
Is Cloned Code more stable than Non-Cloned Code?

Jens Krinke
FernUniversität in Hagen

Hagen, Germany

Abstract

This paper presents a study on the stability of cloned
code. The results from an analysis of 200 weeks of evolution
of five software system show that the stability as measured
by changes to the system is dominated by the deletion of
code clones. It can also be observed that additions to a sys-
tems are more often additions to non-cloned code than addi-
tions to cloned code. If the dominating factor of deletions is
eliminated, it can generally be concluded that cloned code
is more stable than non-cloned code.

1. Introduction

The duplication of code is common practice to make
software development faster, to enable “experimental” de-
velopment without impacting the original code, or to en-
able independent evolution [8]. Since these practices in-
volve both duplication and modification, they are collec-
tively called code cloning. While the duplicated code is
called a code clone. A clone group consists of code clones
that are clones of each other (sometimes this is also called a
clone class). During the software development cycle, code
cloning is easy and inexpensive (in both effort and money).
However, this practice can complicate software mainte-
nance and it has been suggested that too much cloned code
is a risk, albeit the practice itself is not generally harmful
[13]. Because of these problems, many approaches to de-
tect cloned code have been developed [5,6,9,12,16–18,21].
Empirical studies of cloned code have focused mainly on
examining whether code clones are changed consistently
[4, 10, 15, 19].

Another important question is if cloned code is more sta-
ble than non-cloned code during the evolution of a system,
i.e. if non-cloned code is changed more often than cloned
code. If cloned code is generally less stable than non-
cloned code, it can be assumed that cloned code requires
more attention and is indeed more expensive to maintain. If
cloned code is generally more stable than non-cloned code,
its maintenance costs will be lower.

We sought to answer this question by studying the
changes that are applied to cloned and non-cloned code dur-
ing 200 weeks of evolution of five open source software sys-
tems. For the cases studied, the following facts were found:

• The amount of deletions that occur during the evolu-
tion of a system is dominating, i.e. there exist massive
deletions of cloned code.

• The average percentage of additions, deletions, or
other changes to cloned code is lower than the aver-
age percentage for non-cloned code.

• It is more often the case that a higher percentage of
non-cloned code is added, deleted, or changed in com-
parison to cloned code.

• Non-cloned code is more often changed (incl. addi-
tions and deletions) than cloned code and therefore,
cloned is more stable than non-cloned-code.

The next section presents the theoretical framework that
defines changes, code clones, and clone groups. The setup
of the empirical study is presented in Section 3 and its re-
sults in Section 4. After Section 5 discusses related work,
the last section will conclude.

2. A Framework for Changes to Clones

This section will present the framework in which code
clones, groups of code clones, and changes to code clones
are defined and related to the evolution of software systems
in terms of the versions of the system.

2.1. Code Clones

Code clones are usually described as source code ranges
(or fragments) that are identical or very similar. They are
grouped into clone groups (sometime called clone classes)
which are sets of identical or very similar code clones. A
code clone c = (s, l, f) is the source code range starting at
line s with the following l lines of code in file f , thus the
last line of the code clone is s + l − 1. A clone group G =

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.14

57

{c1, . . . , cn} is a set of n code clones c1, . . . , cn, where each
of the code clones is a clone of the others. For the purpose
of this study, the effects of split or fragmented code clones
are ignored. Such clones would consist of multiple source
code ranges in the same file. An example of such a code
clone is a source code range that is copied and afterward
additional source code is inserted into the cloned code.

The code clones do not have to be disjoint: it is possible
for two code clones c1 = (s1, l1, f) and c2 = (s2, l2, f)
to share a common source range (min(s1 + l1, s2 + l2) >
max(s1, s2)).

Most of the available tools for code clone detection gen-
erate a list of clone groups. Usually, a minimal size k
of an identified code clone c = (s, l, f) can be speci-
fied, i.e. size(c) > k. In the following it is assumed that
size(c) = l. However, many tools use the number of lexi-
cal tokens that is covered by a code clone as the size of the
code clone.

