana-

lyzed.

We selected revisions of our three shapes (flat, slash,

bubble) from 479 different source files (uniformly randomly

sampled). The source files consisted of 84 C and .C files, 65

C++, 138 .h, 118 .Java, 51 PHP, 10 Perl and 13 python files.

The number of revisions that matched our shapes was more

than 5660. Our control set was not sampled directly from

these files, a new subset of source files was chosen from

which we randomly selected and annotated 1001 revisions.

This set acts as a control to compare against these shape

sets. The control set represents a sample, while the three

indentation shape sets represent a population of a sample.

Per each revision, per each continuous indentation

chunk, we measured the indentation metrics (length, sum

of indentation, standard deviation and variance of indenta-

tion as described in section 2.3). Then for those revisions

we sampled, we manually annotated them as described in

section 2.2. We then analyzed our measurements and dis-

cussed the results in section 4.

In the following section we discuss the questions (section

2.1) we wished to answer in this case study and what anno-

tations we tagged the revisions with (section 2.2). Figures 3

to 4 illustrate the proportions, frequencies, and distributions

of the annotations of the indentation shapes and control set.

2.1. Questions

Questions we hope to answer in this paper:

• What kind of indentation correlates with function def-

inition?

• What kinds of code correlate with zero variance inden-

tation?

• What kinds of code correlate with non-zero variance

indentation?

2.2. Annotations

We created a list of annotations to label the underlying

code structures observed in the revisions we were investi-

gating. We manually tagged each revision with our anno-

tations: comments, type declarations, assignments, condi-

tionals, function calls, data, function definitions, macros,

loops, conditional macros such as #ifdefs, shape match-

ing errors, assertion and exception handling, return values,

concurrency and expressions. Each revision was tagged

with an annotation that described the main body of the code,

usually the top most scope (e.g., a functional call inside of

an assignment is tagged as an assignment). The annotations

that we used include:

Comments: often pose a difficulty to recognize; if the pro-

gramming language uses special start/stop tokens to

delineate comments (e.g., “/*” and “*/” in C), it can

be difficult to automatically identify revisions to com-

ments as such if the start/stop tokens do not also appear

in the revision.

Type Declaration: refers to code that defines types such as

structures, classes, or even just storage/name binding

such as locals, attributes, slots or globals.

Assignment: refers to assignment statements, where an

identifier is set to a new value, typically using the =

or := operator.

Conditional: refers to code that is a conditional. Condi-

tionals are structures such as if-blocks, switch state-

ments, unless blocks, etc.

Function Call: refers to code that makes method, proce-

dure or function calls.

Data: Data refers to code that represents constants, initial-

izations, or magic numbers. These data revisions of-

ten occur when constants or initializations are listed or

stored. Often these data revisions represent long lists

of defines and values used to initialize constants and

arrays.

Function Definition: refers to code that defines a function

or a method. Often these revisions have a function def-

inition in them whether it is the head of a function or

just the function’s prototype.

Macro: usually refers to preprocessor commands that cre-

ate macro functions or even defines. Macros do not

refer to macro-conditionals like #ifdef, although

#include is considered a macro too. Macros would

also refer to some of the extra syntax or keywords

added by libraries such as QT.

Loop: refers to revisions to while loops, goto loops, obvi-

ous recursive loops, for loops, do loops, foreach, itera-

tors, etc.

Conditional Macro: refers to preprocessor macros such as

#ifdef as well as the block it encloses.

Anomaly: refers to code that was mistakenly selected as a

shape (flat , slash, or bubble). This might occur due to

hanging indentation on a new line below that revision.

113

Exception: refers to code that handles exceptions in Java

or C++, or performs error handling in other languages.

Return: refers to code which simply returns an expression

in a function.

Concurrency: refers to code which deals primarily with

concurrency primitives, locking or critical sections.

Expression: refers to code that produces a value. Its im-

portance varies depending on the language.

2.3. Extraction and Measurement

In this study, we used the same data-set as in our previous

study [9]. For each change recorded in CVS to the files in

our sample, we analyzed the new and revised code of the

diff. These files were C, C++, Java, Perl, PHP, and Python

files. If one revision was not continuous, we would analyze

the revised code blocks (these sub-parts of a diff are called

diff-chunks). In this paper we consider these diff-chunks

to be revisions. Our initial dataset consisted of about 13

million revisions; we evaluated only the resulting revised

code (the new code). Of those, we selected the revisions

of 479 files, and we annotated those (described in section

2.2). We did not measure the initial commits because they

would skew the results as these are often full files that are

imported, because there was no previous file to revise.

