
Type Highlighting: A Client-Driven Visual Approach for Class Hierarchies
Reengineering

Petru Florin Mihancea
LOOSE Research Group

“Politehnica” University of Timişoara, Romania
petru.mihancea@cs.upt.ro

Abstract

Polymorphism and class hierarchies are key to increas-
ing the extensibility of an object-oriented program but also
raise challenges for program comprehension. Despite many
advances in understanding and restructuring class hierar-
chies, there is no direct support to analyze and understand
the design decisions that drive their polymorphic usage.
In this paper we introduce a metric-based visual approach
to capture the extent to which the clients of a hierarchy
polymorphically manipulate that hierarchy. A visual
pattern vocabulary is also presented in order to facilitate
the communication between analysts. Initial evaluation
shows that our techniques aid program comprehension by
effectively visualizing large quantities of information, and
can help detect several design problems.

Keywords: software visualization1, polymorphism,
class hierarchies, static analysis, metrics

1. Introduction

Maintaining and evolving software is difficult. At the
design and implementation level this is because to extend
a system one has to partially understand it first. Often, es-
pecially when the software is affected by the “aging” phe-
nomenon [18], it reaches a stage where nobody really un-
derstands the system anymore. Consequently, powerful re-
verse engineering and restructuring techniques are needed
to understand it and to improve its design quality.

In the context of object-orientation, polymorphism and
inheritance play a key role to increase the extensibility of a
program [15]. Unfortunately, they also raise supplementary
understandability issues. For example, inheritance can be

1This paper makes intensive use of colors. Please use the electronic
version of the paper or a colored printing in order to properly see and un-
derstand the figures.

used to implement multiple design ideas: it can mean type
inheritance, class inheritance or both [9]. When perform-
ing maintenance activities, it is important to clearly identify
the purpose of inheritance within the key class hierarchies
(e.g., when used to build type hierarchies, extension points
are revealed because the system’s behavior can be extended
by adding new subclasses to those hierarchies).

Many approaches have been proposed in the last decade
[2, 5, 4, 10, 11, 20] to support different maintenance goals
related to class hierarchies (e.g., detecting design flaws, un-
derstanding class hierarchies and their evolution, restructur-
ing etc.). Altogether, almost all of them have an important
limitation: the hierarchies are analyzed in isolation. In [15],
Martin emphasizes that a model (i.e., hierarchy) cannot be
meaningfully validated in isolation and that it can only be
validated in terms of its clients. More generally, the qual-
ity of a product (e.g., software, hierarchy) must be defined
in terms of specific attributes of interest to its clients [8].
Moreover, the clients of a hierarchy can offer a retrospec-
tive image about the usage of that hierarchy. Since the man-
ner of using it in the past can also be expected in the future,
such an image (especially in the context of polymorphism)
is of great importance in order to extend a system.

Let us consider the example from Figure 1. For some
reason, this client does not uniformly treat any instance
as being just an Object: it performs additional operations
when it has to deal with an instance of aClass. Detecting
such a situation and understanding the reason for this non-
uniformity is important (e.g., when a maintainer has to write
new clients, he must be aware that they could also require
a particular treatment for aClass instances). Moreover, if
this strange non-uniformity is spread across many clients
of the same hierarchy then the need for an in-depth analy-
sis is even stronger (e.g., since many clients exhibit such a
non-uniform treatment it could be worth to apply a missing
polymorphism reengineering pattern [4]).

All these observations emphasize the important role the
clients play in understanding / restructuring class hierar-
chies. As a result, we introduce in this paper a technique

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.16

207

public String example(Object p) {
if(p instanceof aClass) {

((aClass)p).prepare();
}
return p.toString();

}

Figure 1. A Client of Object Hierarchy

that captures the extent and the degree to which each client
of a hierarchy polymorphically manipulates objects defined
in the hierarchy. The technique has two essential traits:

• It performs a detailed analysis of each client method.
Let us consider again the example from Figure 1. In
this client our technique must be able to make a clear
distinction between the region dedicated to objects of
any kind and the region dedicated to object of aClass
type. Thus, the client must be investigated in detail
(i.e., in all its execution points) using static analysis
means (i.e., dataflow analysis [1]).

