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Abstract  
 

Ensuring the correctness and reliability of software 
systems is one of the main problems in software 
development. Model checking, a static analysis method, 
is preponderant in improving the precision of 
vulnerabilities detection. However, when applied to 
buffer overflow and other bugs, it is hard to 
automatically construct the model for detecting the 
vulnerabilities. To address this problem we propose an 
approach that combines constraint based analysis and 
model checking together. We trace the memory size of 
buffer-related variables and instrument the code with 
corresponding constraint assertions before the 
potential vulnerable points by constraint based 
analysis. Then the problem of detecting vulnerabilities 
is converted into the problem of detecting 
vulnerabilities to verifying the reach ability of these 
assertions by model checking. In order to reduce the 
cost of model checking, program slicing is introduced 
to reduce the code size. CodeAuditor is a prototype 
implementation of our approach. With CodeAuditor, 
several yet unreported vulnerabilities are discovered in 
several open source software, and the performance is 
shown to be improved significantly with the help of 
program slicing. 

 
1. Introduction 
    

The rapid increase of our dependence on computer 
systems means increasing interest in attacking those 
systems. Buffer overflow is a programming error that 
can cause vulnerability, and it occurs when data written 
to a buffer, due to insufficient bounds checking, 
corrupts data values in memory addresses adjacent to 
the allocated buffer. An exploitable buffer overflow is 
capable of rendering a computer system totally 
vulnerable to the attacker. It is thus a major concern of 
the computing community to provide a practical and 
efficient solution to discovering and removing these 
vulnerabilities. 

Software vulnerability detection can be 
implemented either statically [1] [2] [3] or dynamically 
[4][5]. Static techniques can be divided into general 

static method and formal verification method based on 
sound theory. The former is based on program 
analysis, while the latter is based on formal logic and 
theory of automata, which can be used to prove that a 
program correctly satisfies a given property. However, 
the number of admissible states with the 
dimensionality of state space is often extremely large 
and increases exponentially. A practical method for 
software model checking based on abstract-verify-
refine paradigm, which can abstract code not relevant 
to the property and limit the scope and thus simplify 
the problem. This typically not only increases the 
number of vulnerabilities to be detected but also 
decreases the number of false alarms. 

However, single model checking can not be used to 
detect vulnerabilities conveniently. For example Blast 
[6] detects the NULL pointer dereferences bugs with 
the help of CCured [7], and it can not check the 
security of complex operations of buffers. In this paper 
we trace the length of buffers via constraint based 
analysis, instrument corresponding constraint 
assertions before the potential vulnerable points, and 
thus convert detecting vulnerabilities to verifying the 
reachability of these assertions by model checking. But 
the main problem of model checking is the 
combinatorial explosion of system states, so we use 
program slicing on the instrumented code in order to 
reduce the size of program. CodeAuditor is a prototype 
tool of our approach, which includes a front-end 
preprocessor and a back-end Checking module. The 
preprocessor also instruments the abstract syntax tree 
(AST) of GCC and directed by XML Configure-File, 
which specifies the pattern of instrumentation for 
buffer overflow, format string and code injection. In 
the back-end, we use a model checking tool Blast to 
verify the reachability of assertions. Using 
CodeAuditor, some yet unreported vulnerabilities are 
discovered in several open source software, and the 
performance is improved enormously when program 
slicing is used. 

The remainder of this paper is organized as follows. 
Section 2 introduces the technologies and schemes 
including program analysis and program slicing. We 
present the detail of constraint based analysis in 
Section 3. Model checking is described in Section 4. 

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.24

165



Section 5 gives a brief description of CodeAuditor. We 
analyze a sample test case to illuminate our scheme in 
Section 6 and our experiments are presented in Section 
7. Section 8 introduces related work and we conclude 
in section 9. 

 
2. Static analysis and instrumentation 
 

In this section we describe those technologies used 
in our tool, including constraint based analysis, 
instrumentation, alias analysis and program slicing. 
 
