
Rejuvenate Pointcut: A Tool for Pointcut Expression Recovery in Evolving
Aspect-Oriented Software∗

Raffi T. Khatchadourian†

Ohio State University
khatchad@cse.ohio-state.edu

Awais Rashid
Lancaster University

awais@comp.lancs.ac.uk

Abstract

Aspect-Oriented Programming (AOP) strives to localize
the scattered and tangled implementations of crosscutting
concerns (CCCs) by allowing developers to declare that
certain actions (advice) should be taken at specific points
(join points) during the execution of software where a CCC
(an aspect) is applicable. However, it is non-trivial to
construct optimal pointcut expressions (a collection of join
points) that capture the true intentions of the programmer
and, upon evolution, maintain these intentions. We demon-
strate an AspectJ source-level inferencing tool called REJU-
VENATE POINTCUT which helps developers maintain point-
cut expressions over the lifetime of a software product. A
key insight into the tool’s construction is that the problem
of maintaining pointcut expressions bears strong similarity
to the requirements traceability problem in software engi-
neering; hence, the underlying algorithm was devised by
adapting existing approaches for requirements traceabil-
ity to pointcut maintenance. The Eclipse IDE-based tool
identifies intention graph patterns pertaining to a pointcut
and, based on these patterns, uncovers other potential join
points that may fall within the scope of the pointcut with
a given confidence. This work represents a significant step
towards providing tool-supported maintainability for evolv-
ing aspect-oriented software.

1 Introduction
Aspect-Oriented Programming (AOP) has emerged to lo-

calize the scattered and tangled implementations of cross-
cutting concerns (CCCs) in source code, allowing develop-
ers to characterize that certain actions (advice) should be
taken at specific points (join points) during the execution
of software. The applicability of advice is denoted via the
use of a pointcut expression (PCE) which specifies where a
CCC (an aspect) is applicable. A PCE does so by logically

∗This material is based upon work supported by the European Commission grant
IST-33710 (AMPLE) and grant IST-2-004349 (AOSD-Europe).

†This work was administered during this author’s visit to the Computing Depart-
ment, Lancaster University, United Kingdom.

connecting various predicate expressions over static and dy-
namic program characteristics like method and field naming
conventions, lexical scope, and execution control-flow.

The true power of AOP lies not only in the ability to ex-
press the applicability of existing join points captured by
a PCE but also in the applicability of join points that will
be added in the future. An effective PCE is one that truly
conveys the essence of where a CCC applies in the under-
lying system (base-code) so that not only are the current
join points that correspond to where a CCC applies are se-
lected but future ones as well. Thus, creating effective PCEs
requires developers to anticipate structural (static) and be-
havioral (dynamic) properties that the base-code will ex-
hibit as the software evolves. Constructing such optimal
PCEs, however, can be a daunting task, especially consid-
ering that these expressions should remain valid as the soft-
ware evolves. The problem is that as new requirements sur-
face and corresponding program elements emerge to real-
ize a particular requirement, the PCEs which were once in-
tended to capture core (base) concerns in which a certain
CCC was deemed applicable may no longer be valid.

It has been shown that the cause of this problem is
rooted at the inherent fragility of the typical PCE language
available in popular AO languages such as AspectJ For-
tunately, maintaining PCEs as software evolves seems to
share some resemblances to the requirements traceability
problem. Software is said to be requirement traceable if a
developer has the ability to follow the life of the realization
of a particular requirement in both a forwards and back-
wards direction. Unfortunately, the luxury of possessing
such an ability can necessitate a significant amount of costly
developer time; therefore, it is essential to cache such infor-
mation for later consultation. Nevertheless, even seemingly
innocuous changes to any traced element are likely to inval-
idate the corresponding trace information. Consequently,
effort must be made to maintain the trace information with
each artifact alteration. This situation is similar to one that
occurs in AOP, specifically, that PCEs should also be main-
tained in a analogous fashion as the base-code evolves.

