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Abstract—Many software engineering applications require
points-to analysis. Client applications range from optimizing
compilers to program development and testing environments
to reverse-engineering tools. In this paper, we present a new
context-sensitive approach to points-to analysis where calling
contexts are distinguished by the points-to sets analyzed for
their target expressions. Compared to other well-known context-
sensitive techniques, it is faster—twice as fast as the call string
approach and by an order of magnitude faster than the object-
sensitive technique—and requires less memory. At the same time,
it provides higher precision than the call string technique and
is similar in precision to the object-sensitive technique. These
statements are confirmed by experiments.

I. INTRODUCTION

Points-to analysis is a static program analysis that extracts

reference information from a given input program, e.g., possi-

ble targets of a call and possible objects referenced by a field.

This reference information is an essential input to many types

of client applications in optimizing compilers and software

engineering.

The basis for many points-to analysis, and program analysis

in general, is the theory of monotone dataflow frameworks [1],

[2]. A program is represented by a program graph; its nodes

correspond to program points, its edges to control and data

dependencies between them. The analysis iteratively computes

values for each node by merging values from predecessor

nodes and by applying transfer functions representing the

abstract program behavior at these nodes.

In a context-insensitive program analysis, analysis values of

different call sites may get propagated to the same method and

get mixed there. The analysis value is the merger of all calls

targeting that method. A context-sensitive analysis addresses

the problem caused by this issue by distinguishing between the

different calling contexts of a method. It analyzes a method

separately for each calling context [3]. Context-sensitivity

will therefore, in general, give a more precise analysis. The

drawbacks are the increased memory cost that comes with

maintaining a large number of contexts, and the increased

analysis time required to reach a fixed point.

Context-sensitive approaches use a finite abstraction of the

top sequence of the call stack possibly occurring at each call

site to separate different call contexts. The two traditional

approaches to define a context are referred to as the call

string approach and the functional approach [4]. The call

string approach defines a context by the first k callers, i.e.,

return addresses on the call stack top [5], referred to as the

family of k-CFA analyses. The functional approach uses some

abstractions of the call site’s actual parameters to distinguish

different contexts [4], [6]. Both the call string and the func-

tional approaches were evaluated, and put into a common

framework by Grove et al. [6].

A rather new functional approach designed for object-

oriented languages is referred to as object-sensitivity [7], [8].

It distinguishes contexts by analyzing the targeted method for

each abstract object in the implicit this-parameter separately.

Similarly to k-CFA, we can define a family of k-object-

sensitive algorithms distinguishing contexts by the top k

abstract target objects on the call stack. A simplified version

of 1-object-sensitivity—simplified in the sense that it merges

analysis values of different contexts coming from method

parameters when analyzing a method—improves, compared

to 1-CFA, the precision of side-effect analysis and, to a lesser

degree, call graph construction [7], [8]. Both approaches show

similar costs in time and memory. These results generalize to

variants where k > 1, which, however, are very costly in terms

of memory and provide only a small increase in precision [9].

The contributions of this paper are the following:

• We present a new functional approach to points-to anal-

ysis denoted this-sensitivity.

• We experimentally evaluate this-sensitivity by comparing

it with two well-known context-sensitive approaches (1-

CFA and a complete version of 1-object-sensitivity—

complete in the sense that it does not merge analysis

values of different contexts). Our measurements show that

this-sensitivity (i) is twice as fast as 1-CFA and an order

of magnitude faster than 1-object-sensitivity, (ii) requires

less memory than the other two, (iii) is more precise

than 1-CFA, and (iv) is almost as precise as 1-object-

sensitivity.

• We present two general precision metrics suites that cover

different granularities and aspects of precision corre-

sponding to two different types of client applications.

In Section II, we outline our flow-sensitive analysis schema. It

has been presented before [10], but we include a brief version

of the material for understandability and completeness of this

paper. In Section III, we present our new context-sensitive

points-to analysis. In Section IV, we present our precision

metrics, experimental setup, and results. Finally, Section V

discusses related work and Section VI concludes this paper.

II. SSA-BASED SIMULATED EXECUTION

First, we present the analysis value representation, which

consists of sets of abstract objects and a heap-memory abstrac-
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tion, as well as our SSA-based program representation, named

Points-to SSA. We then introduce our analysis algorithm,

which is an abstract interpretation using a simulated execution

of the program.

A. Analysis Value, Memory, and Program Representations

Our points-to analysis computes sets of references to ab-

stract objects. An abstract object o is an analysis abstraction

that represents one or more run-time objects. The mapping

from, possibly infinitely many, run-time objects to finitely

many abstract objects is called a name schema. In this paper,

we will use the following name schema: each syntactic cre-

ation point s corresponds to a unique abstract object os. Thus,

the set of all allocation sites in a program defines a finite set of

abstract objects denoted O, and every abstract object os ∈ O

can be seen as an analysis abstraction representing all run-

time objects created at the corresponding allocation site s in

any execution of the analyzed program.

In general, a reference expression refers to more than one

abstract object. Hence, each points-to set v ⊆ O is a set

of abstract objects. We use the notation Pt(a) to denote the

points-to set referenced by an expression a.

Each abstract object o ∈ O denotes a unique set of object

fields [o, f ] ∈ OF where f ∈ F is a unique identifier of a

field. In turn, each object field [o, f ] denotes a heap memory

slot ([o, f ], v) where v is a points-to set. The points-to set v

associated with a given object field [o, f ] may change from

one program point to another due to field store operations.