2.2. Changes

Source code changes are frequently defined in terms of
a source code range that has been replaced by other source
code. A change d = (s, l, f, n, t) is the source code range
starting at line s in file f with a size l ≥ 0 (number of
lines) that will be replaced by the text t with a size of n ≥ 0
(number of lines). Note that a change is not specified with
the last line number because that would not allow the spec-
ification of an empty range. The kind of change is usually
distinguished between deletion, addition, or change. Addi-
tion and deletion are special cases with l = 0 or n = 0,
respectively. The changes to a program can be expressed
by a set of changes D = {d1, . . . , dk} where the di do not
overlap.

2.3. Software Systems and their Version History

For the purpose of the study, a software system S =
{f1, . . . , fn} consists of a set of n source code files fi, 1 ≤
i ≤ n. Independent of the specific kind of version, it is
assumed that a system exists in multiple versions v ∈ V
where the complete system can be retrieved for every ver-
sion v: S(v) = {fv

1 , . . . , fv
n} is the system in version v. In

a versioning system like CVS, the version v can be speci-
fied in a very flexible way. For example it can be specified
as a time or by a name given to a specific version (branch-
ing will be ignored in this work). The differences between
two versions x and y of a system can be identified by a set
of changes as described above: Let D(v, w) be the set of
changes {d1, . . . , dk} between S(v) and S(w).

2.4. Changes to Cloned and Non-Cloned Code

In this study, the changes to a system S between two ver-
sions v and w will be analyzed with respect to the clones in
the system. As the ultimate goal is to measure the stabil-
ity of cloned and non-cloned code, we need a measure for
comparing, between subsequent versions of a system, the
amount of changes to cloned versus non-cloned code.

Let c(v) be the set of code clones {c1, . . . , cn} in S(v).
For any source code line in the system S(v) it is possible to
say if it is cloned or non-cloned. A source line s in file f is
cloned, iff ∃c1 ∈ c(v) : c1 = (s1, l1, f)∧ s1 ≤ s < s1 + l1.
Note that clones are allowed to overlap and there may exist
more than one c1. Let C(v) be the set of cloned lines and
N(v) the set of non-cloned lines in version v.

For any source line in the system S(v) it is also pos-
sible to say if it is changed or unchanged between ver-
sions v and w. A source line s in file f is changed, iff
∃d ∈ D(v, w) : d = (s1, l1, f, n, t) ∧ s1 ≤ s < s1 + l1.
Note that this only covers changes and deletions, but not
additions (because of l1 = 0). Therefore it is necessary to
handle changes, deletions, and additions independently:

• A source line s in file f gets deleted if in addition to the
above condition n = 0 holds. Let DC(v) be the set of
source lines that get deleted and are cloned according
to the above condition in version v. Let DN(v) be the
corresponding set of non-cloned deleted lines.

• A source line s in file f gets changed if additionally
n > 0 holds. Let CC(v) be the set of cloned changed
lines and CN(v) the set of non-cloned changed lines.

• A (new) source line s in file f gets added if the condi-
tion ∃d1 ∈ D(v, w) : d = (s1, 0, f, n, t) ∧ s1 ≤ s <
s1 + n holds instead of the above. It is not possible to
distinguish if the added line is cloned or non-cloned,
however, it is possible to distinguish if it gets added to
cloned or non-cloned code: Let d = (s1, 0, f, n, t) be
the addition. The n added lines are added to cloned
code, iff ∃c2 ∈ c(v) : c2 = (s2, l2, f) ∧ s2 < s1 <
s2 + l2. Note that it is impossible to distinguish an
addition before or to a clone for s1 = s2, thus it is
assumed that additions with s1 = s2 are always addi-
tions before the clone and do not belong to the cloned
code. Let AC(v) be the set of lines that are added to
cloned code and let AN(v) be the set of lines that are
added to non-cloned code.