2.1 Constraint based analysis  
 

We introduce the syntax-directed method to analyze 
the AST of GCC and create an extension constraint 
based analysis for buffer overflow, which can be easily 
applied for other bugs, such as format string and code 
injection. We define a formalization framework for 
inserting assertions as follows:  

(1) Buffer facts are modeled as pairs of integer 
ranges including the max length and used length of 
each buffer, and we call these two integers the 
attributes of buffers. 

(2) Model the statement and function related to 
buffers as integer transfer functions and constraints.  

Based on these two principles we establish our 
framework of constraint based analysis [8][9] for code-
instrumentation, which will be described in section 3. 
With this method we add the instrumentation code to 
source code, and do not change the correctness of 
syntax and semantic. In the end we convert the buffer 
overflow problem to a reachability problem which can 
be checked directly through model checking. 
 
2.2 Instrumentation based on AST directed by 
XML Configure-File  
 

The important phase in our approach is adding 
instrumentation to the source code. The 
instrumentation is directed by the particular model 
described by XML Configure-File [10]. Different 
models can be used to check for corresponding 
correctness properties. Considering that users are likely 
to build their own models, this phrase is designed in a 
compatible way to support both simple models and 
general ones. This paper deals with three types of 
vulnerabilities including buffer overflow, code 
injection and format string, and we describes this 
model using XML Configure-File, which is used to 
guide the instrumentation. 

The phase of instrumentation was based on AST of 
GCC, and the elements of AST that include the 
function AST node and global list. The former can be 

divided into local variable list and statement list. 
During the instrumentation phase, we traverse the 
AST, parse the XML Configure-File, match the right 
pattern in special modules and execute instrumentation 
operation. The instrument is accomplished in one pass 
of the AST of the source code, and the output is the 
instrumented code. 
 
2.3 Alias analysis  
 

Two pointers are said to be aliased if they point to 
the same location in memory. Pointer alias analysis is 
difficult because there are many potentially aliased 
pointers in a program, and it is also why the alias 
analysis is important in our instrumentation. In order to 
improve the precision of detection, we introduce the 
alias analysis during the instrumentation, and the 
attributes of alias variables should be updated 
simultaneously. Based on flow-sensitive SSA-based 
pointers-to analysis on GCC AST, for every concerned 
variable we compute their must-alias at every program 
location, and update their attributes at the same time. 
In section 6, we give an example including alias, 
whose attributes are updated simultaneously. 
 
2.4 Program Slicing  
 

In this paper we use program slicing [11][12] to 
extract the statements which are relevant to the 
vulnerabilities in the program. Given a source program 
P, slicing starts with a criterion SC(L) = (L,V), Where 
L is a vulnerable location in the program and V is a set 
of attributes of buffers in the program. We say S is a 
slice of program P for criterion C if S is derived from P 
by eliminating irrelevant statements from P such that S 
is syntactically correct.  

After the instrumentation phase, we implement the 
algorithm of program slicing [13] based on the AST of 
GCC to eliminate the unnecessary statements. The user 
can active this algorithm by using a command-line 
switch. The essence of the slicing algorithm is as 
following: starting with the statement specified in the 
slicing criterion, it includes each predecessor that 
assigns a value to any variable in the slicing criterion 
and generates a new slicing criterion for the 
predecessor by deleting the assigned variables from the 
original slicing criterion and adding any variables 
referenced by the predecessor. The following 
definitions [14] are helpful in understanding how 
program slices are constructed: 

 
Defs(n): The set of variables defined assigned to at 

statement n. 

166



Refs(n) :The set of variables referenced at statement 
n.  

Req (n): A set of nodes that is required to also be 
included in a slice along with node n.  