The abstraction of the heap-memory associated with an

analyzed program, referred to as abstract memory Mem, is

defined as the set of all memory slots ([o, f ], v). In our

approach, we are using a single global memory configuration.

Our reason for introducing an abstract memory is not only

to mimic the run-time behavior; it is a necessary construct

to handle field store and load operations and the transport of

abstract objects from one method to another that follows as a

result of these operations. We think of the abstract memory as

a mapping from object fields to points-to sets. The memory is

therefore equipped with two operations

Mem.get(OF ) → V and Mem.set(OF, V )

with the interpretation of reading the points-to set stored

in an object field [o, f ] ∈ OF , and merging the points-

to set v ∈ V with the points-to set already stored in an

object field [o, f ] ∈ OF , respectively. Note that we never

override previously stored object field values in memory store

operations. Instead, we merge (set union) the new set with the

old ones, i.e., we perform weak updates. An example is given

later on when we present our handling of the store operation.

The abstract memory is updated as a side effect of the

analysis. In order to quickly determine the fixed point, we

use memory sizes indicating whether or not the memory has

changed. In what follows, we refer to the size of the abstract

memory as a memory size x ∈ X = [0, hm] where hm

is the maximum memory size. It corresponds to the case

where all object fields contain all abstract objects. Hence,

hm = |OF | · |O|.
Our points-to analysis uses an SSA-based program represen-

tation [11], [12] where each method is represented by a method

graph. Nodes correspond to operations; local variables v are

resolved to dataflow edges connecting the unique defining

operation-nodes to operation-nodes that use v. As a result,

every def-use relation via local variables is explicitly repre-

sented as an edge between the defining and using operations.

Join-points in the control flow, where several definitions may

apply, are modeled with special φ-operation nodes.

Figure 1 shows a simple “Linked List” implementation

(class L) and the corresponding Points-to SSA graphs. The ba-

sic idea can be understood just by comparing the source code

with the respective graphs. Note that the constructor L.init

starts by calling its super constructor Object.init and that

object creation, in L.append, is done in two steps: we first

allocate an object of class L and then call the constructor

L.init. φ-nodes are used in L.append to merge the

memory size values from the two selective branches, and in

L.putAt as the loop head of the iteration.

A Points-to SSA method graph can be seen as a semantic

abstraction of a method, an SSA graph representation specially

designed for points-to analysis. It is an abstraction since we

have removed all operations not directly related to refer-

ence computations, e.g., operations related to primitive types.

Moreover, we abstracted from the semantics of the remaining

operations by giving them an abstract analysis semantics.

Another feature in Points-to SSA is the use of memory

edges to explicitly model (direct, indirect, and anti-) dependen-

cies between different memory operations. An operation that

may change the memory defines a new memory size value

and operations that may access this updated memory use the

new memory size value. Thus, memory sizes are considered

as data and memory size edges have the same semantics—

including the use of φ-nodes at join points—as def-use edges

for other types of data. The introduction of memory size edges

in Points-to SSA is important since they also imply a correct

order in which the memory accessing operations are analyzed

ensuring that an analysis is a flow-sensitive abstraction of the

semantics of the program.

Node types may have attributes that refer to node specific

information, e.g., each Alloc node is decorated with a class

identifier C that identifies the class of the object to be created.

Each type of node is associated with a unique analysis

semantics (or transfer function), which is a mapping from

input- to output-values that may have a side-effect on the

memory. Values are carried through so-called ports. In our

example, ports labeled x specify memory sizes, a targets for

member accesses, and v general points-to sets.

As an example for a Points-to SSA transfer function,

Algorithm A 1 shows the analysis semantics for the Storef

node type, which abstracts the actual semantics of a field store

statement a.f = v. For each abstract object o in the address

reference a, it looks up the points-to set previously stored in

object field [o, f ]. If the new set to be stored would change the
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p u b l i c c l a s s L {
V v a l u e = n u l l ;

L n e x t = n u l l ;

p u b l i c L (V v ) {
v a l u e = v ;

}

p u b l i c vo id append (V v ) {
i f ( n e x t == n u l l )

n e x t = new L ( v ) ;

e l s e

n e x t . append ( v ) ;

}

p u b l i c vo id pu tAt ( i n t n , V v ) {
i n t c o u n t = 0 ;

L l = t h i s ;

whi le ( c o u n t < n ) {
l = l . n e x t ;

c o u n t ++;

}
l . v a l u e = v ;

}
}

x a v

x x a v

x

x a v

x

x a v

x

x a v

x

L.init

L.value

Load

MCall

Load

L.value

Store

L.init

L.append

L.next

L.append L.putAt

L.next

Store
Exit

x a v

Entry
x a v x a v

Entry Entry

x

v

x

x x

x

x

a

v

x a

L.append

L
Alloc

v

L.init

MCall

L.next

Store

x
L.putAt

Exit

Exit

v v

v

Object.init

MCall

x a

x

ϕ

ϕ

Fig. 1. Source code fragment and corresponding Points-to SSA graphs.

A 1 Storef : [xin, a, v] 7→ xout

xout = xin

for each o ∈ Pt(a) do
prev = Mem.get([o, f ])
if v 6⊑ prev then

merge = prev ⊔ v
Mem.set([o, f ], merge)
xout = Mem.getSize()

end if
end for
return xout

memory (i.e., if v 6⊑ prev), we union v with the previous set

and save the result. Also note that we compute a new memory

out-port value (a new memory size) if the memory has been

changed during this operation.