2.5. Measuring Stability

With the now defined framework it is possible to mea-
sure the amount of changes within cloned and non-cloned
code. Because additions, deletions, and changes are opera-
tions with different effects on cloned and non-cloned code

58

(as we will see), the measurements will distinguish the three
possible operations:

• The instability in respect to deletions is for cloned code∑
v∈V

|DC(v)|∑
v∈V

|C(v)|
and for non-cloned code

∑
v∈V

|DN(v)|∑
v∈V

|N(v)|
.

• The instability in respect to additions is for cloned code∑
v∈V

|AC(v)|∑
v∈V

|C(v)|
and for non-cloned code

∑
v∈V

|AN(v)|∑
v∈V

|N(v)|
.

• The instability in respect to changes is for cloned code∑
v∈V

|AC(v)|∑
v∈V

|C(v)|
and for non-cloned code

∑
v∈V

|AN(v)|∑
v∈V

|N(v)|
.

The instability is basically defined in respect to the num-
ber of deleted, added, or changed lines in comparison to all
lines. To be able to clearly state that cloned code in general
is more stable than non-cloned code, the instability mea-
sures should all be much lower for the cloned code than for
the non-cloned code. The following experiment will there-
fore measure the instability of five software systems.

3. Experiment Setup

For the study the version histories of five open source
systems have been retrieved. All five systems have to have
a sufficiently long development history, which is the case if
the system has reached a released state before 2002-08-08
and has been in further development since then. The five
systems are:

1. ArgoUML1 is a UML modeling tool that includes sup-
port for standard UML diagrams. It is written in Java
and its version archive is available via subversion.

2. The JDT core subsystem of Eclipse2: From Eclipse’s
version archive the org.eclipse.jdt.core
module has been used.

3. GNU Emacs3 is the famous text editor, written in C.

4. FileZilla4 is a FTP client with a graphical user interface
for Windows, written in C++.

5. SQuirreL5 is a graphical SQL client written in Java.

All five systems are large enough (¿50KLOC) and have
enough changes (¿500 changed lines per week on aver-
age) in their version archive within the 200 observed weeks.
Moreover, they cover different applications, different plat-
forms, and different programming languages. One of the

1http://argouml.tigris.org/
2http://www.eclipse.org/
3http://www.gnu.org/software/emacs/
4http://filezilla.sourceforge.net/
5http://squirrel-sql.sourceforge.net/

Source Cloned
System LOC LOC

ArgoUML 118316 14335 12%
jdt.core 192624 28149 15%
Emacs 227919 21840 10%
FileZilla 90302 14060 16%
SQuirreL 69981 5773 8%

Table 1. Analyzed systems

systems, ArgoUML, has been used in previous studies by
Kim et al. [15] and Aversano et al. [4]. The other systems
used by the studies have not been used because they had
too few and too small changes affecting clones and thus
have been rejected. Four of the five systems have also been
used in a study on consistent and inconsistent changes to
clones [19].

The sources of all five systems have been retrieved based
on their status in the version archive on 200 different dates,
such that each version is exactly one week later or earlier
than the next or previous version. A one week cycle has
been chosen because CVS activity is usually dependent on
the weekday [23] and projects often use a week oriented
process (e.g. within Eclipse). For all systems, the first ver-
sion was from 2002-08-08 and the last version was from
2006-06-01.

In all systems, only the Java, C, and C++ source and
header files have been analyzed. Also, the source files have
been transformed to eliminate spurious changes between
versions: Comments were removed from the sources and
afterward the source files have been reformatted with the
pretty printer Artistic Style6. The transformed sources are
saved to a repository. With this repository, all S(v), 0 ≤
v ≤ 200 can be accessed.