• It is a visual technique. In this manner (a) it can ef-
ficiently present the huge amount of information pro-
duced by the detailed analysis of each client of a hier-
archy (e.g., all the information usually fits in a single
computer screen) and (b) it enables an engineer to eas-
ily interpret in parallel the information extracted from
different clients (e.g., all the clients are usually ren-
dered in a single screen). The latter objective is harder
to achieve using only a metric-based approach (e.g.,
using tables filled with numbers).

The paper is organized as follows. In Section 2 we
present in detail our TYPE HIGHLIGHTING views together
with a vocabulary of visual patterns that facilitates dis-
cussing our visualizations. Section 3 briefly presents some
implementation details. The case studies are discussed in
Section 4 while in Section 5 some related work is exposed.
Section 6 concludes the paper and draws several future work
directions.

2. Type Highlighting

2.1. The Microprint

The notion of microprint [19] forms a core part of our
technique. In essence, a microprint is a visual abstraction
of a method body obtained by mapping each source code
character to a pixel (tiny rectangle). To keep the code fa-
miliarity, the character-pixel mapping is performed in such
a way that the pixel relative position in the microprint di-
rectly reflects the character relative position in the source

a) The General View of a Microprint

b) The Control Flow Microprint

Figure 2. Microprints Examples

code. In Figure 2a we present the microprint of the code
from Figure 1 (method signatures are not included).

In this general form, a microprint is useless because all
the method implementation details are invisible. However,
colors can be used in order to emphasize different details of
interest. In [19], 3 color codes have been introduced giving
birth to 3 dedicated microprints. In Figure 2b we present
the Control Flow Microprint of the method from Figure 1.
In short, its color code associates the red color to the pixels
that represent the characters of return statements, blue to the
pixels of conditional control structures, purple to the pixels
of statement blocks, etc. Using this dedicated microprint
one can quickly get an impression, for example, about the
cyclomatic complexity of the method without actually see-
ing its code (e.g., many blue lines imply many conditional
statements).

2.2. The Client Grid

The microprint visual abstraction is very useful in our
case because it permits us to condense the entire code of a
hierarchy client (i.e., of a method that invokes at least one
method declared in the root of the hierarchy) into a small
amount of space. This is essential for our technique: a hier-
archy may have many clients that must be displayed ideally
in a single screen in order to enable an engineer to correlate
data extracted from different clients.

In Figure 3 we present the client grid (for a hierarchy
with 5 clients), the general form of our TYPE HIGHLIGHT-
ING visualizations. First, we sort the clients of the inves-
tigated hierarchy in increasing order of the Lines of Code
(LOC) metric. Next, each client is microprinted. Finally,
the resulted microprints are arranged in a grid manner con-
serving (from left to right, top to bottom) the order imposed
after the first step. The width of the view is limited to the
width of the screen used to render the figure.

In the followings, we present two color codes that we
have used in the client grid, giving birth in this way to two
TYPE HIGHLIGHTING visualizations: Level Of Abstraction
and Group Discrimination.

208

Figure 3. A General Type Highlighting View

2.3. Level Of Abstraction View

The Level of Abstraction Metric. In order to present the
color code used in this view we have to introduce a software
metric at instruction and source code character level.

The Level of Abstraction (LA) metric can be computed
for each instruction2 of a method with respect to a hierar-
chy for which the method is a client. For the sake of sim-
plicity, we consider at this moment that the method has only
one reference variable through which it accesses the hierar-
chy (i.e., used as the target reference in an invocation of a
method declared in the hierarchy root).

In essence, the metric value for an instruction instr is
proportional with the number of concrete classes from the
hierarchy which may be referred by the variable before the
execution of that instruction. Considering this number to
be mayBe, and the number of all concrete classes from the
hierarchy to be canBe the value of the metric is computed
using the following formula. We emphasize that mayBe is
always smaller or equal to canBe.

LA(instr) =

{
undefined↔ mayBe = 0
0↔ mayBe = 1
(mayBe− 1)/(canBe− 1)↔ mayBe > 1

Extending now the metric at the source code character
level, the LA metric for a character ch is equal with the LA
metric of the instruction that contains that character 3.