In this study we used raw indentation. We consider raw

indentation to be the actual preceding white space on each

line of the new code in a revision. For example, if a line

consisted of “ def sqr”, where was a leading space,

we would say it has 2 units of raw indentation. We showed

in our indentation and complexity study [9] that raw inden-

tation was consistent across multiple languages.

We had 51GB of CVS repositories and it took about 3

days of run-time to measure the indentation and complexity

of each revision of every repository on an Intel Pentium IV;

this resulted in 13 million revisions (diff-chunks, not CVS

revisions). We subselected 479 files from these repositories

and analyzed the revisions of those files. Of these revisions

we manually annotated over 6660 of the revisions (revisions

described in section 2).

The distribution of the length of revisions is similar to

an exponential distribution with most revisions being com-

prised of only a single line of code. The distribution of

measurements such as standard deviation of indentation or

variance of indentation is similar; they follow an exponen-

tial/power law like distribution. Revision length is some-

what linearly correlated with variance, standard deviation

and summation of indentation. This means that variant in-

dentation shapes like slashes and bubbles are not very com-

mon.

3. Indentation Shapes

Indentation shapes describe certain patterns of indenta-

tion extracted from revision’s code. Indentation shapes are

especially relevant to revisions because they contain less

lines than the actual source files. Indentation shapes are

supposed to relate to shapes observed in the curves formed

by the indentation of source code.

We hypothesize that indentation shapes give some indi-

cation of the structure of the underlying code. This is im-

portant if you want to search through revisions that match a

certain criterion, you might want to first find candidate revi-

sions based on a lightweight criteria such as an indentation

shape and save the heavier criteria for later.

In this study we defined three indentation shapes, each

shape matched revisions of at least two lines long. The

shapes illustrated in Figure 1 were our initial idea of shapes

to look for, they are not necessarily representative of the

majority of shapes found with in a repository:

• Flat revisions are revisions where there is no change in

indentation.

• Slash revisions are revisions where the indentation

progressively increases (or stays the same) without

ever decreasing. Examples include expressions which

are long and are split up over multiple lines or small if

blocks.

• Bubble revisions are revisions where the indentation

increases and then decreases like the curve of a bubble.

This would include simple if blocks, for loops, while

loops and short function definitions.

We also studied a general sample of revisions which we

refer to and use as a control set. We use the control set to

describe how the variance of indentation relates to different

kinds of underlying code.

3.1. Flat

Flat revisions are revisions where there is no change in

indentation. This could be visualized as a line of elements

with the same indentation. We expected flat revisions to

be common and that they would correspond to comments,

assignment statements and function calls. An example flat

revision is depicted in figure 1(a).

More formally, a revision of N lines (N ≥ 2) is said to

be flat if ∀i : 1..N • Ii = k for some constant k ≥ 0 where

Ii is the indentation of line i.

Flat revisions were the most common shape, we anno-

tated 3319 flat revisions. The most common revisions were

(in descending order) comments, followed by assignments,

type definitions, data and function calls. Flat shapes were

least likely to be conditionals, loops, exceptions, function

definitions, or plain expressions.

114

3.2. Slash

Slash revisions are revisions where the indentation pro-

gressively increases (or stays the same) across the revision.

Example of slashes would include if blocks with only state-

ment inside the block, or long function calls which are

wrapped. An example slash revision is depicted in figure

1(b).

Slash revisions can be described as revisions of N lines

(where N >= 2), where Ii represents the indentation of

line i, ∀i : 2..N • Ii ≥ Ii−1, and I1 < IN .

1552 slash revisions were found among our initial sam-

pling. Conditionals, type declaration, function implemen-

tation, function calls, assignment and comments were the

most common revisions, although conditionals were the

most common. Slash revisions were more likely to be

type declarations than function definitions while bubble re-

visions were more likely to be function definitions and as-

signment statements. Slash revisions were unlikely to be

data, macro, or conditional macro revisions.

3.3. Bubble

Bubble revisions represent code which has a bubble-like

shape, that is their indentation grows then shrinks after it

reaches a peak. A bubble is not a backwards slash. The last

line of a bubble revision must be indented at least as much

as the first line of the revision. An example bubble revision

is depicted in figure 1(c).