Our target is updating the slicing criterion and 
confirms if the current statement should be deleted 
from the statement list. Suppose the statement n is a 
predecessor of statement m, and the corresponding 
slicing criterion is SC(m) and SC(n), then we have: 

(1) If ( ),v V v defs n∀ ∈ ∉  then the statement 
n should be deleted, and we need not update SC(m) 
and the new criterion SC(n ) = SC (m); 

(2) If ( ),v V v defs n∃ ∈ ∈ , we should update the 
slicing criterion:  

( ) ( )( ), [1,6]iSC n F n SC m i= ∈  

Where iF represents the function for difference 
statements. Here we can consider the following 
language features: expression statements, compound 
control statements, structure variables, indirect 
assignment by pointer, indirect reference by pointer, 
dynamic structures, references to structure members by 
pointer, assignment to structure members by pointer, 
procedure call. 

For space reasons, only assignment and compound 
control statements are discussed in this paper, and 
other features left unspecified here.  

For expression statement n, a predecessor of 
statement m if ( ),v V v defs n∃ ∈ ∈ ,we should update 
the slicing criterion as follows:  

( ) ( ) ( )( ) ( )( ),n xSC n SC m defs n S x refs n< >= − ∀ ∈∪ ∪ . 

This means that we should delete the 
variable ( )defs n  in ( )SC m  and combine the new 

criterion with ( ),n xS x refs n< >∀ ∈∪ . 
For Compound control statements (if else, while, 

switch), we should update the slicing criterion as 
follows: 

( ) ( ) ( )( )

( ) ( ) ( ). ,n x k y
x refs n y refs k k req n

SC n SC m defs n

S S< > < >
∈ ∈ ∈

= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∪

∪ ∪ ∪ ∪
 

The difference between compound control 
statements and expression statement is that the former 
includes the set of required statements for statement n, 
req(n), whenever statement n is included in a slice.  

This algorithm only continues to iterate all the 
statements one time. In the worst case, the algorithm 
takes O(s) time where s is the number of statements. 
The result of this phase is a list of definitions (and 
statements) in the slice.  
 

3. Constraint Based Analysis  
 

We model buffers as a pair of integer ranges, 
including the number of bytes allocated for the buffer 
(s.max), and the number of bytes currently in use 
(s.used), and model each string operation in terms of 
its effect on these two attributes. So the safe property 
to be verified is: s.max >= s. used for all string 
variables s. We use the lattice of framework from [8]. 

Let Z denote the set of integers and write 
( ),∞ = −∞ +∞∪Z Z for the extended integer, and the 

range is a set R ∞∈Z which has the form 
of [ ] { }, :m n i m i n∞= ∈ ≤ ≤Z . We define the complete 

lattice on ∞Z ： 
 ( )L= , , , , , , , , ,max min∞ ⊥ Τ ⊆ + − ×Z , where ⊥ ,T is the 

elements of ∞Z ,and ⊆  as the partial order, min and 
max is the operator on ∞Z , , ,+ − ×  is the binary 
operators on ∞Z  which are the extension for the usual 
arithmetic operators.  

For every string, we define constraint assertions on 
string S: assert(S.max>=S.used), an assignment 

( ):v vα α ∞→ ∈Z  satisfies a constraint system. In other 
words a potential vulnerability is safe if all the 
constraint assertions are true when the variable are 
replaced by the corresponding values ( )vα . The least 
solution to the constraint system is the smallest 
assignment α that satisfies the system. In this paper, 
the solution of this constraint system was left to the 
model checking. 
Our analysis is based on the AST in GCC compiler. 
And it traverses the AST of C source code first, and 
generates an integer constraints system. We only focus 
on the string and integer variables, including pointer 
and array. For the relevant statement in the input 
program we generate integer range constraint for buffer 
operation by matching the node of the XML 
Configure-File, and determine what kind of constraint 
should be created. Some constraints are listed in the 
Table 1. The left column shows the C code we are 
interested, and the right column shows the generated 
constraints and assertions. For example, when we parse 
a statement strncpy(dst, src, n) that matches a pattern 
in XML Configure-File, a constrains  

