
Automated Detection of Code Vulnerabilities Based on
Program Analysis and Model Checking

Lei Wang, Qiang Zhang, PengChao Zhao

Computer School, Beijing University of Aeronautics and Astronautics, China
wanglei@buaa.edu.cn, zhangqiang_buaa@cse.buaa.edu.cn, zhaopengchao@sse.buaa.edu.cn

Abstract

Ensuring the correctness and reliability of software
systems is one of the main problems in software
development. Model checking, a static analysis method,
is preponderant in improving the precision of
vulnerabilities detection. However, when applied to
buffer overflow and other bugs, it is hard to
automatically construct the model for detecting the
vulnerabilities. To address this problem we propose an
approach that combines constraint based analysis and
model checking together. We trace the memory size of
buffer-related variables and instrument the code with
corresponding constraint assertions before the
potential vulnerable points by constraint based
analysis. Then the problem of detecting vulnerabilities
is converted into the problem of detecting
vulnerabilities to verifying the reach ability of these
assertions by model checking. In order to reduce the
cost of model checking, program slicing is introduced
to reduce the code size. CodeAuditor is a prototype
implementation of our approach. With CodeAuditor,
several yet unreported vulnerabilities are discovered in
several open source software, and the performance is
shown to be improved significantly with the help of
program slicing.

1. Introduction

The rapid increase of our dependence on computer
systems means increasing interest in attacking those
systems. Buffer overflow is a programming error that
can cause vulnerability, and it occurs when data written
to a buffer, due to insufficient bounds checking,
corrupts data values in memory addresses adjacent to
the allocated buffer. An exploitable buffer overflow is
capable of rendering a computer system totally
vulnerable to the attacker. It is thus a major concern of
the computing community to provide a practical and
efficient solution to discovering and removing these
vulnerabilities.

Software vulnerability detection can be
implemented either statically [1] [2] [3] or dynamically
[4][5]. Static techniques can be divided into general

static method and formal verification method based on
sound theory. The former is based on program
analysis, while the latter is based on formal logic and
theory of automata, which can be used to prove that a
program correctly satisfies a given property. However,
the number of admissible states with the
dimensionality of state space is often extremely large
and increases exponentially. A practical method for
software model checking based on abstract-verify-
refine paradigm, which can abstract code not relevant
to the property and limit the scope and thus simplify
the problem. This typically not only increases the
number of vulnerabilities to be detected but also
decreases the number of false alarms.

However, single model checking can not be used to
detect vulnerabilities conveniently. For example Blast
[6] detects the NULL pointer dereferences bugs with
the help of CCured [7], and it can not check the
security of complex operations of buffers. In this paper
we trace the length of buffers via constraint based
analysis, instrument corresponding constraint
assertions before the potential vulnerable points, and
thus convert detecting vulnerabilities to verifying the
reachability of these assertions by model checking. But
the main problem of model checking is the
combinatorial explosion of system states, so we use
program slicing on the instrumented code in order to
reduce the size of program. CodeAuditor is a prototype
tool of our approach, which includes a front-end
preprocessor and a back-end Checking module. The
preprocessor also instruments the abstract syntax tree
(AST) of GCC and directed by XML Configure-File,
which specifies the pattern of instrumentation for
buffer overflow, format string and code injection. In
the back-end, we use a model checking tool Blast to
verify the reachability of assertions. Using
CodeAuditor, some yet unreported vulnerabilities are
discovered in several open source software, and the
performance is improved enormously when program
slicing is used.

The remainder of this paper is organized as follows.
Section 2 introduces the technologies and schemes
including program analysis and program slicing. We
present the detail of constraint based analysis in
Section 3. Model checking is described in Section 4.

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.24

165

Section 5 gives a brief description of CodeAuditor. We
analyze a sample test case to illuminate our scheme in
Section 6 and our experiments are presented in Section
7. Section 8 introduces related work and we conclude
in section 9.