Formally, a revision of N lines, where N ≥ 3 and where

Ii is the indentation of line i, is said to be a bubble revision

if there exists a peak k where ∀i : 2..k Ii−1 ≤ Ii ≤ Ik and

∀i : (k + 1)..N • Ik > Ii−1 ≥ Ii and I1 ≤ In. Thus inden-

tation depth increases up till line k, then after, it decreases.

The last line has the same or greater indentation than the

first line.

805 different revisions matched this shape and were cat-

egorized. Most of the bubble revisions were conditionals,

function implementations and assignments. Less popular

annotations were type definitions, conditional macros, func-

tion calls and comments. Bubble revisions usually were not

data or macro revisions.

3.4. Control

The control revisions were a random sampling of revi-

sions meant to represent a typical sample of revisions, that

is the revisions that the indentation shapes might not repre-

sent.

We annotated 1001 control revisions. These revisions

were sampled by first choosing random files to sample, then

sampling revisions from these files (effectively sampling

from 13 million revisions, not the 479 subselected files).

The distribution of revision length was nearly exponential,

so most revisions were only 1 line long.

Most of these revisions were comments, type declara-

tions, assignments and function definitions. It seemed like

static typing and type declaration took up most of the revi-

sions. Control revisions were not usually exception, return,

concurrency or conditional revisions.

4. Discussion

We will break down the analysis of the annotated re-

visions by properties such as revision length (number of

lines in a revision) (section 4.1), total shapes (section 4.2),

and quartiles of variance of indentation of revisions (sec-

tion 4.3). Then we shall address the questions we posed in

section 2.1 and address tool integration (section 4.5).

4.1. Revision Length

Figure 3 depicts the distribution of annotations broken

down by lengths among the 3 shapes, while figures 2(a) and

2(b) show the same information but for the control sample.

The lengths are broken down into bins from 0 lines (e.g.,

code removal) to 10 or more lines (the last bucket is for

revisions 10 lines or greater in length).

Most revisions were short, as 1 line was the most com-

mon revision size. For our random sampling (control) of

revisions there were many revisions over 10 lines in length

(see Figures 2(a) and 2(b)). The most common code struc-

tures annotated were comments, type declarations, function

definitions and macros.

Flat revisions were mostly small, usually only 2 lines

in length (see Figures 3(a) and 3(b)). Flat revisions were

the most common shape found of the 3 indentation shapes.

Comments were the most common flat revisions. Long flat

revisions were often data definitions, macros and condi-

tional macros.

Slash revisions were mostly conditionals and type decla-

rations, these revisions were often 2 to 3 lines in length (see

Figures 3(c) and 3(d)). There were not a lot of large slash

revisions, although conditionals were the most numerous

large slash revisions.

Bubble shape revisions were mostly conditionals and

function definitions (as shown in figures 3(e) and 3(f)).

Conditional revisions were usually 3 to 6 lines in length,

function definition revisions where 3 to 7 lines in length.

Returns and assignments were the shortest and most com-

mon of bubble revisions.

4.2. Total Classes

Figure 2(c) depicts the cumulative totals of the 3 inden-

tation shape populations of indentation shapes and the sam-

pled control set. Figure 2(d) shows the proportions of the 3

indentation shape populations. The control set was not in-

cluded because it sampled from a different set of files so the

115

 0

 50

 100

 150

 200

 250

 300
C

o
m

m
e

n
ts

T
y
p

e
 D

e
c
la

ra
ti
o

n

A
s
s
ig

n
m

e
n

t

C
o

n
d

it
io

n
a

l

F
u

n
c
ti
o

n
 C

a
ll

D
a

ta

F
u

n
c
ti
o

n
 D

e
f

M
a

c
ro

L
o

o
p

C
o

n
d

it
io

n
a

l
M

a
c
ro

A
n

o
m

a
ly

E
x
c
e

p
ti
o

n

R
e

tu
rn

E
x
p

re
s
s
io

n

C
o

n
c
u

rr
e

n
c
y

Control: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(a) Distribution of revision length of control sampled revisions per annotation

