
Fast and Precise Points-to Analysis

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe

Växjö University, Sweden

September 29, 2008

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Motivation

Points-to analysis: (Static) dataflow analysis

Which objects can variable v possibly reference during program
execution?
Compute the points-to set Pt(v) = set of abstract objects v may
reference
Abstraction: Map possible runtime objects → abstract objects

usually: group objects created at the same syntactic location together

Provides input data for, e.g., escape analysis, virtual call resolution

Goals: high precision, fast execution

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Our approach

Static Single Assignment (SSA) form based

Simulated execution: inter- och intra-procedural flow-sensitivity

this-sensitivity: our new context-senstive approach, which is much
faster and almost as precise as the well-known object-sensitivity

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Points-to SSA

Our graph-based SSA program representation, designed especially
for Points-to analysis

non-pointer related operations are removed, e.g., operations related
to primitive types

variables are resolved to edges in the graph

all dependencies are explicit

→ allows ordering of operations → local flow sensitivity

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Points-to SSA - example

x a v

x x a v

x

x a v

x

x a v

x

x a v

x

L.init

L.value

Load

MCall

Load

L.value

Store

L.init

L.append

L.next

L.append L.putAt

L.next

Store
Exit

x a v

Entry
x a v x a v

Entry Entry

x

v

x

x x

x

x

a

v

x a

L.append

L
Alloc

v

L.init

MCall

L.next

Store

x
L.putAt

Exit

Exit

v v

v

Object.init

MCall

x a

x

ϕ

ϕ

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Simulated Execution

Simulation of the actual execution of a program

Start at one or more entry methods

interrupt the analysis when a call expression occurs
follow the call → continue analyzing the potentially called methods
resume with the calling method once analysis of the called
method(s) is completed

→ inter- och intra-procedural flow-sensitivity

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Context Sensitivity

Distinguish different invocations of a method depending on calling
context

Analyze method for each context separately

Calling context:

call site - from where is the method called?
functional - depending on current analysis state

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



This-Sensitivity

Our new functional approach to context-sensitivity.

Contexts distinguished by the points-to set Pt(a)

In comparison: The well known object-sensitive approach analyzes a
target call for each o ∈ Pt(a)

Too similar to be new?

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



This-Sensitivity vs. Object-Sensitivity

two (unrelated) calls: a1.m() and a2.m()

let Pt(a1) = {o1, o2}, Pt(a2) = {o1, o2, o3}

this-sensitivity:

need to analyze foo() twice
both calls analyzed under different contexts

object-sensitivity:

need to analyze foo() five times
in total three different contexts

There are obviously big differences between the two approaches

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



This-Sensitivity vs. Object-Sensitivity

two (unrelated) calls: a1.m() and a2.m()

let Pt(a1) = {o1, o2}, Pt(a2) = {o1, o2, o3}
this-sensitivity:

need to analyze foo() twice
both calls analyzed under different contexts

object-sensitivity:

need to analyze foo() five times
in total three different contexts

There are obviously big differences between the two approaches

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



This-Sensitivity vs. Object-Sensitivity

two (unrelated) calls: a1.m() and a2.m()

let Pt(a1) = {o1, o2}, Pt(a2) = {o1, o2, o3}
this-sensitivity:

need to analyze foo() twice
both calls analyzed under different contexts

object-sensitivity:

need to analyze foo() five times
in total three different contexts

There are obviously big differences between the two approaches

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



This-Sensitivity vs. Object-Sensitivity

two (unrelated) calls: a1.m() and a2.m()

let Pt(a1) = {o1, o2}, Pt(a2) = {o1, o2, o3}
this-sensitivity:

need to analyze foo() twice
both calls analyzed under different contexts

object-sensitivity:

need to analyze foo() five times
in total three different contexts

There are obviously big differences between the two approaches

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



This-Sensitivity vs. Object-Sensitivity

Precision: We can show that neither approach is strictly more
precise than the other (→ paper)

Analysis cost:

this-sensitivity has, in theory, exponential analysis cost (as there may
be 2n contexts for each method, in regard to the number of abstract
objects)
that doesn’t seem to happen in practice! (And we could easily
implement a fail-safe)
object-sensitivity: multiple targets for each call

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Results - Metrics

Three precision metrics we present here:

OEdge and Enter:

a low number means better precision for side effect analysis, escape
analysis etc.

PCall:

a low number means better precision for virtual call resolution

We have some more metrics in the paper

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Results - Analysis Precision

ThisSens ObjSens
Program PCall OEdge Enter PCall OEdge Enter
antlr 1.00 0.22 0.70 1.00 0.16 0.70
javadoc 0.99 0.42 0.69 1.00 0.41 0.68
emma 0.97 0.15 0.44 0.97 0.15 0.44
obfusc 0.99 0.61 0.63 0.99 0.50 0.63
...
average 0.97 0.44 0.59 0.97 0.32 0.59
median 0.99 0.42 0.63 1.00 0.24 0.63

Results indicate analysis precision relative to context insensitive
analysis.

this-sensitivity is comparably precise to object-sensitivity, except for
the OEdge metric

Other metrics (not on this slide) strengthen the observation that
precision is comparable

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Results - Analysis Cost

ThisSens ObjSens
Program Classes Context Time Context Time
antlr 225 3.36 0.97 3.91 4.65
javadoc 416 4.61 1.33 10.04 12.65
emma 749 3.91 0.63 11.63 9.15
obfusc 688 2.73 1.23 3.36 3.67
...
average 4.15 1.08 7.48 11.1
median 3.45 1.14 5.37 9.97

Classes is the number of classes in the program → input size (does
not include library classes)

Context is the avarage number of contexts per method → memory
requirement metric

Time is the analysis time as a factor to context insensitive analysis

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis



Conclusion

We have presented our flow-sensitive Points-to analysis

New context sensitive approach to Points-to analysis: this-sensitivity

Exponential analysis cost in theory

Almost as fast as context insensitive analysis in practice

Experiments show:

Almost as precise as object-sensitivity
But much, much faster in practice

Jonas Lundberg, Tobias Gutzmann, and Welf Löwe Fast and Precise Points-to Analysis