2. Static analysis and instrumentation

In this section we describe those technologies used
in our tool, including constraint based analysis,
instrumentation, alias analysis and program slicing.

2.1 Constraint based analysis

We introduce the syntax-directed method to analyze
the AST of GCC and create an extension constraint
based analysis for buffer overflow, which can be easily
applied for other bugs, such as format string and code
injection. We define a formalization framework for
inserting assertions as follows:

(1) Buffer facts are modeled as pairs of integer
ranges including the max length and used length of
each buffer, and we call these two integers the
attributes of buffers.

(2) Model the statement and function related to
buffers as integer transfer functions and constraints.

Based on these two principles we establish our
framework of constraint based analysis [8][9] for code-
instrumentation, which will be described in section 3.
With this method we add the instrumentation code to
source code, and do not change the correctness of
syntax and semantic. In the end we convert the buffer
overflow problem to a reachability problem which can
be checked directly through model checking.

2.2 Instrumentation based on AST directed by
XML Configure-File

The important phase in our approach is adding
instrumentation to the source code. The
instrumentation is directed by the particular model
described by XML Configure-File [10]. Different
models can be used to check for corresponding
correctness properties. Considering that users are likely
to build their own models, this phrase is designed in a
compatible way to support both simple models and
general ones. This paper deals with three types of
vulnerabilities including buffer overflow, code
injection and format string, and we describes this
model using XML Configure-File, which is used to
guide the instrumentation.

The phase of instrumentation was based on AST of
GCC, and the elements of AST that include the
function AST node and global list. The former can be

divided into local variable list and statement list.
During the instrumentation phase, we traverse the
AST, parse the XML Configure-File, match the right
pattern in special modules and execute instrumentation
operation. The instrument is accomplished in one pass
of the AST of the source code, and the output is the
instrumented code.

2.3 Alias analysis

Two pointers are said to be aliased if they point to
the same location in memory. Pointer alias analysis is
difficult because there are many potentially aliased
pointers in a program, and it is also why the alias
analysis is important in our instrumentation. In order to
improve the precision of detection, we introduce the
alias analysis during the instrumentation, and the
attributes of alias variables should be updated
simultaneously. Based on flow-sensitive SSA-based
pointers-to analysis on GCC AST, for every concerned
variable we compute their must-alias at every program
location, and update their attributes at the same time.
In section 6, we give an example including alias,
whose attributes are updated simultaneously.

2.4 Program Slicing

In this paper we use program slicing [11][12] to
extract the statements which are relevant to the
vulnerabilities in the program. Given a source program
P, slicing starts with a criterion SC(L) = (L,V), Where
L is a vulnerable location in the program and V is a set
of attributes of buffers in the program. We say S is a
slice of program P for criterion C if S is derived from P
by eliminating irrelevant statements from P such that S
is syntactically correct.

After the instrumentation phase, we implement the
algorithm of program slicing [13] based on the AST of
GCC to eliminate the unnecessary statements. The user
can active this algorithm by using a command-line
switch. The essence of the slicing algorithm is as
following: starting with the statement specified in the
slicing criterion, it includes each predecessor that
assigns a value to any variable in the slicing criterion
and generates a new slicing criterion for the
predecessor by deleting the assigned variables from the
original slicing criterion and adding any variables
referenced by the predecessor. The following
definitions [14] are helpful in understanding how
program slices are constructed:

Defs(n): The set of variables defined assigned to at

statement n.

166

Refs(n) :The set of variables referenced at statement
n.

Req (n): A set of nodes that is required to also be
included in a slice along with node n.