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

e
n

ts

T
y
p

e
 D

e
c
la

ra
ti
o

n

A
s
s
ig

n
m

e
n

t

C
o

n
d

it
io

n
a

l

F
u

n
c
ti
o

n
 C

a
ll

D
a

ta

F
u

n
c
ti
o

n
 D

e
f

M
a

c
ro

L
o

o
p

C
o

n
d

it
io

n
a

l
M

a
c
ro

A
n

o
m

a
ly

E
x
c
e

p
ti
o

n

R
e

tu
rn

E
x
p

re
s
s
io

n

C
o

n
c
u

rr
e

n
c
y

Control: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(b) Proportional Distribution of revision length of control sampled revisions per

annotation

 0

 200

 400

 600

 800

 1000

 1200

 1400

C
o

m
m

e
n

ts

T
y
p

e
 D

e
c
la

ra
ti
o

n

A
s
s
ig

n
m

e
n

t

C
o

n
d

it
io

n
a

l

F
u

n
c
ti
o

n
 C

a
ll

D
a

ta

F
u

n
c
ti
o

n
 D

e
f

M
a

c
ro

L
o

o
p

C
o

n
d

it
io

n
a

l
M

a
c
ro

A
n

o
m

a
ly

E
x
c
e

p
ti
o

n

R
e

tu
rn

E
x
p

re
s
s
io

n

C
o

n
c
u

rr
e

n
c
y

Totals of classes

flat slash bubble control

(c) Distribution of revisions by annotation, broken down by indentation shape

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

e
n

ts

T
y
p

e
 D

e
c
la

ra
ti
o

n

A
s
s
ig

n
m

e
n

t

C
o

n
d

it
io

n
a

l

F
u

n
c
ti
o

n
 C

a
ll

D
a

ta

F
u

n
c
ti
o

n
 D

e
f

M
a

c
ro

L
o

o
p

C
o

n
d

it
io

n
a

l
M

a
c
ro

A
n

o
m

a
ly

E
x
c
e

p
ti
o

n

R
e

tu
rn

E
x
p

re
s
s
io

n

C
o

n
c
u

rr
e

n
c
y

Totals of classes

flat slash bubble

(d) Proportional Distribution of revisions by annotation, broken down by indenta-

tion shape (control is not included because it was sampled and does not represent

a population)

Figure 2. Totals of Each Class per Population and Control Sample

116

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900
C

o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

Flat: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(a) Distribution of revision length of flat shape revisions per annotation

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

Flat: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(b) Proportional Distribution of revision length of flat shape revisions per annota-

tion

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

Slash: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(c) Distribution of revision length of slash shape revisions per annotation

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

Slash: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(d) Proportional distribution of revision length of slash shape revisions per anno-

tation

 0

 50

 100

 150

 200

 250

 300

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

Bubble: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(e) Distribution of revision length of bubble shape revisions per annotation

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

Bubble: Histogram

0
1

2
3

4
5

6
7

8
9

10+

(f) Proportional Distribution of revision length of bubble shape revisions per anno-

tation

Figure 3. Distribution of annotations broken down by shape and by revision lengths of 0 to 10+, the

length 10 bucket represents revisions of 10 or more lines.

117

proportion of control revisions to these 3 shape revisions is

not really relevant.

Comments, type declarations, assignments and condi-

tional were the most common revisions. Flat revisions were

the most numerous revisions, they consisted of predomi-

nantly comments, assignments and data. Slash revisions

and bubble revisions comprised the majority of the condi-

tional revisions. Slash revisions represented more loop re-

visions than any other shapes.

4.3. Indentation Variance Perspective

The variance of indentation is calculated by creating of

vector of indentation per line of a revision and then calcu-

lating the variance of that vector. We then break down the

distribution of variance of indentation by bucketting them

into quartiles. Figure 4 depicts the quartiles of the variance

of indentation for various subsets of revisions. The quar-

tiles are calculated by first bucketing each revision by their

annotation. Then per each bucket, we order the revisions

by their variance of indentation. This ordered list of revi-

sions is split up into four contiguous subsets of equal size.

These quartiles give us an idea of the proportion of revi-

sions that are associated with a particular annotation, and

what proportion of those revisions, in a particular bucket,

are associated with certain values. Note that if one value is

predominant (particularly 0) that the buckets that share the

same range (0 to 0) are interchangeable (this is notable in

Figure 4(a) and figure 4(b)).

Most slash revisions were conditionals or type declara-

tions (see Figures 4(c) and 4(d)). Lower values of variance

correlated more with conditionals than type declarations.

Higher values of variance correlated with type declarations

and function calls. Loops were more probable in the first

three quartiles than the last quartile.

Most bubble revisions were conditionals, assignments

and function definitions. The variance of these revisions

was non-zero and was split uniformly across the quartiles

(see Figures 4(e) and 4(f)). Assignments, returns and com-

ments had the largest percentage of lower variance revi-

sions. Data, conditional macros, and macro calls were not

common bubble revisions.

Flat revisions had variances of 0, thus it was not useful

to analyze flat revisions with variance as the revisions were

evenly distributed across the quartiles.