The changes between the versions of the systems have
been identified by the standard diff tool. For each version v
of the analyzed system, the changes between version v and
v + 1 (the version of the next week) have been identified,
generating D(v, v + 1).

For each of the 200 versions, the clone groups G(v)
have been identified by the use of the clone detection tool
Simian7 from RedHill Consulting Pty. Ltd. It is a text-based
clone detector that detects almost identical clones. Most of
the other (freely) available clone detectors cannot be used
because they require the use of a GUI or are restricted to
Java source files. Simian has been instructed to identify
clones with a size of at least 11 source code lines. The
possibility to relax the identification by assuming that all
literals are identical has not been used.

6http://astyle.sourceforge.net/
7Available at http://www.redhillconsulting.com.au/

products/simian/index.html

59

The framework described in the previous section has
been implemented in a tool that takes a list of clone groups
G(v) as detected by Simian and a list of changes D(v, w) as
produced by diff that are then mapped on the code clones.
The tool will compute the needed sets as described in the
previous section.

The analysis has been done on 200 versions. For each
week w, 1 ≤ w ≤ 200, the tool has generated the
needed values for |C(w)|, |N(w)|, |AC(w)|, |AN(w)|,
|DC(w)|, |DN(w)|, |CC(w)|, and |CN(w)| based on the
clone groups of the analyzed system in week w− 1 and the
changes from week w − 1 to week w.

Table 1 shows some properties of the analyzed systems:
The second column contains the average size of the an-
alyzed source base (in LOC) for a week. The next two
columns contain the average size of cloned source code (in
LOC and as an percentage of the source code). For exam-
ple, GNU Emacs is the largest system with 228 KLOC on
average, from which 10% (22 KLOC) is cloned code on av-
erage.

4. Results

This section presents the results of the study as described
in the previous section. Figure 1 shows the instability mea-
sures for all five systems. The grey bars show the instabil-
ity for additions (“AC%”), deletions (“DC%”), and changes
(“CC%”) for cloned code and the white bars show the same
for non-cloned code (“AN%”, “DN%”, and “CN%”). From
this figure, the following conclusions can be drawn:

• Less is added to cloned code than to non-cloned code
for all five systems. For example, in ArgoUML only
0.07% is added to cloned code on average in compar-
ison to 0.27% of additions to non-cloned code. In re-
spect to additions, cloned code is more stable than non-
cloned code.

• From cloned code is more deleted than from non-
cloned code. For example in ArgoUML, 0.85% of
the cloned code is deleted on average in comparison
to 0.63% of the non-cloned code. It seems that in re-
spect to deletions, non-cloned code is more stable than
cloned code.

• For changes, the picture is not clear: In three out of
five systems, cloned code is more stable in respect to
changes than non-cloned code.

Remember that the higher percentages of deletions in com-
parison to the additions do not indicate shrinking system
sizes because of the differences in measuring the changes,
additions, and deletions. To better understand the patterns,
two of the systems will be looked at in detail.

Figure 1. Summary of the results

4.1. ArgoUML

Figure 2 shows the system size of ArgoUML measured
in kLOC for 200 weeks. Overall, the size increases along
the time except for two time periods: There is a huge drop
in size around week 85 and there is a temporary drop in
size during the weeks 185–187. The other variations in
size are not significant. Figure 3 shows the rate of cloned
code during the same 200 weeks (|C(v)|

|N(v)+C(v)|). The drop
in size around week 85 has a clear correspondent drop in
the amount of cloned code: In the same week, the amount
of cloned code is almost halved. Until the drop, the rate of
cloned code is decreasing and after the drop it stays almost
stable around 8%.

The huge drop from week 84 to 85 can be explained by
the operations performed on the software repository: Dur-
ing this week, six files have been removed from the repos-
itory which are two almost identical instances of a gener-
ated Java parser and lexer. These six files were responsible
for almost half of the cloned code in the project. A simi-
lar event is responsible for the drop from week 184 to 185:
During this week, another set of generated files for a class-
file parser is deleted. As this set is a single instance, it has
no significant impact on the number of clones.