B. Simulated Execution

Our dataflow analysis technique simulates the actual execu-

tion of a program: starting at one or more entry methods,

it analyzes the statements of a method in execution order,

interrupts this analysis when a call expression occurs to follow

the call, continues analyzing the potentially called methods,

and resumes with the calling method once the analysis of

the called methods is completed. The resulting analysis is

flow-sensitive—i.e., it takes into account the order in which

statements in a program are executed [3]—in the sense that a

memory accessing operation (a call or a field access) a1.x will

never be affected by another memory access a2.x that is exe-

cuted after a1.x in all runs of a program. This makes simulated

execution strictly more precise than the frequently used flow-

insensitive whole program points-to graph approach [6]–[9],

[13], which was verified by experiments [10]. While a strict

ordering of the two approaches, from a performance point

of view, is impossible, the SSA-based simulated execution

appears, on average, faster.

The simulated execution approach can be seen as a recursive

interaction between the analysis of an individual method and

the analysis semantics associated with monomorphic calls

handling the transition from one method to another1.

III. CONTEXT-SENSITIVITY

The way we associate a call a.m(. . .) with a number of

contexts under which the method m shall be analyzed depends

on the call stack abstraction used. Each such abstraction

defines a family of different context-sensitive analyses that

can be parameterized by a call stack depth k. We will only

consider the case k = 1 in this paper, hence, we can base

the abstraction on the topmost stack frame, i.e., on target

and return addresses and the actual call parameters of a

call site. In this section, we present four different context

definitions: Insens, CallSite, ObjSens, and ThisSens. The first

three represent the well known context-insensitive, 1-CFA, and

1-object-sensitive approaches. The last one is our new context-

sensitive approach, 1-this-sensitivity.

A. Context Definitions

A context definition is a rule that, in general, associates a

call site with a set of contexts under which the target method

should be analyzed. Actually, ObjSens is the only context

definition (in this selection) that may associate a call site with

more than one context. Each context in turn is defined by a

tuple; the tuple elements, its number and content, depend on

what context definition we are using. In this paper, we will

use the following context definitions for a given call from

a call site csi : a.m(v1, . . . , vn) where Pt(a) = {o1, . . . , op}.

1Polymorphic calls are mapped to selections over possible target methods
mi, which are then processed as a sequence of monomorphic calls targeting
mi.
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Insens: csi 7→ {(m)}
All calls targeting method m are mapped to the

same context. This is the context-insensitive baseline

approach.

CallSite: csi 7→ {(m, csi)}
Calls from the same call site csi are mapped to the

same context.

ObjSens:csi 7→ {(m)} if m.isStatic,

{(m, o1), . . . , (m, op)} otherwise.

Calls targeting the same receiving abstract object

oi ∈ Pt(a) are mapped to the same record. Static

calls are handled context-insensitively.

ThisSens:csi 7→ {(m)} if m.isStatic,

{(m, Pt(a))} otherwise.

Calls targeting the same points-to set Pt(a) are

mapped to the same context. Static calls are handled

context-insensitively.

This-sensitivity (ThisSens) is to our knowledge new. In con-

trast to object-sensitivity, which analyzes a method separately

for each abstract object reaching the implicit this-variable,

this-sensitivity analyzes a method separately for each set of

abstract objects reaching this. We discuss the differences

between these two approaches in more detail in the following

section.

B. Object- and This-Sensitivity

The object-sensitive approach has been thoroughly studied

during the last years and there seems to be an agreement that

this technique is particularly suited for the analysis of object-

oriented programs [7]–[9]. The difference between our new

this-sensitivity, and object-sensitivity, is that we are using a

different context definition for a given call site. Therefore,

we compare the two approaches in more detail. 1-CFA is left

out of the discussion since it has been compared to object-

sensitivity before [8], [9].

Analysis Precision: It is not obvious which of the two

techniques, object- or this-sensitivity, is more precise. In what

follows, we will present two scenarios where one technique

provides higher precision than the other and vice versa. This

proves that neither of the two approaches is strictly more

precise than the other.

The first example shows a situation where this-sensitivity

provides higher precision:

Example 1

Method m:

m(V v) {return v; } 7→ V

Call 1:

Pt(a1) = {o1

a}, P t(v1) = {o1

v}
r1 = a1.m(v1)

Call 2:

Pt(a2) = {o1

a, o2

a}, P t(v2) = {o2

v}
r2 = a2.m(v2)

We have two calls targeting the same method m, which just

returns the provided argument. The two calls target expressions

a1 and a2, whose respective points-to sets both contain the

abstract object o1

a, and a2 also o2

a. In an object-sensitive

analysis, both calls target the context (m, o1

a), and the return

values get mixed in the second call:

Pt(r1) = {o1

v} and Pt(r2) = {o1

v, o2

v}.

In a this-sensitive analysis, the two calls target different

contexts, and no mixing of return values occurs:

Pt(r1) = {o1

v} and Pt(r2) = {o2

v}.

The second example shows a situation where object-

sensitivity provides higher precision:

Example 2

Method m:

m( ) {V v = this.f ; v.n(); }
Call:

Pt(a) = {o1

a, o2

a}
Pt([o1

a, f ]) = {o1

v}
Pt([o2

a, f ]) = {o2

v}
a.m()

Here, the method m reads from memory and calls another

method n on the read-result. In the this-sensitive approach, the

call a.m() targets the context (m, {o1

a, o2

a}) that reads {o1

v, o2

v}
from memory and then calls the context (n, {o1

v, o2

v}). This

gives the object call graph as given on the left below.