(min(src.used, n) ⊆ dst.used) 
and an assertion 

(dst.max>= min(src.used, n))) 
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Table 1. Some string operations and it’s constraints and assertions 
C Code constraints and assertions  
char *p  0  ⊆ p.max ; 0 ⊆ p.used 
char a[n] n  ⊆ a.max; 0 ⊆ a.used 
p = malloc(n) n  ⊆p.max; 0 ⊆ p.used  
p = strdup(s) s.max  ⊆ p.max; s.used ⊆ p.used 
p[n] = x assert(p.max >= n );min(p.len, n+1) ⊆ p.used  
strcpy(dst, src)  assert(dst.max >= src.used); src.used ⊆ dst.used  
strncpy(dst, src, n) assert(dst.max >= min(src.used, n)); min(src.used, n) ⊆ dst.used 
strcat(s,t) assert(s.max >= s.used + t.used); t.used + s.used ⊆ s.used 
strncat(s,t, n) assert(s.max >= s.used + n); s.used + n ⊆ s.used 
scanf(“%ns”,str) assert(str.max >= n); n ⊆ str.used 
sprintf(dst, “%s”, str) assert(dst.max >= str.used);str.used ⊆ dst.used 
sprintf(dst, “%d”, n) assert(dst.max >= 20); 20 ⊆ dst.used 

are generated. The constraint means that the dst.used 
should be replaced by min (src.used, n), and the 
assertion means that if dst.max>= src.used is true then 
this is a bug. 

In this paper, we also model user-define function 
calls which guarantee that the analysis is context- 
sensitive. For example, supposing that char *foo (char 
*s) is a prototype of user defined function, we need to 
add variables foo_ret_max and foo_ret_used as the 
return values of foo, and we also add foo_s_max and 
foo_s_used as attributes of the parameter s. All of these 
variables are added as the global variables. The 
attributes of the parameters should be assigned when 
the function is called, and the attributes of the return 
value will be assigned when the function returns. In 
section 6 we give an example to describe this process. 

Unlike the reference in Java, pointers in C can point 
to the middle of a buffer, so pointers are the trouble 
spots for program analysis. And any code fragments 
that manipulate buffers using pointer operations are 
very difficult to analyze. Our tool has not implemented 
deep pointer analysis, and we cannot generate 
constraints for doubly-indirected pointers. 

For example: 
1 int * a = (int *)malloc(sizeof(int)*10);  
2  int ** b = &a;  
3  *b = (int *)malloc(sizeof(int)*5);  
4  a[6]  = 20; //buffer overrun  
Updating the attributes of *b in the 3rd line should 

update the attributes of array a at the same time, as a is 
an alias of *b and they point to the same location of 
memory, here b is a doubly-indirected pointers, and we 
do not deal with it.  

Function pointers, arrays of pointers and array of 
user-define structure are currently ignored, but we can 
handle the single variable of user defined structure. 
These simplifications are all unsound in general, but 
still useful for a large number of real programs.  
 
4. Model Checking 
 
In this paper our reachable problem is verified by 
model checking. Model checking is an algorithmic 
technique to verify a system description against a 
specification [15][16]. Given a system description and 
a logical specification, the model checking algorithm 
either proves that the system description satisfies the 
specification, or reports a counterexample that violates 
the specification. The input to the software model 
checker is the program source (system description) and 
a temporal safety property (specification). The output 
of the model checker is ideally either a proof of 
program correctness that can be separately validated 
[17], or a counterexample in the form of a specific 
execution path of the program. In the case of buffer 
overflows, P is a property indicating that every access 
to a specified buffer is safe. Using standard compiler 
analyses, all pointer dereferences and array accesses 
are instrumented with bounds checks, so the system 
goes to a line labeled ERROR if a bound is violated. 
The buffer overflow problem is thus converted to 
check the reachability of the line labeled ERROR. 

The main problem of model checking is the 
combinatorial explosion of system states. Abstraction 
methods attempt to reduce the size of the state space. 
Counter example-guided abstraction refinement  
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Figure. 1 Framework of CodeAuditor  

(CEGAR) [18] is an automatic abstraction method 
where, starting with a relatively small skeletal 
representation of the system to be verified, increasingly 
precise abstract representations of the system are 
computed. The key step is to extract information from 
false negatives (“spurious counterexamples”) due to 
over approximation. There are other techniques to 
reduce the system states, and we use program slicing to 
eliminate unnecessary statements in this paper.  