Our target is updating the slicing criterion and
confirms if the current statement should be deleted
from the statement list. Suppose the statement n is a
predecessor of statement m, and the corresponding
slicing criterion is SC(m) and SC(n), then we have:

(1) If (),v V v defs n∀ ∈ ∉ then the statement
n should be deleted, and we need not update SC(m)
and the new criterion SC(n) = SC (m);

(2) If (),v V v defs n∃ ∈ ∈ , we should update the
slicing criterion:

() ()(), [1,6]iSC n F n SC m i= ∈

Where iF represents the function for difference
statements. Here we can consider the following
language features: expression statements, compound
control statements, structure variables, indirect
assignment by pointer, indirect reference by pointer,
dynamic structures, references to structure members by
pointer, assignment to structure members by pointer,
procedure call.

For space reasons, only assignment and compound
control statements are discussed in this paper, and
other features left unspecified here.

For expression statement n, a predecessor of
statement m if (),v V v defs n∃ ∈ ∈ ,we should update
the slicing criterion as follows:

() () ()() ()(),n xSC n SC m defs n S x refs n< >= − ∀ ∈∪ ∪ .

This means that we should delete the
variable ()defs n in ()SC m and combine the new

criterion with (),n xS x refs n< >∀ ∈∪ .
For Compound control statements (if else, while,

switch), we should update the slicing criterion as
follows:

() () ()()

() () (). ,n x k y
x refs n y refs k k req n

SC n SC m defs n

S S< > < >
∈ ∈ ∈

= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∪

∪ ∪ ∪ ∪

The difference between compound control
statements and expression statement is that the former
includes the set of required statements for statement n,
req(n), whenever statement n is included in a slice.

This algorithm only continues to iterate all the
statements one time. In the worst case, the algorithm
takes O(s) time where s is the number of statements.
The result of this phase is a list of definitions (and
statements) in the slice.

3. Constraint Based Analysis

We model buffers as a pair of integer ranges,
including the number of bytes allocated for the buffer
(s.max), and the number of bytes currently in use
(s.used), and model each string operation in terms of
its effect on these two attributes. So the safe property
to be verified is: s.max >= s. used for all string
variables s. We use the lattice of framework from [8].

Let Z denote the set of integers and write
(),∞ = −∞ +∞∪Z Z for the extended integer, and the

range is a set R ∞∈Z which has the form
of [] { }, :m n i m i n∞= ∈ ≤ ≤Z . We define the complete

lattice on ∞Z ：
 ()L= , , , , , , , , ,max min∞ ⊥ Τ ⊆ + − ×Z , where ⊥ ,T is the

elements of ∞Z ,and ⊆ as the partial order, min and
max is the operator on ∞Z , , ,+ − × is the binary
operators on ∞Z which are the extension for the usual
arithmetic operators.

For every string, we define constraint assertions on
string S: assert(S.max>=S.used), an assignment

():v vα α ∞→ ∈Z satisfies a constraint system. In other
words a potential vulnerability is safe if all the
constraint assertions are true when the variable are
replaced by the corresponding values ()vα . The least
solution to the constraint system is the smallest
assignment α that satisfies the system. In this paper,
the solution of this constraint system was left to the
model checking.
Our analysis is based on the AST in GCC compiler.
And it traverses the AST of C source code first, and
generates an integer constraints system. We only focus
on the string and integer variables, including pointer
and array. For the relevant statement in the input
program we generate integer range constraint for buffer
operation by matching the node of the XML
Configure-File, and determine what kind of constraint
should be created. Some constraints are listed in the
Table 1. The left column shows the C code we are
interested, and the right column shows the generated
constraints and assertions. For example, when we parse
a statement strncpy(dst, src, n) that matches a pattern
in XML Configure-File, a constrains

(min(src.used, n) ⊆ dst.used)
and an assertion

(dst.max>= min(src.used, n)))