(m,o  ) (n,o  )

( ... )

(m,o  ) (n,o  )

1
a

1
v

2
a
2

v

This-sensitive call graph.

(m,o  ) (n,o  )

( ... )

(m,o  ) (n,o  )

1
a

1
v

2
a
2

v

Object-sensitive call graph.

In the object-sensitive approach, the call a.m() is analyzed in

two different contexts (m, o1

a) and (m, o2

a), which read {o1

v}
and {o2

v}, respectively, and then call the different contexts

(n, o1

v) and (n, o2

v), respectively. This leads to the object call

graph as given on the right above. That is, the object-sensitive

approach gives a more precise result in this example since the

results of the memory read operation v=this.f never get

mixed in this scenario.

Thus, none of the two approaches is strictly more precise

than the other. Our experiments show that precision is very

similar in practice with both approaches, cf. Section IV.

However, these two examples nicely illustrate the fundamen-

tal differences between the two approaches. This-sensitivity,

with the potential to use many more contexts for a given

method, is better in separating two different calls targeting the

same method. Object-sensitivity, where each abstract object is

treated separately, has a more precise handling of operations

(calls and field accesses) targeting the implicit variable this.

Analysis Cost: This-sensitivity might use an exponential

number of contexts and requires therefore, in theory, an

exponential amount of memory. In practice, however, our

experiments show that the number of contexts used by this-

sensitivity is (on average) lower than the number used by

object-sensitivity. Furthermore, a low number of used contexts
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does not only reduce the memory requirements, but also speeds

up the analysis by reducing the amount of processing required

to reach the fixed point. This non-obvious observation is one of

the major reasons why this-sensitivity is an order of magnitude

faster than object-sensitivity, cf. Section IV-E.

Finally, it is straightforward to add an ad hoc mechanism

that recognizes situations in which the number of contexts

explodes. For instance, when a given method has been associ-

ated with more than N contexts, the analysis may be widened,

e.g., simply merging two contexts. This is the approach that

should be used in any non-experimental implementation of

this-sensitivity, but since none of the programs studied in this

paper shows exponential behavior for this-sensitivity, we omit

a deeper discussion of such possible mechanisms.

C. Implementation Details

Our Java implementation of the analysis presented above

reads and analyzes Java bytecode. We use the Soot framework,

version 2.2.3, as our bytecode reader [14]. We then use the

Shimple format provided by Soot as the starting point to

construct the SSA-based graphs for the individual methods.

In the context-sensitive analysis, all contexts are equipped

with a node-to-values map where all current analysis values

are saved. Using this approach, we avoid cloning the method

graphs. Moreover, our points-to set implementation is similar

to the hybrid-set implementation that comes with Soot, and

we make sure that we never save multiple copies of identical

sets. We have not experienced any major memory problems

with the actual points-to analysis so far.

Our analysis implementation is currently incomplete in the

sense that it does not correctly handle certain features related

to class loading and reflection. To our knowledge, no feasible

approach to handling these features is known.

IV. EXPERIMENTS

In this section, we evaluate our new approach, this-

sensitivity, by comparing it with 1-CFA and 1-object-

sensitivity. In fact, we compare our implementations thereof,

which we refer to as ThisSens, CallSite, and ObjSens, respec-

tively.

Our experiments do not target any specific client application

that requires reference information, e.g., compiler optimization

or software engineering activity. We have chosen to use a set

of general (artificial) precision metrics relevant for a large

number of different client applications. More precisely, we

tried to identify two types of client applications that require

different granularity of reference information as their input.

These two types are presented in Sections IV-A and IV-B

along with relevant metrics for each type. Although measuring

the effects for specific clients is also a necessary part when

evaluating a new approach, we consider this to be the next

step after a more general evaluation.

A. Two Types of Client Applications

The reference information that can be extracted from a

program using static points-to analysis is in most cases used as

input to different client applications. These client applications

can be further divided into different domains such as compiler

optimizations, software development, and reverse engineering.

In this section, we will take an orthogonal approach and try to

focus on what granularity of reference information the client

applications need rather than their domain.

The first type of client application that we have identified,

denoted SourceCode clients, is primarily interested in source

code entities and reference relations between them, i.e., in

relations between source code entities like classes, methods,

fields, and statements, that hold for any execution of the

program and for all instances of a class. Examples are all

client applications that require a call graph as input, i.e., most

types of inter-procedural program analysis. Other examples

of SourceCode clients are: virtual call resolution to avoid

dynamic dispatch and facilitate method inlining [9], [15], cast

safety analysis to avoid unnecessary run-time type checking

[9], [16], metrics-based analyses to compute coupling and

cohesion metrics involving members and classes [17], [18],

source code browsers that need to resolve various source

code references, and software testing where class dependencies

determine the test order [19]–[21].

Another type of client application, denoted ObjectIden-

tity clients, is primarily interested in individual objects and

references to individual objects. Examples of ObjectIdentity

clients are: side-effect analysis that computes the set of object

fields that may be modified during the execution of a state-

ment k [7], [8], [22], escape analysis that identifies method

(or thread) local objects to improve garbage collection (and

to remove synchronization operations) [23]–[25], Memory

leak debugging to identify references that prevent garbage

collection [13], static design pattern detection to identify the

interaction among possible participating objects [26], reverse

engineering of UML interaction diagrams [27], and architec-

tural recovery by class clustering to avoid erroneous groupings

of classes/instances [28], [29].