More than half of Control revisions had an indentation

variance of 0. Comments, type declarations and function

definitions were biased to those revisions with variances

larger than 0 (see Figures 4(a) and 4(b)). Control revisions

seemed to be split into two groups, zero variance and non-

zero variance. Small variances were associated with data

revisions, assignments, comments and type declarations.

Loops predominantly had larger variances.

We compared all the annotated revisions with the control

set of revisions and found that the majority of revisions had

0 variance. The larger variance revisions were conditionals,

function definitions and type declarations. Less frequent but

still associated with large variances were loops and condi-

tional macros.

4.4. Answers to Research Questions

Now we address the questions posed in section 2.1 about

the distribution of the code shapes and the kind of change

they represent.

What kind of indentation correlates with function defini-

tions? Function modification seems much more prevalent in

revisions with a higher variance of indentation like bubble,

slash and the upper quartiles of revision length and variance

of indentation of revisions.

What kinds of code correlate with zero variance indenta-

tion? Comments, type declarations, assignments and data

were commonly found among revisions with flat or zero

variance indentation.

What kinds of code correlate with non-zero variance in-

dentation? Common code with non-zero variance indenta-

tion included conditionals, type declarations, function def-

initions, comments and assignments. The main difference

between zero and non-zero variance indentation revisions

that certain annotations such as data, comments and assign-

ments were far less common. Also, macros and data re-

visions were far more common with zero indentation than

non-zero indentation.

Among the bubble and slash indentation shapes, con-

ditionals, and function definitions were far more common

than with both flat revisions and revisions with 0 variance

of indentation.

4.5. Integration with End-User Tools

We hope that with this data-set and these characteriza-

tions of the distributions of our annotations (effectively the

underlying kinds of code), one could integrate this knowl-

edge into a tool which browses revisions and emphasizes

the kind of code to look for while browsing a repository.

The browser could parse the indentation of the revisions,

then allow the user to create a distribution from the anno-

tation tags. Then by combining techniques like Bayesian

inference, the indentation shapes and the measurements of

indentation, the browser could suggest revisions for the user

to inspect.

5. Validity Threats

Our work faces some potential threats to validity. The

main vector of these threats include: sampling issues, gen-

eralizability, language and development tools issues, data

cleaning, and bias issues.

118

 0

 50

 100

 150

 200

 250

 300
C

o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

control

0.000 0 0.000 664

(a) Distribution of control revisions per quartile of variance of indentation.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

control

0.000 0 0.000 664

(b) Proportional Distribution of control revisions per quartile of variance of inden-

tation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

slash

0.024 3.000 21.333 5824

(c) Distribution of slash revisions per quartile of variance of indentation.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

slash

0.024 3.000 21.333 5824

(d) Proportional Distribution of slash revisions per quartile of variance of indenta-

tion.

 0

 50

 100

 150

 200

 250

 300

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

bubble

0.080 1.333 5.143 4256.333

(e) Distribution of bubble revisions per quartile of variance of indentation.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
m

m
e
n
ts

T
y
p
e
 D

e
c
la

ra
ti
o
n

A
s
s
ig

n
m

e
n
t

C
o
n
d
it
io

n
a
l

F
u
n
c
ti
o
n
 C

a
ll

D
a
ta

F
u
n
c
ti
o
n
 D

e
f

M
a
c
ro

L
o
o
p

C
o
n
d
it
io

n
a
l
M

a
c
ro

A
n
o
m

a
ly

E
x
c
e
p
ti
o
n

R
e
tu

rn

E
x
p
re

s
s
io

n

C
o
n
c
u
rr

e
n
c
y

bubble

0.080 1.333 5.143 4256.333

(f) Proportional Distribution of bubble revisions per quartile of variance of inden-

tation.

Figure 4. The Quartiles of the Variance of the different indentation shapes and the control sample.

Flat is not displayed because it has a variance of 0. Note how almost 3/4s of the control samples

have a variance of 0.

119

Our selection of Source-Forge projects was not a random

sample, it consisted of the most active and downloaded, that

had repositories to examine. This software might not be

representative of many classes of software. Sampling was

done at the file level, not the diff chunk level, so this means

that certain files might represent a larger proportion of the

revisions depending on the age of the file. Due to the issues

sampling and the languages studied our results may not be

very generalizable. Another issue would be that code which

changes a lot might exhibit certain properties, we might be

measuring these properties rather than the properties of revi-

sions themselves. We could suffer from a multiple counting

problem because of multiple changes to the same hotspots.