Even now that it is clear that this restructuring with the
massive deletion of clones is dominating the overall stabil-
ity, it is still important to have a closer look at the evolution.
Figure 4 compares the deletions in cloned and non-cloned
code. The grey bars show the amount of deletions for cloned
and non-cloned code as percentages. Positive values repre-

60

Figure 2. ArgoUML’s size during 200 weeks

Figure 3. ArgoUML: Rate of cloned code

sent the rate of cloned code that gets deleted and the nega-
tive values represent the rate of non-cloned code. The rates
are computed by |DC(v)|

|C(v)| and |DN(v)|
|N(v)| for every week v. For

example, in week 85, 45% of the cloned code is deleted
and 3.9% of the non cloned code (shown as -3.9%). The
black line shows the difference between the two rates (as
computed by |DC(v)|

|C(v)| − |DN(v)|
|N(v)| . This figure shows that

there are large deletions of cloned code in weeks 33, 75,
77, 85, and 104. Large deletions of non-cloned code are in
weeks 118, 127, 184, and 193. It seems that the large dele-
tion of non-cloned code (almost 12%) in week 184 leads
to the temporary drop in size mentioned above. It should
also be noted that in 137 weeks the rate of deleted non-
cloned code is larger than the rate of deleted cloned code
(|DC(v)|

|C(v)| < |DN(v)|
|N(v)|) and in only 53 weeks it is the other

way. Thus, usually during the evolution of ArgoUML, more
non-cloned code gets deleted than cloned code.

Figure 5 shows the same diagram for the additions. As
expected, there is a single week (166) where more than 1%
of clone code is added to the cloned code. For the non-
cloned code, this happens at week 2, 3, 5, 10, 39, 129, and
150. The black line already indicates the trend that usually
more is added to the non-cloned code: |AC(v)|

|C(v)| < |AN(v)|
|N(v)|

holds in 174 weeks. All this indicates that for additions,
cloned code is usually more stable than non-cloned code.

Figure 6 shows the diagram for changes. The pattern
here is not as clear as in the other two discussed before. It
seems that often if a large rate of cloned code is changed, a
similar large rate of non-cloned code is changed, too. For
example, in week 130, 4.6% of the cloned code is changed
and 5.6% of the non-cloned code is changed. Again, usually
the rate of changes to non-cloned code is larger than the rate
for cloned code (in 145 weeks).

4.2. SQuirreL

Figure 7 shows the system size of SQuirreL for the 200
weeks. Overall, the size is increasing along the time and
more than doubles during the time period. There is only
one larger drop in size during week 126. Figure 8 shows
the percentage of cloned code during the same 200 weeks:
it changes between 5.3% and 9.8%. Large changes occur
during week 28, 62, and 179 (increases) and during week
125 and 183 (decreases). The reasons for the changes are:

• In week 28 a new plugin for syntax highlighting has
been added which has a lot of cloned code together
with a similar plugin for jEdit. Indeed, the new plugin
is supposed to replace the older plugin, but it was not
removed until week 125.

• In week 62 a set of highly similar class files was added
which represents different data types (e.g. “DataType-
Float” and “DataTypeDouble”). The added code is
identified as cloned in following weeks.

• In week 179 a set of five files for database schema have
been added that are almost identical to a previous set
in a different directory. The previous set of files is re-
moved in week 183.

Again it is clear that large scale restructurings are dom-
inating the changes in percentage of cloned code in SQuir-
reL. Figures 9, 10, and 11 show the trends for deletions,
additions, and other changes for SQuirreL. The described
events in week 125 and 183 can be clearly seen as peaks in
Figure 9. The peaks in the first week are due to a restructur-
ing of the jEdit plugin. The peaks in weeks 89 and 90 come
from a massive change to the client code with a lot of added
and deleted files.