167

Table 1. Some string operations and it’s constraints and assertions
C Code constraints and assertions
char *p 0 ⊆ p.max ; 0 ⊆ p.used
char a[n] n ⊆ a.max; 0 ⊆ a.used
p = malloc(n) n ⊆p.max; 0 ⊆ p.used
p = strdup(s) s.max ⊆ p.max; s.used ⊆ p.used
p[n] = x assert(p.max >= n);min(p.len, n+1) ⊆ p.used
strcpy(dst, src) assert(dst.max >= src.used); src.used ⊆ dst.used
strncpy(dst, src, n) assert(dst.max >= min(src.used, n)); min(src.used, n) ⊆ dst.used
strcat(s,t) assert(s.max >= s.used + t.used); t.used + s.used ⊆ s.used
strncat(s,t, n) assert(s.max >= s.used + n); s.used + n ⊆ s.used
scanf(“%ns”,str) assert(str.max >= n); n ⊆ str.used
sprintf(dst, “%s”, str) assert(dst.max >= str.used);str.used ⊆ dst.used
sprintf(dst, “%d”, n) assert(dst.max >= 20); 20 ⊆ dst.used

are generated. The constraint means that the dst.used
should be replaced by min (src.used, n), and the
assertion means that if dst.max>= src.used is true then
this is a bug.

In this paper, we also model user-define function
calls which guarantee that the analysis is context-
sensitive. For example, supposing that char *foo (char
*s) is a prototype of user defined function, we need to
add variables foo_ret_max and foo_ret_used as the
return values of foo, and we also add foo_s_max and
foo_s_used as attributes of the parameter s. All of these
variables are added as the global variables. The
attributes of the parameters should be assigned when
the function is called, and the attributes of the return
value will be assigned when the function returns. In
section 6 we give an example to describe this process.

Unlike the reference in Java, pointers in C can point
to the middle of a buffer, so pointers are the trouble
spots for program analysis. And any code fragments
that manipulate buffers using pointer operations are
very difficult to analyze. Our tool has not implemented
deep pointer analysis, and we cannot generate
constraints for doubly-indirected pointers.

For example:
1 int * a = (int *)malloc(sizeof(int)*10);
2 int ** b = &a;
3 *b = (int *)malloc(sizeof(int)*5);
4 a[6] = 20; //buffer overrun
Updating the attributes of *b in the 3rd line should

update the attributes of array a at the same time, as a is
an alias of *b and they point to the same location of
memory, here b is a doubly-indirected pointers, and we
do not deal with it.

Function pointers, arrays of pointers and array of
user-define structure are currently ignored, but we can
handle the single variable of user defined structure.
These simplifications are all unsound in general, but
still useful for a large number of real programs.

4. Model Checking

In this paper our reachable problem is verified by
model checking. Model checking is an algorithmic
technique to verify a system description against a
specification [15][16]. Given a system description and
a logical specification, the model checking algorithm
either proves that the system description satisfies the
specification, or reports a counterexample that violates
the specification. The input to the software model
checker is the program source (system description) and
a temporal safety property (specification). The output
of the model checker is ideally either a proof of
program correctness that can be separately validated
[17], or a counterexample in the form of a specific
execution path of the program. In the case of buffer
overflows, P is a property indicating that every access
to a specified buffer is safe. Using standard compiler
analyses, all pointer dereferences and array accesses
are instrumented with bounds checks, so the system
goes to a line labeled ERROR if a bound is violated.
The buffer overflow problem is thus converted to
check the reachability of the line labeled ERROR.

The main problem of model checking is the
combinatorial explosion of system states. Abstraction
methods attempt to reduce the size of the state space.
Counter example-guided abstraction refinement

168

Figure. 1 Framework of CodeAuditor

(CEGAR) [18] is an automatic abstraction method
where, starting with a relatively small skeletal
representation of the system to be verified, increasingly
precise abstract representations of the system are
computed. The key step is to extract information from
false negatives (“spurious counterexamples”) due to
over approximation. There are other techniques to
reduce the system states, and we use program slicing to
eliminate unnecessary statements in this paper.