In an effort to combat this problem, we demonstrate an

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.32

261

Analyze Patterns

Create advice/
modify bound PCE

Associate PointcutDerive Patterns

Analyze Base

Apply Patterns

Abstractness
α

Error

Confidence

Calculate Pattern Confidence

Calculate Wildcard
Ratio

Persist Patterns with
Confidence

Calculate Pattern
Statistics

β
Error

Figure 1. Phase I: Pointcut analysis.

AspectJ source-level, inferencing tool named REJUVENATE

POINTCUT. The Eclipse IDE plug-in alleviates the burden
associated with maintaining PCEs over the lifetime of soft-
ware by enabling tool-assisted augmentation of a PCE upon
changes to the base-code. In the following sections, we pro-
vide a brief overview of our tool, including a high-level ar-
chitecture, and summarize its innovative features.

2 Rejuvenation Approach
To assist developers maintain PCEs over the lifetime of

the base-code, our tool is composed of two phases: analysis
and rejuvenation.

Phase I: Analysis. The analysis phase, whose flow dia-
gram is depicted in Figure 1, is triggered upon modifications
to advice-bound pointcuts. The phase consists of analyzing
underlying patterns in the base-code prior to its modifica-
tion and then associating the pointcut with these patterns.
At the core of Phase I is an interprocedural inferencing algo-
rithm that uses an intention graph to capture the developer’s
intentions in creating certain program elements. The graph
is constructed with the aid of the JayFX fact extractor which
generates facts using class hierarchal analysis (CHA) per-
taining to structural properties and relationships, e.g., field
accesses, method calls, residing in the base-code. The phase
then proceeds to associate the PCE with both vertices and
labeled arcs by leveraging the AspectJ Development Tools
(AJDT). These associated graph elements are referred to as
enabled with respect to a PCE. Next, intention patterns ex-
pressing general shapes of acyclic paths that include en-
abled elements are derived. The patterns are then them-
selves analyzed in order to produce and associate a confi-
dence. This metric symbolizes the degree of credence in
using the pattern to identify join points that should be aug-
mented to a given PCE upon base-code evolution. Conse-
quently, results produced by the pattern are correlated with
and ranked by this confidence when presented to the devel-
oper. Finally, the patterns are associated with the PCE and

Rejuvenation
Request

Retrieve Prior Patterns Analyze New Base

Apply Pattern
Suggest Join

Point
Pattern

Available? Yes

Previously Analyzed
PCE

Sort By
Confidence

Intention
Graph

Incorporate Join
Point

Accept?

Match Available?

Yes

Commit PCE Changes

No

No

Yes

No

Initialize

Rejuvenate

Figure 2. Phase II: Pointcut rejuvenation.

persisted for later use in Phase II.
Phase II: Rejuvenation. We envision our tool to be

most helpful in scenarios where a developer changes the
base-code and then proceeds to update PCEs to reflect those
changes so that new join points are captured correctly. As
depicted in Figure 2, prior to manually altering the PCE, the
developer selects the PCE in the Eclipse IDE and executes
our tool for assistance in performing the updates correctly.
At this juncture, the intention patterns previously associ-
ated with the PCE are retrieved from storage and ran against
the new base-code version in order to unveil the suggested
join points, which are those that share intentional similari-
ties with the join points previously selected by the PCE in
the original version of the base-code. Each suggestion is
presented with the derived patterns’ confidence. The devel-
oper then selects the desired join points to be incorporated
into a new version of the PCE.

3 Conclusion and Future Work
By adapting existing approaches for requirement trace-

ability maintenance, the REJUVENATE POINTCUT Eclipse
IDE plug-in helps developers maintain pointcut expressions
in evolving aspect-oriented software. Additional join points
whose associated program elements exhibit common pat-
terns in the intentional structure of the base-code are sug-
gested for incorporation to existing PCEs. In its current
state, the tool presents the user with the new suggested join
points for manual integration. In future versions of the tool,
once the selection is final, the pointcut will be rewritten us-
ing existing refactoring support adapted for AspectJ con-
structs. Furthermore, our current refactoring module proto-
type is able to handle simple augmentations, e.g., via dis-
junction of join points, however, we plan to utilize existing
refactoring tool-support in order to perform more complex
pointcut rewriting via join point clustering and string anal-
ysis of program element names.

262

