Fast and Precise Points-to Analysis

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe
Viaxjo University, Sweden

September 29, 2008

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

@ Points-to analysis: (Static) dataflow analysis

o Which objects can variable v possibly reference during program
execution?

o Compute the points-to set Pt(v) = set of abstract objects v may
reference

o Abstraction: Map possible runtime objects — abstract objects
@ usually: group objects created at the same syntactic location together
@ Provides input data for, e.g., escape analysis, virtual call resolution
@ Goals: high precision, fast execution

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Our approach

e Static Single Assignment (SSA) form based
@ Simulated execution: inter- och intra-procedural flow-sensitivity

@ this-sensitivity: our new context-senstive approach, which is much
faster and almost as precise as the well-known object-sensitivity

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Points-to SSA

@ Our graph-based SSA program representation, designed especially
for Points-to analysis

@ non-pointer related operations are removed, e.g., operations related
to primitive types
@ variables are resolved to edges in the graph

@ all dependencies are explicit

@ — allows ordering of operations — local flow sensitivity

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Enr 1

TLf [v]

Fast and Precise Points-to Analysis

Simulated Execution

@ Simulation of the actual execution of a program
@ Start at one or more entry methods
o interrupt the analysis when a call expression occurs
o follow the call — continue analyzing the potentially called methods
o resume with the calling method once analysis of the called
method(s) is completed

@ — inter- och intra-procedural flow-sensitivity

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Context Sensitivity

e Distinguish different invocations of a method depending on calling
context
@ Analyze method for each context separately

e Calling context:
o call site - from where is the method called?
o functional - depending on current analysis state

Fast and Precise Points-to Analysis

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe

@ Our new functional approach to context-sensitivity.
o Contexts distinguished by the points-to set Pt(a)

@ In comparison: The well known object-sensitive approach analyzes a
target call for each o € Pt(a)

@ Too similar to be new?

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

This-Sensitivity vs. Object-Sensitivity

e two (unrelated) calls: a;.m() and ay.m()
o let Pt(a;) = {01, 02}, Pt(az) = {01, 00,03}

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

This-Sensitivity vs. Object-Sensitivity

e two (unrelated) calls: a;.m() and ay.m()
o let Pt(a;) = {01, 02}, Pt(az) = {01, 00,03}
o this-sensitivity:

e need to analyze foo() twice

e both calls analyzed under different contexts

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

This-Sensitivity vs. Object-Sensitivity

e two (unrelated) calls: a;.m() and ay.m()
o let Pt(a;) = {01, 02}, Pt(az) = {01, 00,03}
o this-sensitivity:

e need to analyze foo() twice

o both calls analyzed under different contexts
@ object-sensitivity:

e need to analyze foo() five times

o in total three different contexts

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

This-Sensitivity vs. Object-Sensitivity

two (unrelated) calls: a;.m() and a.m()

let Pt(a1) = {01,020}, Pt(a2) = {01, 0,03}
this-sensitivity:

e need to analyze foo() twice
e both calls analyzed under different contexts

object-sensitivity:
e need to analyze foo() five times
o in total three different contexts

There are obviously big differences between the two approaches

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

This-Sensitivity vs. Object-Sensitivity

@ Precision: We can show that neither approach is strictly more
precise than the other (— paper)

@ Analysis cost:

o this-sensitivity has, in theory, exponential analysis cost (as there may
be 2" contexts for each method, in regard to the number of abstract
objects)

o that doesn’t seem to happen in practice! (And we could easily
implement a fail-safe)

o object-sensitivity: multiple targets for each call

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Results - Metrics

@ Three precision metrics we present here:
o OEdge and Enter:

o a low number means better precision for side effect analysis, escape
analysis etc.

e PCall:

e a low number means better precision for virtual call resolution

@ We have some more metrics in the paper

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Results - Analysis Precision

ThisSens ObjSens
Program | PCall | OEdge | Enter | PCall | OEdge | Enter
antlr 1.00 | 0.22 0.70 | 1.00 | 0.16 0.70

javadoc | 0.99 | 0.42 0.69 1.00 | 041 0.68
emma 0.97 | 0.15 0.44 | 097 | 0.15 0.44
obfusc 0.99 | 0.61 0.63 | 0.99 | 0.50 0.63

average | 0.97 | 0.44 0.59 | 0.97 | 0.32 0.59
median | 0.99 | 0.42 0.63 | 1.00 | 0.24 0.63

@ Results indicate analysis precision relative to context insensitive
analysis.

@ this-sensitivity is comparably precise to object-sensitivity, except for
the OEdge metric

@ Other metrics (not on this slide) strengthen the observation that
precision is comparable

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Results - Analysis Cost

ThisSens ObjSens
Program | Classes | Context | Time | Context | Time
antlr 225 336 | 0.97 391 | 465
javadoc 416 461 | 1.33 10.04 | 12.65
emma 749 391 | 0.63 11.63 | 9.15
obfusc 688 273 | 1.23 336 | 3.67
average 4.15 | 1.08 748 | 11.1
median 3.45 | 1.14 5.37 | 9.97

@ (lasses is the number of classes in the program — input size (does
not include library classes)

o Context is the avarage number of contexts per method — memory
requirement metric

@ Time is the analysis time as a factor to context insensitive analysis

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

Conclusion

We have presented our flow-sensitive Points-to analysis
New context sensitive approach to Points-to analysis: this-sensitivity
Exponential analysis cost in theory

Almost as fast as context insensitive analysis in practice

Experiments show:

o Almost as precise as object-sensitivity
e But much, much faster in practice

Jonas Lundberg, Tobias Gutzmann, and Welf Lowe Fast and Precise Points-to Analysis