Blast is an automatic verification tool for checking
temporal safety properties of C programs. Combining
with Lazy Abstraction, Blast is a representative tool of
Model checking. In this paper we use blast as the back-
end checker. The lazy abstraction concept [19], which
is proposed and implemented in the BLAST, is aimed
at optimizing the native abstract-check-refine loop by
integrating the three steps. It means that the three steps
(abstraction, checking, and refinement) are performed
in an interleaving manner. The lazy abstraction is based
on the following two principles: (1). On-the-fly
abstraction: The native approach generates the entire
abstract model at the “Abstract” stage. The lazy
abstraction concept abstracts a region only when it is
needed in the next step of checking. (2). On-demand
refinement: In the native approach, the entire abstract
model has to be rebuilt after refinement. The lazy
abstraction concept suggests that we can reuse the
partial answer that is obtained in previous iterations.

5. CodeAuditor Framework

The CodeAuditor framework in Fig. 1 consists of
two components: the front end and the back end. The
front end is the static analysis module, which takes a C
program as input and an XML Configure-File that
includes the rules of code instrumentation and the

potential vulnerable functions of buffer overflow such
as strcpy, and the programming slicing algorithm is
implemented in this phase. The output of front end is a
C program with instrumentation code and one or more
assertions. The back end verifies the reachability of
assertions and presents a final report of the security
vulnerability detection.

5.1 Front End

The front-end generates constraint conditions, i.e.
security properties needed for detecting buffer
overflow, for related grammatical elements of C
programs, and these conditions will be inserted as C
instrumentation code into the program. The front end
includes three sub-modules: static analysis module,
code inserter module and programming slicing module.

Static Analysis. This module analyzes the
grammatical structures of the original codes and finds
out all the ones whose attribute is relevant to the code
instrumentation. The attributes are divided into three
types: length, operation and restraint. For example, the
length attribute of a pointer variable p should be record,
so an integer variable p_length_max and p_length_used
is inserted into the original codes. The operation
attribute of a assignment statement p=array needs to
insert ：

p_length_max = array_length_max and,
p_length_used = array_length_used.

For dereference assignment *p=‘a’ and function call
strcpy(dst, src), the assertions p_length_max>0 and
dst_length_max ≥ src_length_used should be
generated. At the same time we use the alias analysis of
GCC, and we call the interface get_alias_set() for
every AST node we concerned to obtain the alias
variables, whose attributes are updated simultaneously.

169

Code Inserter. This module is called to insert
related code when static analysis module finds a
grammatical structure listed in the XML Configure-
File.

Program Slicing. This module is used to eliminate
statements which are irrelevant to the assertions. The
user can activate this module by command-line, and
then get pre-slicing results and pos-slicing results.

5.2 Back End

The back end is composed by three modules:
scheduler, reachability verification module and error
report module.

Scheduler. The execution at the backend is
controlled and coordinated by the scheduler. In order to
verify the reachability, this module needs to activate

these assertions in the program in advance. In addition
this module receives error information from the error
report module and generates the final report.

Reachability Verification Module. In the C
program to be audited, there exist more than one
constraint paths. This module uses the model checking
tool BLAST to verify its reachability for every
constraint path. In our framework, other model
checking tools, which take C programs as input, can be
easily integrated.

Error Report Module. The output of BLAST is an
error report which tells the trace path of the security
vulnerability. However, the line number information in
the trace path is based on the instrumentation code.
This module implements the reorientation of the line
numbers, and then returns the final result to the
scheduler.

Table 2: source file and instrumentation code
Source file (perfect.c) Instrumentation code
1 char *foo(const char *

str1, const char *str2)
2 {
3 char *str;
4 char *p;
5 str = (char *) malloc(10);
6 p = str;
7 strcpy(p, str1);
8 p = str + 6 ;
9 strcpy(p, str2);
10 return str;
11 }
12 int main()
13 {
14 foo("hello ", "world");
15 return 0;
16 }