B. Used Metrics and Benchmarks

In order to compare our new approach this-sensitivity with

the other two approaches, we have used a benchmark contain-

ing 13 different programs. Since we analyze Java bytecode,

we characterize the size of a program in terms of “number

of classes and methods” rather than “lines of code”—our

benchmark programs range from 225 to 796 classes. All

programs are presented in Table I.

The programs in the upper half of the table are taken

from well-known test suites [30]–[32], and we have picked

those programs that were (i) larger than 200 classes, and

(ii) freely available on the Internet. They are a bit “older”

and are analyzed using version 1.3.1 of the Java standard

library. In the lower half, we have our own set of “more

recent” test programs. They are all publicly available and

are analyzed using version 1.4.2 of the Java standard library.

The program obfusc0.73 is a source code obfuscator that

comes with the Java source code transformation framework

Recoder v0.73 [33]. All experimental data presented in this
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General SourceCode ObjectIdentity

Program Class Method Object Time [s] Node Edge PCall Cast ONode OEdge Heap Enter

antlr 225 910 2,615 1.3 808 2,432 131 49 4,441 57,906 19,004 26,138

javac 307 2,131 4,007 24.8 1,714 6,603 668 477 18,046 329,189 64,797 224,971

javadoc 416 1,845 4,363 11.2 1,192 3,992 176 116 19,321 274,139 54,851 207,740

jython 322 2,093 5,022 41.1 1,788 5,448 287 140 42,099 1,565,265 193,889 422,035

ps 396 1,605 3,172 3.4 1,153 10,220 291 573 8,258 504,348 69,285 116,335

sablecc-j 649 2,990 4,524 14.9 2,045 17,205 434 342 15,095 162,877 56,128 218,336

soot-c 796 3,070 14,733 22.9 2,859 12,990 964 710 26,005 765,797 77,928 609,428

emma2.0 749 3,401 7,004 62.7 1,691 4,410 118 108 37,652 444,087 83,153 452,542

javacc3.2 274 1,579 7,706 4.2 1,068 3,350 39 404 8,989 223,630 3,578 71,749

pmd3.2 508 2,642 4,162 3.9 1,693 3,807 52 94 12,120 118,903 19,595 56,086

jess4.5 308 1,139 3,113 3.4 706 2,108 42 73 4,754 156,291 6,972 28,355

obfusc0.73 688 3,714 3,847 14.4 3,490 10,435 422 420 15,937 128,500 15,268 104,850

xsltc1.2 663 3,038 7,301 175.1 1,959 9,385 501 531 53,786 2,243,036 208,038 649,942

TABLE I
BENCHMARK INFORMATION AND CONTEXT-INSENSITIVE RESULTS

paper is the median value of three runs on the same computer

(Dell Inspiron 5150, 1GB, Pentium 4, 3.2GHz under Windows

2000) using Sun’s JVM 1.4.2.

Table I contains data taken from our context-insensitive

analysis Insens. This set of data will be our baseline result

which we compare the context-sensitive results with. The first

section General shows the number of used classes (Class),

the number of reachable methods (Method), the number of

abstract objects (Object), and the analysis time (Time). All

time measurements show the analysis time. That is, Points-to

SSA graph construction and analysis setup are not included2.

The sections SourceCode and ObjectIdentity show the

context-insensitive results for the precision metrics related to

the previously mentioned types of client applications. They

will be explained below.

In order to avoid taking into account results due to the

same set of Java library and JVM start-up classes again and

again, we decided to use the following method when applying

our metrics suites on the results of the points-to analysis: We

selected a subset of all classes in each benchmark program

and denoted them application classes. A simple name filter

on the fully qualified class names did this job. For example,

the application classes of xsltc1.2 are all those classes

having a name starting with org.apache. Members defined

in these classes are denoted application members and abstract

objects corresponding to allocations of these classes are

denoted application objects. We did not consider any class

from the Java standard library as an application class in any

of the benchmark programs.

The SourceCode Metrics Suite

The set of precision metrics presented here is most relevant

for client applications of type SourceCode. These metrics

are frequently used when evaluating different approaches to

points-to analysis.

• Node, Edge: The number of nodes (methods) and edges

2The longest time we measured was for xsltc1.2, which took 172
seconds, including file reading. Graph construction, however, is not at all
optimized for speed

(calls) in a call graph where at least one of the participants

(caller or callee) is an application method.

• PCall: The number of potentially polymorphic call sites

located in an application class.

• Cast: The number of casts (located in an application

class) potentially failing at run-time.

The call graph related metrics, Node and Edge, are relevant

for any inter-procedural analysis. The other two are directly

related to method inlining and cast safety analysis.

The ObjectIdentity Metrics Suite

The set of metrics presented here is most relevant for client

applications of type ObjectIdentity.

• ONode, OEdge: The Application Object Member Graph

(AOMG) is a graph consisting of two node types: object

methods [o, m] and object fields [o, f ], and three edge

types: object call [oi, mp] → [oj , mq], object field store

[oi, m] → [oj , f ], object field load [oi, f ] → [oj , m].
ONode and OEdge is the number of nodes and edges

in an AOMG where at least one of the participants is an

application object member.

• Heap: The number of abstract objects referenced by the

application object fields. That is, we have summed up the

sizes for all points-to sets stored in all application object

fields.

• Enter: The number of abstract objects entering an appli-

cation method. That is, we have counted the number of

different abstract objects that enter an application method

(i.e., out-port values for entry, field load, and call nodes)

and summed these up.