It should also be noted that only in 29 weeks the per-
centage of deleted cloned code is larger than the percentage

61

Figure 4. ArgoUML: Deletions

Figure 5. ArgoUML: Additions

Figure 6. ArgoUML: Changes (that are neither Additions nor Deletions)

62

Figure 7. SQuirreL’s size during 200 weeks

Figure 8. SQuirreL: Rate of cloned code

of deleted non-cloned code and in 106 weeks it is the other
way. Thus, usually during the evolution of SQuirreL, more
non-cloned code gets deleted than cloned code.

The peak in week 77 in Figure 10 comes from a massive
addition to one of the data type representations: The string
type gets a dedicated GUI during that week. However, the
trend that usually more is added to the non-cloned code can
be observed in 130 weeks and in 25 weeks there are more
additions to cloned code. This indicates that for additions,
cloned code is usually more stable than non-cloned code.

Figure 11 shows the same diagram for the changes. The
pattern here is again not as clear as in the other two dis-
cussed before. There is one large peak in week 139 which
is due to a massive refactoring and code cleanup as it seems.
Again, usually the percentage of changes to non-cloned
code is larger than the percentage for cloned code (in 120
weeks, 33 weeks it is vice versa).

A B C D E F
ArgoUML 174 21 137 53 145 52
jdt.core 155 37 127 60 140 55
Emacs 160 34 145 35 142 54
FileZilla 93 29 74 27 90 37
SQuirreL 130 25 106 29 120 33

A |AC(v)|
|C(v)| < |AN(v)|

|N(v)| B |AC(v)|
|C(v)| > |AN(v)|

|N(v)|
C |DC(v)|

|C(v)| < |DN(v)|
|N(v)| D |DC(v)|

|C(v)| > |DN(v)|
|N(v)|

E |CC(v)|
|C(v)| < |CN(v)|

|N(v)| F |CC(v)|
|C(v)| > |CN(v)|

|N(v)|

Table 2. Ratios between cloned and non-
cloned code

4.3. Domination of Deletions

As can be seen from the overall results and the detailed
discussions for ArgoUML and SQuirreL, the deletions have
a very strong influence on the results. To eliminate the ef-
fect of deletion peaks, Table 2 shows the number of weeks
where the percentage of additions, deletions, or changes to
non-cloned code is larger than to cloned code (columns A,
C, E) or vice versa (B, D, F). The number is always larger
for the non-cloned code.

To smooth out the data, the extreme peak values for dele-
tions of cloned or non-cloned code have been deleted and
the average data has been recomputed without the peaks.
In each one of the systems, this has eliminated not more
than four data sets. The recomputed overall results shown
in Figure 12 are now much more clearer and the following
conclusions can be drawn:

• The average percentage of additions, deletions, or
other changes to clone code is lower than the average
percentage for non-cloned code.

• It is more often the case that a higher percentage of
non-cloned code is added, deleted, or changed in com-
parison to cloned code.

• Non-cloned code is more often changed (incl. addi-
tions and deletions) than cloned code and therefore,
cloned is more stable than non-cloned-code.

4.4. Threats to Validity

There are some potential threats to validity in the pre-
sented study. First of all, there is no clear definition of
a clone. Moreover, a clone detected by a clone detector
may not be a clone in reality (false positive) or a clone in
a system may be missed by a clone detector (false nega-
tive). To reduce the number of false positives, we have used

63

Figure 9. SQuirreL: Deletions

Figure 10. SQuirreL: Additions

Figure 11. SQuirreL: Changes (that are neither Additions nor Deletions)

64

Figure 12. Smoothed Summary of the Results

Simian with strict settings such that only identical clones
are detected. In addition, the analyzed systems have been
transformed by removing comments and pretty printing. It
is known that clone detectors have a low recall [7], so the
false negatives cause a threat to validity which cannot be
estimated. Another potential threat to validity is caused by
the technique to detect changes with diff, however, the risk
is reduced by transformation of the analyzed systems and
by ignoring whitespace in changes. Because diff does not
identify the movement of text or code, refactorings or re-
structurings cause deletions and additions.