1 int foo_str1_length_max = 0, foo_str1_length_used = 0;
2 int foo_str2_length_max = 0, foo_str2_length_used = 0;
3 int foo_ret_length_max = 0, foo_ret_length_used = 0;
4 char * foo (const char * str1, const char * str2)
5 { char * str;
7 int str_length_max = 0;
8 int str_length_used = 0;
9 char * p;
10 int p_length_max = 0;
11 int p_length_used = 0;
13 str = (char *)malloc (10);
14 str_length_max = 10;
15 str_length_used = 0;
16 p = str;
17 p_length_max = str_length_max;
18 p_length_used = str_length_used;
19 assert (p_length_max >= foo_str1_length_used);
20 strcpy (p, str1);
21 p_length_used = foo_str1_length_used;
22 str_length_used = foo_str1_length_used; //alias
23 p = str + 6;
24 p_length_max = str_length_max - 6;
25 p_length_used = str_length_used - 6;
26 assert (p_length_max >= foo_str2_length_used);
27 strcpy (p, str2);
28 p_length_used = foo_str2_length_used;
29 str_length_used = foo_str2_length_used + 6; //alias
30 foo_ret_length_max = str_length_max;
31 foo_ret_length_used = str_length_used;
32 return str;
33 }
35 int main ()
36 {
37 foo_str1_length_max = 7; foo_str1_length_used = 7;
38 foo_str2_length_max = 6; foo_str2_length_used = 6;
39 foo (&"hello "[0], &"world"[0]);
40 return 0; }

170

6. An Example

Our tool works in two phases: The first is the static
analysis phase, where we traverse the AST, parse the
XML Configure-File, execute special instrument and
reconstruct the instrumented code; the second phase
checks if the assertion is reachable. If the assertion is
reachable, Blast can give an error trace path from the
entrance to the vulnerability, but the line number of the
trace is not the original source file, so we should use
the result analysis module to redirect the line number
of original source file.

The first column of Table 2 lists the C code to be
checked. After being analyzed and processed by our
tool, the instrumentation code is shown in the second
column of Table 2. It is clear that function call, string
operators, library functions and alias information have
been involved. The instrumented code is given to the
verification module, and the error path listed in Table
3.

7. Experiments

CodeAuditor was run on several C programs
ranging in size from 400 and 6000 lines of code. First
we want to measure the effectiveness of our tool, and
see if it can detect the bugs that have been reported
before and if it can find several unreported new ones;

second we want to test the performance of our tool
when program slicing is introduced.

7.1 Vulnerabilities Detection

Excepted for 159 simple test cases, we also apply
CodeAuditor on several application software including
minicom, corehttp and monkey. The experiment results
are shown in Table 4. The second column is the size of
software before and after instrumentation, the third
column is the total number of alarms reported by
CodeAuditor, the fourth column is the number of
alarms that are true, the fifth column is the number of
alarms that are false, and the last one is the number of
new bugs.

Table 3: Error Trace for the bug of above code
Error Path reported by our verify-module:
FileName lineNr SourceCode
perfect.c 14 foo("hello ", "world");
perfect.c 5 str = (char *) malloc(10);
perfect.c 6 p = str;
perfect.c 7 strcpy(p, str1);
perfect.c 8 p = str + 6 ;
perfect.c 9 strcpy(p, str2);

Table 4. Experiment Results of CodeAuditor

Software
LOC Total

Alarms
True

Alarms
False

Alarms
New
Bugs Before After

minicom-1.80 6000 18080 3 2 1 1
corehttp-0.5.3 alpha 5008 13020 9 8 1 7
monkey0.1.1 443 1200 5 2 3 2

Table 5 Performance before and after program slicing was used

Predication
number

Trace
length

Time
(ms) result

Assert_1 4126 165 time out No result.
Assert_1_slice 43 33 2530 safe
Assert_2 4140 305 time out No result.
Assert_2_slice 33 36 2148 safe
Assert_3 507 47 3409 unsafe
Assert_3_slice 36 11 2743 unsafe
Assert_4 915 126 2315 safe
Assert_4_slice 15 6 1950 safe
Assert_5 715 76 12765 unsafe
Assert_5_slice 15 23 8550 unsafe

171

7.2 Performance Results

minicom has 6000 lines (including whitespace and
comments). When the instrumentation phase is done,
there are 29 assertions has been generated, four of
which can be verified in time, and others are time out.
Here we set the time limitation to be thirty minutes.