The AOMGs are easy to derive since we know the set of

abstract objects referenced by the implicit variable this in each

method (or context), and we know the targets of all member

accesses a.x. A small number of OEdge indicates small this

value sets as well as a precise resolution of member accesses

(relevant in, e.g., reverse engineering of UML interaction

diagrams [27]).

The Heap metric can be seen as the size of the abstract heap

associated with the application objects. It is a metric that puts
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all focus on the precision of the memory store operation and

is of direct relevance for a number of memory management

optimizations (e.g., side-effect and escape analyses).

Enter focuses on the flow of abstract objects between

different parts of a program. A low value indicates a precise

analysis that narrows down the flow of abstract objects from

one part of the program to another (e.g., object tracing).

C. The SourceCode Metrics Suite — Results

In this section, we present the first set of results when mea-

suring the precision using the SourceCode Metrics Suite. The

results related to our context-sensitive approaches CallSite,

ThisSens, and ObjSens are presented in Table II. All results in

this, and the following tables, are given as a multiple of the

context-insensitive results presented in Table I. For example,

for the sablecc-j benchmark, the number of unresolved

polymorphic calls in analysis CallSite is 434 × 0.81 = 352,

where 434 is the number for the metric PCall given in

Table I. Tables II-IV use both a simple mean (average)

and median value (median) to report the overall results. The

median values are included to reduce the effects of outliers

(e.g., sablecc-j in Table II), which are over-emphasized in

average.

First, there is no significant difference between the three

approaches for this set of metrics. Second, they only provide

slightly better results than the context-insensitive analysis,

with one major exception: In the benchmark sablecc-j,

the number of call graph edges is reduced by 73-74% when

using a context-sensitive analysis. Our results are in agreement

with those of Lhoták and Hendren, who also explained the

outlier sablecc-j: They traced this increase in precision to

the own map-implementation of sablecc-j, where different

maps store different types of objects, but all maps use the same

kind of generic map entry object. Thus, in context-insensitive

analysis, the contents of all maps get mixed, and consequently,

the analysis cannot compute that methods like toString()

and equals() are called for only some but not all of the

maps [9]. Thus, client applications of type SourceCode would

probably not notice any significant change.

D. The ObjectIdentity Metrics Suite — Results

In this section, we present the results when measuring the

precision using the ObjectIdentity Metrics Suite. The results

are presented in Table III.

First, all three approaches are much more precise than

context-insensitive analysis. These results indicate that client

applications of type ObjectIdentity are likely to benefit from

using a context-sensitive analysis. The results for the metric

Heap show a significant precision improvement (47-59%)

when using a context-sensitive analysis, a result that indicates

a considerably improved precision in the handling of memory

store operations. This comes as no surprise for the two func-

tional approaches (both come with a 59% improvement) since,

due to encapsulation, almost every memory store operation is

done using the implicit variable this. It was also shown by

Milanova et al. [7], [8] that this type of client applications

can benefit from context-sensitive analysis. Our experiments

confirm theses results.

Second, note that the two functional approaches, on average

and median, are clearly more precise than CallSite. This-

and object-sensitivity have in common that the context in

which a method is analyzed depends on the value of the

implicit this-variable. That is, the analysis values of two

calls targeting different this-sets are never mixed. This is

important in object-oriented languages where a large part of

all field accesses and calls are targeting this. The focus

on this makes this- and object-sensitivity more precise in

the analysis of OO programs than CFA (that was designed

for the analysis of functional and imperative programs). This

is also in agreement with previous results, where object-

sensitivity and the call string approach were compared to each

other [8], [9]. However, our use of metrics suites that focus on

individual objects makes the difference between the two types

of context definitions more obvious. It seems likely that client

applications that require precise information about individual

objects and their interaction would benefit from using one of

the two functional approaches.

Finally, the two functional approaches provide almost iden-

tical results in three out of four metrics. The major difference

is in the metric OEdge where ObjSens is significantly more

precise. The higher precision is probably due to a more precise

handling of memory load operations via the implicit variable

this, a situation that is very common in most programs. The

difference in this particular kind of situation was studied in

Example 2, Section III-B.

E. Time and Memory Measurements

Table IV shows the number of used contexts and the analysis

time required for each approach. We have used the number

of used contexts, rather than a direct memory measurement,

as our memory cost metric. This is based on the assumption

that the memory cost of maintaining N contexts for a given

method m is O(N), which is true for our implementation and

most other implementations that we know of. Furthermore, it

is simple and implementation independent. Both the time and

context measurements are given as a multiple of the context-

insensitive results presented in Table I.

The first thing to notice is that ThisSens is about twice as

fast as CallSite, and more than an order of magnitude faster

than ObjSens, on average and median. The time measurements

also show that ThisSens is, on avarage, only 8% slower

than our context-insensitive analysis Insens, a number that is

likely to be accepted by client applications that can make

use of the improved precision. The fact that ThisSens is

even faster than Insens on a number of benchmarks (antlr,

ps, sablecc-j, emma2.0, and javacc3.2) can be con-

sidered as a positive side-effect of the improved memory

store precision (as manifested by the Heap results). Improved

memory store precision implies fewer memory changes, which

consecutively implies that the fixed point iteration stabilizes

faster, cf. Section II-B.
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CallSite ThisSens ObjSens