Blast is an automatic verification tool for checking 
temporal safety properties of C programs. Combining 
with Lazy Abstraction, Blast is a representative tool of 
Model checking. In this paper we use blast as the back-
end checker. The lazy abstraction concept [19], which 
is proposed and implemented in the BLAST, is aimed 
at optimizing the native abstract-check-refine loop by 
integrating the three steps. It means that the three steps 
(abstraction, checking, and refinement) are performed 
in an interleaving manner. The lazy abstraction is based 
on the following two principles: (1). On-the-fly 
abstraction: The native approach generates the entire 
abstract model at the “Abstract” stage. The lazy 
abstraction concept abstracts a region only when it is 
needed in the next step of checking. (2). On-demand 
refinement: In the native approach, the entire abstract 
model has to be rebuilt after refinement. The lazy 
abstraction concept suggests that we can reuse the 
partial answer that is obtained in previous iterations. 
 
5. CodeAuditor Framework 
 

The CodeAuditor framework in Fig. 1 consists of 
two components: the front end and the back end. The 
front end is the static analysis module, which takes a C 
program as input and an XML Configure-File that 
includes the rules of code instrumentation and the 

potential vulnerable functions of buffer overflow such 
as strcpy, and the programming slicing algorithm is 
implemented in this phase. The output of front end is a 
C program with instrumentation code and one or more 
assertions. The back end verifies the reachability of 
assertions and presents a final report of the security 
vulnerability detection.   
 
5.1 Front End 
 

The front-end generates constraint conditions, i.e. 
security properties needed for detecting buffer 
overflow, for related grammatical elements of C 
programs, and these conditions will be inserted as C 
instrumentation code into the program. The front end 
includes three sub-modules: static analysis module, 
code inserter module and programming slicing module. 

Static Analysis. This module analyzes the 
grammatical structures of the original codes and finds 
out all the ones whose attribute is relevant to the code 
instrumentation. The attributes are divided into three 
types: length, operation and restraint. For example, the 
length attribute of a pointer variable p should be record, 
so an integer variable p_length_max and p_length_used 
is inserted into the original codes. The operation 
attribute of a assignment statement p=array needs to 
insert ： 

p_length_max = array_length_max and, 
p_length_used = array_length_used. 

For dereference assignment *p=‘a’ and function call 
strcpy(dst, src), the assertions p_length_max>0 and 
dst_length_max ≥ src_length_used should be 
generated. At the same time we use the alias analysis of 
GCC, and we call the interface get_alias_set() for 
every AST node we concerned to obtain the alias 
variables, whose attributes are updated simultaneously.  
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Code Inserter. This module is called to insert 
related code when static analysis module finds a 
grammatical structure listed in the XML Configure-
File. 

Program Slicing. This module is used to eliminate 
statements which are irrelevant to the assertions. The 
user can activate this module by command-line, and 
then get pre-slicing results and pos-slicing results. 
 
5.2 Back End 
 

The back end is composed by three modules: 
scheduler, reachability verification module and error 
report module.  

Scheduler. The execution at the backend is 
controlled and coordinated by the scheduler. In order to 
verify the reachability, this module needs to activate 

these assertions in the program in advance. In addition 
this module receives error information from the error 
report module and generates the final report. 

Reachability Verification Module. In the C 
program to be audited, there exist more than one 
constraint paths. This module uses the model checking 
tool BLAST to verify its reachability for every 
constraint path. In our framework, other model 
checking tools, which take C programs as input, can be 
easily integrated.  

Error Report Module. The output of BLAST is an 
error report which tells the trace path of the security 
vulnerability. However, the line number information in 
the trace path is based on the instrumentation code. 
This module implements the reorientation of the line 
numbers, and then returns the final result to the 
scheduler. 