The experiment is also influenced by the analyzed sys-
tems. To be able to draw general conclusions, five systems
have been chosen that are of different application types,
written in different programming languages, are of suffi-
cient size, and went through enough changes.

5. Related Work

There are only a few empirical studies that analyze the
effect of changes on the code clones of a system. Geiger et
al. [10] studied the relation of code clones and change cou-
plings (files which are committed at the same time, by the
same author, and with the same modification description),
but could not find a (strong) relation.

Kim et al. [15] investigated the evolution of code clones
and provided a classification for evolving code clones.
Their work already showed that during the evolution of the
code clones, consistent changes are fewer than anticipated.
However, the study analyzed the evolution of two very small

systems, DNSJava and CAROL, both written in Java, and
both are a similar type of application.

Aversano et al. [4] did a similar empirical study with
a slightly refined framework. Similar to Kim et al., they
analyze so called co-changes that are changes committed
by the same author, with the same notes, and within 200
seconds. They used a Java-only clone detector that com-
pares subtrees in the abstract syntax tree. The analyzed sys-
tems were DNSJava and ArgoUML. Although Aversano et
al. state “that the majority of clone classes is always main-
tained consistently”, the numbers they present contradict
this statement: For ArgoUML, they found that 45% of the
clone groups underwent consistent changes.

In the previous study [19] a similar framework and ex-
periment was presented to study the evolution of code
clones in respect to consistent and inconsistent changes.
That study analyzed the same data as this paper for four
of the five systems.

Besides the above mentioned empirical studies, there is
some not directly related work that focuses on the evolution
of systems and the contained code clones, without looking
at the changes: Antoniol et al. [3] have analyzed the cloning
evolution in the Linux kernel for 19 releases. They found
that the Linux system does not contain a relevant fraction
of code duplication. Furthermore, they found that code du-
plication tends to remain stable across releases. Lagüe et
al. [20] have analyzed the amount of clones for different
versions of a large telecommunication switching software.
An experience in applying time series to cloning ratio pre-
diction was presented by Antoniol et al. [2]. Al-Ekram et
al. [1] investigated the code cloning across software sys-
tems.

Kim et al. [14] studied why and how programmers intro-
duce code clones into software systems. Lagüe et al. [20]
show how software development could benefit from the in-
clusion of code clone detection tools into the development
process. The relation of code clones to the reliability and
maintainability of a system has been examined by Monden
et al. [22].

Jarzabek and Li [11] found that at least 68% of the Java
Buffer library’s code was contained in cloned classes or
class methods. Close analysis of program situations that led
to cloning revealed difficulties in eliminating clones with
conventional program design techniques. Kapser and God-
frey [13] list several patterns of cloning that are used in real
software systems and argue that clones can be a reasonable
design decision.

6. Conclusions and Future Work

This work studied the question if cloned code is more
stable than non-cloned code during the evolution of a sys-
tem. The study analyzed the changes that are applied to

65

code clones during 200 weeks of evolution of five open
source software systems. The study has shown:

• The amount of deletions that occur during the evolu-
tion of a system is dominating, i.e. there exist massive
deletions of cloned code.

• The average percentage of additions, deletions, or
other changes to clone code is lower than the average
percentage for non-cloned code.

• It is more often the case that a higher percentage of
non-cloned code is added, deleted, or changed in com-
parison to cloned code.

• Non-cloned code is more often changed (incl. addi-
tions and deletions) than cloned code and therefore,
cloned code is more stable than non-cloned-code.