Program Node Edge PCall Cast Node Edge PCall Cast Node Edge PCall Cast

antlr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98

javac 1.00 1.00 0.99 0.98 1.00 1.00 0.98 0.98 1.00 1.00 0.98 0.97

javadoc 1.00 1.00 0.99 0.92 1.00 1.00 0.99 0.93 1.00 1.00 1.00 0.92

jython 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99

ps 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00

sablecc-j 1.00 0.27 0.81 0.99 0.99 0.26 0.71 0.98 0.99 0.27 0.71 0.98

soot-c 1.00 0.99 0.97 0.99 1.00 0.99 0.94 1.00 1.00 0.99 0.94 1.00

emma2.0 0.98 0.98 0.97 0.96 0.98 0.98 0.97 0.96 0.98 0.98 0.97 0.96

javacc3.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pmd3.2 1.00 1.00 0.96 0.96 1.00 1.00 0.96 0.96 1.00 1.00 0.96 0.95

jess4.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

obfusc0.73 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00

xsltc1.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

average 1.00 0.94 0.98 0.98 1.00 0.94 0.97 0.98 1.00 0.94 0.97 0.98

median 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99

TABLE II
RESULTS RELEVANT FOR SourceCode CLIENTS

CallSite ThisSens ObjSens

Program ONode OEdge Heap Enter ONode OEdge Heap Enter ONode OEdge Heap Enter

antlr 0.71 0.26 0.27 0.77 0.70 0.22 0.09 0.70 0.70 0.16 0.09 0.70

javac 0.90 0.73 0.57 0.85 0.71 0.58 0.38 0.39 0.71 0.40 0.35 0.40

javadoc 0.91 0.59 0.56 0.83 0.78 0.42 0.44 0.69 0.80 0.41 0.43 0.68

jython 0.83 0.70 0.23 0.55 0.80 0.68 0.22 0.53 0.79 0.18 0.22 0.53

ps 0.97 0.93 0.10 0.97 0.96 0.87 0.10 0.94 0.96 0.63 0.10 0.94

sablecc-j 0.62 0.25 0.05 0.12 0.63 0.18 0.05 0.37 0.63 0.14 0.05 0.37

soot-c 0.81 0.34 0.93 0.60 0.74 0.26 0.91 0.72 0.74 0.24 0.91 0.72

emma2.0 0.88 0.27 0.39 0.67 0.65 0.15 0.17 0.44 0.65 0.15 0.17 0.44

javacc3.2 0.74 0.09 0.97 0.43 0.73 0.09 0.97 0.42 0.73 0.09 0.97 0.42

pmd3.2 0.90 0.82 0.80 0.81 0.88 0.81 0.80 0.79 0.88 0.80 0.80 0.79

jess4.5 0.90 0.55 0.66 0.80 0.90 0.54 0.36 0.80 0.90 0.36 0.36 0.80

obfusc0.73 0.85 0.63 0.65 0.64 0.84 0.61 0.59 0.63 0.84 0.50 0.58 0.63

xsltc1.2 0.87 0.46 0.66 0.82 0.64 0.30 0.27 0.28 0.64 0.17 0.26 0.28

average 0.84 0.59 0.53 0.68 0.77 0.44 0.41 0.59 0.77 0.32 0.41 0.59

median 0.87 0.55 0.57 0.77 0.74 0.42 0.36 0.63 0.74 0.24 0.35 0.63

TABLE III
RESULTS RELEVANT FOR ObjectIdentity CLIENTS

ThisSens also outperforms the other two approaches when it

comes to the number of used contexts. It requires, on average,

17.8% fewer contexts than CallSite and 44.5% fewer contexts

than ObjSens. This is a bit surprising since, remembering from

Section III-B, the this-sensitive analysis potentially requires

an exponential number of contexts in theory. In practice, on

the other hand, it turns out that, on average, the number of

used this-sets is smaller than the number of used call-sites,

which in turn is smaller than the number of receiving abstract

objects. Furthermore, a low number of used contexts does not

only reduce the memory requirements, but even speeds up the

analysis by reducing the processing required to reach a fixed

point. This non-obvious observation is the key to understand

why this-sensitivity outperforms the two other approaches de-

spite of an exponential worst-case scenario. Another reason is

that object-sensitivity may associate a call site with more than

one context. Thus, a call a.m(. . .), where N = sizeOf(Pt(a)),

may require that method m (and all its callees transitively)

must be processed N times, one for each abstract object in

Pt(a). That is, a single call targeting a large points-to set

where N ≫ 1 may generate a cascade of new methods to

process. This problem does not occur in this-sensitivity where

each call always targets a single context, which also simplifies

the analysis implementation considerably. Scenarios in Java

programs where N ≫ 1 most often involve objects of classes

String and StringBuffer, which can make up more

than half of all abstract objects used in an analysis. This

explanation is supported by an observed 94% reduction in

the analysis time for ObjSens on javacc3.2 when using

a class-based name schema for all objects of classes String

and StringBuffer.

