
DTS-A Software Defects Testing System

Yang Zhao Hong[1][2] Gong Yun Zhan[2] Xiao Qing[1][2] Wang Ya Wen[2]

(1. Department of Information Engineering of the Academy of Armored Force
Engineering, Beijing 100072, China;

2. State Key Laboratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing 100876, China)

yang_zhaohong2003@yahoo.com.cn

Abstract

This demo presents DTS (Software Defects Testing

System), a tool to catch defects in source code using
static testing techniques. In DTS, various defect
patterns are defined using defect patterns state
machine and tested by a unified testing framework.
Since DTS externalizes all the defect patterns it checks,
defect patterns can be added, subtracted, or altered
without having to modify the tool itself. Moreover,
typical interval computation is expanded and applied
in DTS to reduce the false positive and compute the
state of defect state machine. In order to validate its
usefulness, we perform some experiments on a suite of
open source software whose results are briefly
presented in the last part of the demo.

1. DTS’s architecture

Figure1. DTS’s architecture

DTS is a tool to catch defects in source code using
static testing techniques. Its core features include

defect patterns driven, high efficiency and less false
positive. Figure1 shows DTS’s Architecture.
1.1 Defects patterns

Defects patterns define the patterns in code that
often indicate defects. DTS is defect patterns driven.
The tool can never report a defect outsize its defect
patterns set. Defect patterns tell the defect patterns
analysis engine how to model the environment and the
effects of library and system call. The tool’s defects
patterns set can be divided into four groups:

(1) Fault patterns. Fault patterns define the defects
that may cause a program error, such as MLF(Memory
Leak Fault), RLF(Resource Leak Fault), NPDF(Null
Pointer Dereference Fault), OBAF(Out of Bounds
Array Access Fault), ILCF(Illegal Computing Fault),
and so on.

(2) Vulnerability patterns. Vulnerability patterns
define the defects that may cause a security problem,
such as Buffer Overflow, Tainted data, API abuse, and
so on.

(3) Style patterns. Style patterns enforce rules
related to whitespace, naming, deprecated functions,
commenting, program structure and the like. They
often affect the readability and the maintainability of
the code but do not indicate that a particular error will
occur when the program runs.

(4) Poor performance patterns. Poor performance
patterns define the defects that may degrade
performance, such as using poor performance
functions, redundant code, and so on.

1.2 underlying technology
(1) Techniques borrowed from the compiler world.
The first thing DTS needs to do is transform the

code to be analyzed into a program model, a set of data
structures that represent the code. AST(Abstract
Syntax Tree) is a standardized version of the program
suitable for later analysis. DTS’s AST Construction is
based on JavaCC, which is the most popular parser

This work was supported by the 863 project of China. （
2006AA01Z184）（2007AA010302）

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.12

269

generator for java. As the ASR is being built, the tool
builds a symbol table alongside it. For each identifier
in the program, the symbol table associates the
identifier with its type and a pointer to its declaration
or definition. To explore the different execution paths a
control flow graph is built on top of AST. To examine
the way data move through a program, Dataflow
analysis is performed by traversing control flow graph
and noting where data values are generated and where
they are used.

(2) Interval computation
DTS expands the typical interval computation and

proposes the interval set computation. Then it proposes
the interval computation of real variable, boolean
variable, pointer variable and array variable. Finally, it
proposes the interval computation of conditional
statement and the interval computation in control flow
traverse. The purpose of interval computation is to
compute the values range of variables, which can be
used to reduce the false positive and compute the state
of defect state machine.

(3) DPSM(Defect patterns state machine)
Various defect patterns are defined using defect

patterns state machine. Each DPSM includes an initial
state the defect patterns takes on, and has any number
of transitions leading to other states that the analysis
algorithm will follow whenever it encounters some
conditions associated with the transition, such as some
code construct. If a DPSM is transited to an error state
then a defect is reported.

DTS externalizes all the defect patterns it checks,
defect patterns can be added, subtracted, or altered
without having to modify the tool itself. Each DPSM is
defined in an xml file.

2. Some experiments

Taking NPDF and RLF as example, DTS has been
used to find a number of defects in some famous open
source software such as Tomcat and Spring. The
results are shown in Table1.

Table1. Experiments results
Software Version Source

files
Lines NPDF RLF IP

Tomcat[1] 4.1.24 1127 349,542 38 3 78
Spring[2] 1.2.9 1763 279,783 5 32
Azureus[3] 3.0.5.0 2770 563,415 31 2 93
Zk[4] 3.0.3 962 133,200 9 2 32
Freemind[5] 0_8_1 509 102,112 25 2 36

Since static analysis tools often produce many false
positives, so the IP (Inspection point) reported by DTS

is reviewed by our testing team and report about 108
NPDF and 9 RLF. It takes only several minutes for
DTS to test above open source software. Figure2
shows the GUI of DTS when testing Tomcat.

Figure2. GUI of DTS

3. Existing tools and techniques
There are many kinds of static analysis tools, each

with different goals, such as type checking, style
checking, program understanding, program verification,
property checking, bug finding, and security review.
DTS covers style checking, bug finding and security
review. The bug find tools are most similar to DTS.
Findbugs[6] does an excellent job of identifying bugs in
java code. Coverity[7] makes a bug finder for C and
C++. Microsoft’s Visual studio 2005 includes the
\analyze option that checks for common coding errors
in C and C++. Klocwork[8] offers a combination
program understanding and bug finding static analysis
tool that enables graphical exploration of large
programs. Fortify[9] is a security-focused static analysis
tool.

4. Conclusion

DTS is a tool to catch defects in source code using
static testing techniques. It covers fault patterns,
Vulnerability patterns, Style patterns and Poor
performance patterns. Its core features include defect
patterns driven, high efficiency and less false positive.

5. References
[1]http://tomcat.apache.org/
[2]http://sourceforge.net/projects/springframework
[3]http://sourceforge.net/projects/azureus
[4]http://sourceforge.net/projects/zk1
[5]http://sourceforge.net/projects/freemind
[6]http://findbugs.sourceforge.net/
[7]http://www.coverity.com
[8]http://www.klocwork.com
[9]http://www.fortify.com

270