Our annotations potentially suffer from personal bias.

Although we tried to be as objective as possible, the annota-

tion of a revision was made using our own best judgement.

As researchers we could have let personal bias slip in even

though we tried to be objective.

We studied code revisions to C, C++, Java, Perl, PHP and

Python files, we did not analyze the more common XML

files, Makefiles and shell scripts, we did not analyze HTML

or Javascript. As well, these 6 languages are related to each

other, they cover similar domains and share similar syntax.

Also we did not study full source files, although much of

that had been addressed by nesting metrics [7, 12].

Data cleaning posed a problem: sometimes a revision

slipped through that did not match our rules well (like a

slash shape of pure whitespace and no code). We had to

mark these revisions as anomalies.

6. Conclusions

In conclusion, we have shown that indentation shapes

such as slash and bubble have important properties.

Namely, they commonly correspond to potentially complex

code, such as loops or conditionals. Bubbles and slashes

relate to branches in code. By comparison, more common

shapes like flat shapes or revisions with a low variance of

indentation are often comments, assignments, data and type

declarations.

We have shown that revisions that have a non-zero vari-

ance of indentation are less likely to be comments and more

likely to have syntactically interesting structure, that is they

consist of conditionals such as if blocks, preprocessor con-

ditionals, loops and function definitions. Revisions with

non-zero variance of indentation often indicate code that

is more interesting, more complex than revision with less

variant indentation.

With this knowledge and these distributions it should be

easy to create tools that browse revisions, measure their in-

dentation and allow users to query for revisions which po-

tentially match the annotation they are looking for. This

is useful since parsing diffs requires contextual information

often not included with the diff, this often happens if the

diffs are from a patch received on a mailing list.

6.1. Future Work

Future work should further investigate indentation and

revisions, specifically collections of revisions such as those

found in a diff or a commit. We should also try other alter-

native metrics like characters and code characters per line.

Other questions remain, such as what the coupling of

diff-chunks indicates. We also wish to identify the multi-

ple purposes of a revision, commit or patch, and determine

if we can associate the diff-chunks with each purpose; more

specifically, can we identify which revisions are related to

which purpose?

Acknowledgements: This work was partially funded by

an NSERC PGS D Scholarship. We would like to thank

SHARCNET for use of their infrastructure.

References

[1] R. E. Berry and B. A. Meekings. A style analysis of C pro-

grams. Commun. ACM, 28(1):80–88, 1985.
[2] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker.

Shared information and program plagiarism detection, 2004.
[3] D. Coleman, D. Ash, B. Lowther, and P. W. Oman. Using

metrics to evaluate software system maintainability. Com-

puter, 27(8):44–49, 1994.
[4] R. B. Findler. PLT DrScheme: Programming environ-

ment manual. Technical Report PLT-TR2007-3-v371, PLT

Scheme Inc., 2007.
[5] D. M. German and A. Hindle. Measuring fine-grained

change in software: towards modification-aware change

metrics. In Proceedings of 11th International Software Met-

rics Symposium, 2005.
[6] N. Gorla, A. C. Benander, and B. A. Benander. Debugging

effort estimation using software metrics. IEEE Trans. Softw.

Eng., 16(2):223–231, 1990.
[7] W. A. Harrison and K. I. Magel. A complexity measure

based on nesting level. SIGPLAN Not., 16(3):63–74, 1981.
[8] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. To-

wards a theoretical model for software growth. In MSR

2007: Proceedings, page 21, Washington, DC, USA, 2007.

IEEE Computer Society.
[9] A. Hindle, M. Godfrey, and R. Holt. Reading beside the

lines: Indentation as a proxy for complexity metrics. In Pro-

ceedings of ICPC 2008, June 2008.
[10] R. F. Mathis. Flow trace of a structured program. SIGPLAN

Not., 10(4):33–37, 1975.
[11] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shnei-

derman. Program indentation and comprehensibility. Com-

mun. ACM, 26(11):861–867, 1983.
[12] J. Munson and T. Khoshgoftaar. The dimensionality of pro-

gram complexity. Software Engineering, 1989. 11th Inter-

national Conference on, pages 245–253, May 1989.
[13] P. W. Oman and C. R. Cook. Typographic style is more than

cosmetic. Commun. ACM, 33(5):506–520, 1990.
[14] R. Power, D. Scott, and N. Bouayad-Agha. Document struc-

ture. Comput. Linguist., 29(2):211–260, 2003.

120