 

Table 2: source file and instrumentation code  
Source file (perfect.c) Instrumentation code 
1   char *foo(const char *  

str1, const char *str2) 
2   { 
3      char *str; 
4      char *p; 
5      str = (char *) malloc(10); 
6      p = str;  
7      strcpy(p, str1);  
8      p = str + 6 ; 
9      strcpy(p, str2); 
10    return str; 
11   } 
12   int main() 
13   {    
14      foo("hello ", "world"); 
15      return 0; 
16   } 

1 int foo_str1_length_max = 0, foo_str1_length_used = 0; 
2 int foo_str2_length_max = 0, foo_str2_length_used = 0; 
3 int foo_ret_length_max = 0, foo_ret_length_used = 0; 
4 char *  foo (const char *  str1, const char *  str2) 
5 {  char * str; 
7     int str_length_max = 0; 
8     int str_length_used = 0;  
9     char * p;  
10   int p_length_max = 0; 
11   int p_length_used = 0; 
13   str =  (char *)malloc (10);  
14   str_length_max = 10;  
15   str_length_used = 0; 
16   p = str;  
17   p_length_max = str_length_max; 
18   p_length_used = str_length_used; 
19   assert (p_length_max >= foo_str1_length_used); 
20   strcpy (p, str1); 
21   p_length_used = foo_str1_length_used; 
22   str_length_used = foo_str1_length_used; //alias 
23   p = str + 6; 
24   p_length_max = str_length_max - 6; 
25   p_length_used = str_length_used - 6;   
26   assert (p_length_max >= foo_str2_length_used); 
27   strcpy (p, str2); 
28   p_length_used = foo_str2_length_used; 
29   str_length_used = foo_str2_length_used + 6; //alias 
30   foo_ret_length_max = str_length_max; 
31   foo_ret_length_used = str_length_used; 
32   return str;       
33 } 
35 int  main () 
36 { 
37   foo_str1_length_max = 7; foo_str1_length_used = 7; 
38   foo_str2_length_max = 6; foo_str2_length_used = 6; 
39   foo (&"hello "[0], &"world"[0]); 
40   return 0; }

 

170



6. An Example 
 

Our tool works in two phases: The first is the static 
analysis phase, where we traverse the AST, parse the 
XML Configure-File, execute special instrument and 
reconstruct the instrumented code; the second phase 
checks if the assertion is reachable. If the assertion is 
reachable, Blast can give an error trace path from the 
entrance to the vulnerability, but the line number of the 
trace is not the original source file, so we should use 
the result analysis module to redirect the line number 
of original source file. 

The first column of Table 2 lists the C code to be 
checked. After being analyzed and processed by our 
tool, the instrumentation code is shown in the second 
column of Table 2. It is clear that function call, string 
operators, library functions and alias information have 
been involved. The instrumented code is given to the 
verification module, and the error path listed in Table 
3. 

 
7. Experiments  
 

CodeAuditor was run on several C programs 
ranging in size from 400 and 6000 lines of code. First 
we want to measure the effectiveness of our tool, and 
see if it can detect the bugs that have been reported 
before and if it can find several unreported new ones; 

second we want to test the performance of our tool 
when program slicing is introduced. 

 
7.1 Vulnerabilities Detection 
 
Excepted for 159 simple test cases, we also apply 
CodeAuditor on several application software including 
minicom, corehttp and monkey. The experiment results 
are shown in Table 4. The second column is the size of 
software before and after instrumentation, the third 
column is the total number of alarms reported by 
CodeAuditor, the fourth column is the number of 
alarms that are true, the fifth column is the number of 
alarms that are false, and the last one is the number of 
new bugs. 
 