We introduce program slicing algorithm to our tool,
and we select five assertions to test the performance of
slicing algorithm. Also we add some code into blast in
order to record the length of trace path and the verify
number. Table 5 shows the experiment results of five
assertions in minicom. The measurements are
presented as the verify number, the trace length, the
executive time, and the result, where the verify number
means the number of calling Simplify in Blast, the
trace length means the max-length of the path in work
stack, the executive time shows the time the Blast
spend to check the assertions, and the result shows the
result of verification. We can see that the performance
is improved enormously when program slicing is used.
As the program slicing does not change the value of
variables in slicing criterion, the safety of assertion
will not be changed when the program is sliced.

8. Related Work

ATOM [20] and Pin [21] are Code instrument tools,

which are primarily used for performance analysis and
gathering statistics about programs but could be used
to detect lower-level software bugs such as invalid
memory accesses. Cascade [10] is another tool with
auxiliary instrumentation to find bugs, but it can only
process few hundred lines of code. Tikir and
Hollingsworth [22] describe an instrumentation
technique for obtaining coverage for testing. CRED is
a detector tool based on compiler for finding bugs, but
it is a dynamic buffer overflow detector and it’s not
accurate in some cases. CCured [7] uses a static
verifier to prove as many dangerous operations safe as
possible using a type system, and instrumentation is
added to catch any bugs for operations that cannot be
proved safe. One key difference between CodeAuditor
and CCured is that CodeAuditor is designed to be a
tool in terms of static analysis, instrumentation engine,
and verified using model checking. There are some
other groups who focus on techniques to incorporate
static analysis in test case generation. In [23][24] static
technologies are used to analyze source code and
generate test cases.

Another popular method of finding bugs is dynamic
bug detection, and such systems include GNU’s
checker, Cred [25]. In Cred, memory object is created
to record the buffers. The bounds checker proposed by

Jones and Kelly [26] is particularly attractive in that no
pointer representation modifications are necessary.

Another area of related research is automatic
program verification, which requires a balance between
precision and efficiency. The more precise the method
is, the fewer false positives it will produce. And the
more expensive it is, the fewer program it will be
applicable to. Historically, this trade-off was reflected
in two major approaches to static verification: program
analysis and model checking. Blast [27] presents a
perfect tool which combines program analysis and
model checking.

9. Conclusion and Future Work

Our goal is to audit precisely the buffer overflow
vulnerabilities in the applications. We have presented
our tool which is CodeAuditor based on program
analysis and the model checking tool BLAST, and
showed the experiment results of CodeAuditor. The
result indicates that the tool has the low false alarm
rate. In order to improve the performance of our tool,
we implement program slicing to decrease the state
number of system. In the future we are planning to
apply our approach to other security vulnerabilities.

References
[1] J. Viega, J.T.Bloch, T. Kohno, and G. McGraw, “ITS4: A

Static Vulnerability Scanner for C and C++ Code”, In
ACSAC, December.2000, pp. 257-267.

[2] D. Pozza, R. Sisto, “Comparing Lexical Analysis Tools
for Buffer Overflow Detection in Network Software”, In
COMSWARE, January.2006, pp.1-7.

[3] D. Evans, J. Guttag, J. Homing, and Y.M. Tan, “LCLint:
A Tool for Using Specification to Check Code”, In
SIGSOFT FSE, December.1994, pp 87-96.

[4] D. Avots, M. Dalton, V.B. Livshits, and M.S. Lam,
“Improving Software Security with a C Pointer Analysis”,
In ICSE, May.2005, pp.332-341.