Because cloned code is more stable than non-cloned
code it cannot be generally assumed that the maintenance
of cloned code is more expensive than the maintenance of
non-cloned code. However, it has been observed that a sys-
tem can contain cloned code between similar files and that
massive restructurings that delete such clones occur in prac-
tice.

Currently, the study is expanded with the analysis of
more and larger systems. It is also planned to use other
clone detection tools than Simian to achieve more general
results.

References

[1] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning
by accident: an empirical study of source code cloning
across software systems. In International Symposium on
Empirical Software Engineering, 2005.

[2] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo.
Modeling clones evolution through time series. In Inter-
national Conference on Software Maintenance (ICSM’01),
pages 273–280, Nov. 2001.

[3] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. An-
alyzing cloning evolution in the linux kernel. Information
and Software Technology, 44(13):755–765, Oct. 2002.

[4] L. Aversano, L. Cerulo, and M. D. Penta. How clones are
maintained: An empirical study. In 11th European Confer-
ence on Software Maintenance and Reengineering (CSMR
2007), 2007.

[5] B. S. Baker. On finding duplication and near-duplication in
large software systems. In Second Working Conference on
Reverse Engineering, pages 86–95, 1995.

[6] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees. In Inter-
national Conference on Software Maintenance (ICSM’98),
pages 368–378, 1998.

[7] S. Bellon. Vergleich von Techniken zur Erkennung du-
plizierten Quellcodes. Diplomarbeit, Universität Stuttgart,
2002. (In German).

[8] J. Cordy. Comprehending reality – practical barriers to in-
dustrial adoption of software maintenance automation. In
11th IEEE International Workshop on Program Comprehen-
sion, pages 196–205, 2003.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Inter-
national Conference on Software Maintenance (ICSM’99),
pages 109–118, 1999.

[10] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of
code clones and change couplings. In 9th International Con-
ference of Funtamental Approaches to Software Engineering
(FASE), number 3922 in LNCS, pages 411–425. Springer,
Mar. 2006.

[11] S. Jarzabek and S. Li. Unifying clones with a generative
programming technique: a case study. Journal of Software
Maintenance and Evolution, 18(4):267–292, 2006.

[12] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(7):654–670,
July 2002.

[13] C. Kapser and M. W. Godfrey. “Cloning considered harm-
ful” considered harmful. In 13th Working Conference on
Reverse Engineering (WCRE’06), pages 19–28, 2006.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethno-
graphic study of copy and paste programming practices in
OOPL. In International Symposium on Empirical Software
Engineering, pages 83–92, 2004.

[15] M. Kim, V. Sazawal, and D. Notkin. An empirical study of
code clone genealogies. In Proceedings of the 10th Euro-
pean software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE), pages 187–196, 2005.

[16] R. Komondoor and S. Horwitz. Using slicing to identify du-
plication in source code. In Eigth International Static Anal-
ysis Symposium (SAS), volume 2126 of LNCS, 2001.

[17] K. Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Fourth
Working Conference on Reverse Engineering, pages 44–54,
1997.

[18] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proc. Eigth Working Conference on Re-
verse Engineering, pages 301–309, 2001.

[19] J. Krinke. A study of consistent and inconsistent changes to
code clones. In 14th Working Conference on Reverse Engi-
neering (WCRE), Oct. 2007.

[20] B. Lagüe, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl.
Assessing the benefits of incorporating function clone detec-
tion in a development process. In International Conference
on Software Maintenance (ICSM’97), pages 314–321, 1997.

[21] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software sys-
tem using metrics. In International Conference on Software
Maintenance (ICSM’96), pages 244–254, 1996.

[22] A. Monden, D. Nakae, T. Kamiya, S. ichi Sato, and K. ichi
Matsumoto. Software quality analysis by code clones in in-
dustrial legacy software. In Eighth IEEE International Sym-
posium on Software Metrics (METRICS’02), 2002.

[23] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? On fridays. In International Work-
shop on Mining Software Repositories (MSR), 2005.

66