Table 3: Error Trace for the bug of above code 
Error Path reported by our verify-module: 
FileName         lineNr           SourceCode  
perfect.c    14      foo("hello ", "world"); 
perfect.c    5       str = (char *) malloc(10); 
perfect.c    6       p = str; 
perfect.c    7      strcpy(p, str1); 
perfect.c    8      p = str + 6 ; 
perfect.c  9     strcpy(p, str2); 
 

 
 

Table 4.  Experiment Results of CodeAuditor 

Software 
LOC Total  

Alarms 
True  

Alarms 
False  

Alarms 
New  
Bugs Before After 

minicom-1.80 6000 18080 3 2 1 1 
corehttp-0.5.3 alpha 5008 13020 9 8 1 7 
monkey0.1.1 443 1200 5 2 3 2 

 
 

Table 5 Performance before and after program slicing was used  

# Predication 
number 

Trace 
length 

Time 
(ms) result 

Assert_1 4126 165 time out No result. 
Assert_1_slice 43 33 2530 safe 
Assert_2 4140 305 time out No result. 
Assert_2_slice 33 36 2148 safe 
Assert_3 507 47 3409 unsafe 
Assert_3_slice 36 11 2743 unsafe  
Assert_4 915 126 2315 safe 
Assert_4_slice 15 6 1950 safe 
Assert_5 715 76 12765 unsafe 
Assert_5_slice 15 23 8550 unsafe 
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7.2 Performance Results 
 

minicom has 6000 lines (including whitespace and 
comments). When the instrumentation phase is done, 
there are 29 assertions has been generated, four of 
which can be verified in time, and others are time out. 
Here we set the time limitation to be thirty minutes.  

We introduce program slicing algorithm to our tool, 
and we select five assertions to test the performance of 
slicing algorithm. Also we add some code into blast in 
order to record the length of trace path and the verify 
number. Table 5 shows the experiment results of five 
assertions in minicom. The measurements are 
presented as the verify number, the trace length, the 
executive time, and the result, where the verify number 
means the number of calling Simplify in Blast, the 
trace length means the max-length of the path in work 
stack, the executive time shows the time the Blast 
spend to check the assertions, and the result shows the 
result of verification. We can see that the performance 
is improved enormously when program slicing is used. 
As the program slicing does not change the value of 
variables in slicing criterion, the safety of assertion 
will not be changed when the program is sliced. 

 
8. Related Work 

 
ATOM [20] and Pin [21] are Code instrument tools, 

which are primarily used for performance analysis and 
gathering statistics about programs but could be used 
to detect lower-level software bugs such as invalid 
memory accesses. Cascade [10] is another tool with 
auxiliary instrumentation to find bugs, but it can only 
process few hundred lines of code. Tikir and 
Hollingsworth [22] describe an instrumentation 
technique for obtaining coverage for testing. CRED is 
a detector tool based on compiler for finding bugs, but 
it is a dynamic buffer overflow detector and it’s not 
accurate in some cases. CCured [7] uses a static 
verifier to prove as many dangerous operations safe as 
possible using a type system, and instrumentation is 
added to catch any bugs for operations that cannot be 
proved safe. One key difference between CodeAuditor 
and CCured is that CodeAuditor is designed to be a 
tool in terms of static analysis, instrumentation engine, 
and verified using model checking. There are some 
other groups who focus on techniques to incorporate 
static analysis in test case generation. In [23][24] static 
technologies are used to analyze source code and 
generate test cases.  

Another popular method of finding bugs is dynamic 
bug detection, and such systems include GNU’s 
checker, Cred [25]. In Cred, memory object is created 
to record the buffers. The bounds checker proposed by 

Jones and Kelly [26] is particularly attractive in that no 
pointer representation modifications are necessary.  

Another area of related research is automatic 
program verification, which requires a balance between 
precision and efficiency. The more precise the method 
is, the fewer false positives it will produce. And the 
more expensive it is, the fewer program it will be 
applicable to. Historically, this trade-off was reflected 
in two major approaches to static verification: program 
analysis and model checking. Blast [27] presents a 
perfect tool which combines program analysis and 
model checking. 
 
9. Conclusion and Future Work 
 

Our goal is to audit precisely the buffer overflow 
vulnerabilities in the applications. We have presented 
our tool which is CodeAuditor based on program 
analysis and the model checking tool BLAST, and 
showed the experiment results of CodeAuditor. The 
result indicates that the tool has the low false alarm 
rate. In order to improve the performance of our tool, 
we implement program slicing to decrease the state 
number of system. In the future we are planning to 
apply our approach to other security vulnerabilities. 
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