Finally, our results where object-sensitivity is more than

an order of magnitude slower than the context-insensitive

analysis may at first glance seem contradictory to the results

presented by Milanova et al. [8], where object-sensitivity was

only slightly slower. The explanation is simple: they presented

object-sensitivity in theory, but implemented a simplified ver-

sion where only a fraction of the program graph (the method
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CallSite ThisSens ObjSens

Program Context Time Context Time Context Time

antlr 4.87 1.69 3.36 0.97 3.91 4.65

javac 4.59 4.83 4.19 1.56 7.11 5.71

javadoc 4.42 3.04 4.61 1.33 10.04 12.65

jython 4.44 0.98 4.74 1.07 15.58 23.35

ps 9.36 6.23 3.06 0.94 5.37 21.22

sablecc-j 3.22 0.52 3.05 0.47 3.56 1.51

soot-c 6.34 3.64 3.45 1.31 5.20 10.88

emma2.0 3.56 0.96 3.91 0.63 11.63 9.15

javacc3.2 8.21 1.61 8.26 0.91 9.26 24.81

pmd3.2 3.11 1.71 2.88 1.24 5.25 10.53

jess4.5 3.54 2.38 3.16 1.26 5.35 6.85

obfusc0.73 3.57 3.24 2.73 1.23 3.36 3.67

xsltc1.2 6.44 2.90 6.61 1.14 11.67 9.97

average 5.05 2.60 4.15 1.08 7.48 11.1

median 4.44 2.38 3.45 1.14 5.37 9.97

TABLE IV
USED CONTEXTS AND ANALYSIS TIME

parameter nodes) was treated in a context-sensitive manner; all

other node types were treated insensitively. This simplification

will of course speed up the analysis at the cost of some

precision loss. Our implementation follows the theory and

treats all method contexts separately.

Although we haven’t experienced any sign of exponen-

tial behavior in our experiments, we still recommend any

non-experimental implementation of this-sensitivity to use a

guarded approach (cf. discussion in Section III-B) to ensure a

polynomial behavior for any input program.

V. RELATED WORK

A context-insensitive version of the SSA-based simulated

execution approach used in this paper was presented be-

fore [10]. Our program representation Points-to SSA is closely

related to Memory SSA [34], [35]. Memory SSA is an

extension to the traditional approach to SSA [11], [12].

The number of papers explicitly dealing with context-

sensitive points-to analysis of object-oriented programs is

rapidly growing [7]–[9], [13], [36], [37]. The active research

within this area demonstrates its expected potential to improve

the analysis precision. The papers experiment with different

context definitions and techniques to reduce the memory cost

associated with having multiple contexts for a given method.

It should also be noted that many approaches targeting object-

oriented programs have an “imperative counterpart”, which

often pre-dates the object-oriented work. People interested in

more general reviews of the area should take a look at the

papers of Hind [38] and Ryder [3].

Many authors use a call string approach and approximative

method summaries to reduce the cost of having multiple con-

texts [36], [37]. Sometimes, ordered binary decision diagrams

(OBDD) are used to efficiently exploit commonalities among

similar contexts [9], [13], [34], which allows handling of a

very large number of contexts at reasonable memory cost.

Milanova et al. [7], [8] present a technique named object-

sensitivity. Object-sensitivity uses the (abstract) receiver object

to distinguish different contexts. The object-sensitive and call

string approaches were compared in different works [8], [9].

These also show that 1-object-sensitivity scales to programs

containing hundreds of classes.

Whaley et al. [13] present a k-call-string based analysis with

no fixed upper limit (k) that only takes acyclic call paths into

account. Experiments using this approach report reasonable

analysis costs but no improved precision compared to object-

sensitivity [9], [13].

VI. CONCLUSIONS

In this paper, we present a new context-sensitive approach

to points-to analysis where the target context associated with a

call site a.m(. . .) is determined by the pair (m, Pt(a)), where

Pt(a) is the points-to set of the target expression a. Hence,

we distinguish analysis contexts of a method by its implicit

variable this. We have therefore named it this-sensitivity. It is

a modified version of object-sensitivity presented by Milanova

et al. [7], [8].

We have experimentally evaluated this-sensitivity by com-

paring it with two well-known context-sensitive approaches

(1-object-sensitivity and 1-CFA). Our measurements show that

this-sensitivity is much faster, and requires less memory, than

the two other. In fact, it is, on average, only 8% slower than

our context-insensitive analysis.

We have used two different metrics suites to evaluate the

precision of our new approach. Each metrics suite is targeted to

a specific group of client applications. The first metrics suite,

denoted SourceCode, is most relevant for client applications

that are primarily interested in source code entities and refer-

ence relations between them, i.e., in relations that hold for all

instances of a class. An example is call graph construction.

The second metrics suite, denoted ObjectIdentity, is most

relevant for client applications that are primarily interested

in individual objects and references to individual objects.

Examples of ObjectIdentity clients are side-effect analysis,

escape analysis, and reverse engineering of UML interaction
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diagrams.

The experiments using the SourceCode metrics suite show

no significant difference between the three context-sensitive

approaches. Furthermore, they only provide slightly better

results than the context-insensitive analysis. Our conclusion is

that client applications of type SourceCode can probably safely

avoid the trouble of adding any kind of context-sensitivity to

their analysis.

The experiments using the ObjectIdentity metrics suite show

that all three context-sensitive approaches are much more

precise than the context-insensitive analysis. Furthermore, 1-

object-sensitivity and this-sensitivity are clearly more precise

than 1-CFA. This is in agreement with previous results,

where 1-object-sensitivity and 1-CFA were compared with

each other [8], [9]. It seems likely that client applications

which require precise information about individual objects and

their interaction would benefit from using 1-object-sensitivity

or this-sensitivity rather than 1-CFA.

Finally, 1-object-sensitivity and this-sensitivity provide al-

most identical results in three out of four metrics. The major

difference lies in the metrics indicating a precise resolution of

object member accesses. Here, 1-object-sensitivity is signifi-

cantly more precise. However, this comes at the price of being

an order of magnitude slower than this-sensitivity.
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