[5] Newsome J., Song D., Dynamic Taint Analysis for
Automatic Detection, Analysis, and SignatureGeneration
of Exploits on Commodity Software, In NDSS, Feb. 2005.

[6] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar,
“The Software Model Checker Blast: Applications to
Software Engineering” , In STTT, 2007, pp.505-525.

[7] G.C. Necula, J. Condit, M. Harren, S. McPeak, and
W.Weimer, “CCured: type-safe retrofitting of legacy
software”, In TOPLAS, May.2005, pp.477-526.

[8] D. Wagner, J. Foster, E. Brewer, and A. Aiken. “A first
step towards automated detection of buffer overrun
vulnerabilities”, In NDSS, 2000, pp. 3-17.

172

[9] P. Cousot, P. Cousot, “Formal language, grammar and
set-constraint-based program analysis by abstract
interpretation”, In FPCA, Oct.1995, pp. 170-181.

[10] N. Sethi, C. Barret, “Cascade: C assertion checker and
deductive engine”, In CAV, 2006, pp.166-169.

[11] B.W Xu, J. Qian, X.F. Zhang, Z. Qiang Wu, and L.
Chen. “A brief survey of program slicing”, In ACM
SIGSOFT Software Engineering Notes. 30(2), Mar. 2005,
pp.1-30.

[12] M. Weiser, “Programmers use slices when debugging”,
In Commun. ACM, 1982, pp.446-452.

[13] M. Weiser, “Program slicing”, In IEEE Transaction on
Software Engineering, 1984, SE-10(4), pp. 352-357.

[14] J.R. Lyle, D.R. Wallace, “Using the unravel program
slicing tool to evaluate high integrity software”, In
Proceedings of Software Quality Week, May.1997.

[15] Clarke E.M., Grumberg O., and Peled D., Model
Checking. MIT ,1999.

[16]Queille, J.P., Sifakis, J.: Specification and verification of
concurrent systems in CESAR. In: Proc. Symposium on
Programming, LNCS 137. Springer ,1982 , pp. 337-351.

[17]. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C.,
Sutre, G., and Weimer, W., Temporal-safety poofs for
systems code. In: Proc. CAV, LNCS 2404, Springer,
2002, pp. 526-538.

[18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for
symbolic model checking”, In J.ACM, Sep.2003, pp.752-
794.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, and G.Sutre.
“Lazy abstraction”, In POPL, 2002, pp. 58-70.

[20] A. Srivastava, A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools”, In PLDI,
June.1994, pp.528-539.

[21] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace,V. Reddi, and K. Hazelwood. “Pin:
Building Customized Program Analysis Tools with
Dynamic Instrumentation”, In PLDI, June.2005, pp.190-
200.

[22] M. Tikir and J. Hollingsworth, “Efficient
Instrumentation for Code Coverage Testing”. In ACM
SIGSOFT Software Engineering Notes, 2002, pp.89-96.

[23] K. Ku, T.E. Hart, and M. Chechik, “A Buffer Overflow
Benchmark for Software Model. Checkers”, In ASE,
2007, pp.389-392.

[24] D. Beyer, A.J. Chlipala, T.A. Henzinger, R. Jhala, and R.
Majumdar, “Generating Tests from Counterexamples”. In
ICSE, 2004, pp. 326-335.

[25] O. Ruwase, M. Lam, “A Practical Dynamic Buffer
Overflow Detector”, In NDSS, 2004, pp.159-169.

[26] R. Jones, P. Kelly, “Backwards-compatible bounds
checking for arrays and pointers in C programs”. In
Proceedings of the International Workshop on Automatic
Debugging, May.1997, pp.13–26.

[27]D. Beyer, T. A. Henzinger, and G. Théoduloz,
“Configurable Software Verification: Concretizing the
Convergence of Model Checking and Program Analysis”,
In CAV, 2007, pp. 504-518.

173