Interpretation and Examples for LA Metric. When the
LA metric is undefined, it means that before the execution of
the instruction, the access variable may not refer to any in-
stance of the classes from the class hierarchy. This usually
happens when the measured instruction is outside the vis-
ibility domain of the variable or the variable is undefined.
As an example, you can see that before executing the guard
condition and the jump of the if instruction from line 3 (Fig-
ure 4), x does not refer to any object. Thus, these instruc-
tions (and implicitly all the characters from line 3) have an
undefined LA value.

2We have used the term instruction instead of statement because an
expression is not necessarily a statement

3The LA values for the characters that do not represent instructions
(e.g., brackets) are assigned based on heuristics (e.g., an opening bracket is
considered to be part of the first instruction from the corresponding block
of statements).

a) The Investigated Hierarchy

(1)void someClient() {
(2) A x;
(3) if(random(2)==0)
(4) {
(5) x = new B();
(6) x.p();
(7) } else {
(8) x = new C();
(9) x.q();
(10) }
(11) if(random(2)==0)
(12) {
(13) x = new D();
(14) x.r();
(15) }
(16) x.s();
(17)}

b) A Client of the Hierarchy

Figure 4. Exemplifying LA Values

When defined, the value of the LA metric is between 0
and 1. A value of 0 means that before the execution of the
instruction the access variable may refer to instances of only
one class from the hierarchy. Thus, the instruction is part
of a concrete code with respect to the hierarchy because,
when it has been written, the programmer already knew the
concrete type of the object referred by the access variable.
The call from line 6 (and implicitly all the characters from
this line) has a 0 value for LA because before the execution
of the call x refers only to B instances.

Similarly, a value of 1 for LA means that the variable
may refer to instances of all the classes from the hierarchy,
and thus the measured instruction is part of an abstract code.
This is because, when the instruction has been written, the
programmer could not make any assumption about the con-
crete type referred by the access variable. The call from line
16 (and all the characters from this line) has value 1 for LA
because before the execution of the call x may refer to B, C
or D instances.

An intermediate value for this metric means that the vari-
able may refer to instances of more than one class from the
hierarchy but not of all of them. Thus, the instruction is part
of a partial abstract code. We emphasize that the degree of
abstraction of the code is proportional with the LA metric
value. The instructions from line 11 (and all the characters
from this line) have a value of 0.5 for LA because before
their execution x may refer only to B or C instances.

Metric Aggregation. Until now, we have assumed that
the client has only one variable through which it can access
the hierarchy. When there is more than one such variable,
the LA value for an instruction/character is the minimum
value of the LA for the same instruction/character computed
with respect to each variable. The aggregated metric is un-
defined when all the elementary values of LA are undefined.

209

Character LA Color

LA(ch) = 1 0 - Red

LA(ch) ≥ 0.5 ∧ LA(ch) < 1 0 - Diluted Red

LA(ch) > 0 ∧ LA(ch) < 0.5 0 - More Diluted Red

LA(ch) = 0 0 - White

undefined 0 - Light-gray

Table 1. Pixels’ colors in Level of Abstraction

We have used this aggregation (the minimum value) by con-
sidering that if a variable forces the code to be more con-
crete than another variable, then the code is as concrete
as induced by the first one. In this manner, we can detect
clients that raise extensibility issues (i.e., concrete clients)
even if this is caused by a single more concrete variable.

The Color Code. The color code for the pixels from the
Level of Abstraction client grid is presented in Table 1. In
essence, a pixel will be red if its corresponding character has
a value of 1 for LA metric or white4 if the value is 0. Two
diluted-red colors are used to draw pixels with intermediate
values of the metric (see Table 1).

Pattern Vocabulary. Together with the Level of Abstrac-
tion view we provide a vocabulary of visual patterns that en-
ables programers to communicate recurrent situations they
encounter while discussing this view. The vocabulary has
been created based on our experience with the Level of Ab-
straction view. Several elements of this vocabulary are pre-
sented in Figure 5. All the examples are generated with
respect to the hierarchy rooted by A class from Figure 5a.

• Polymorphic Client - a microprint that is entirely red.
It means that the method is a polymorphic client of the
hierarchy (i.e., the client behavior can be extended by
configuring it with instances of different classes from
the hierarchy [13]). An example is shown in Figures
5b and 5c.

• Concrete Client - a microprint that is entirely white.
This means that the client manipulates objects of only
one concrete class from the hierarchy. Such a client is
presented in Figures 5d and 5e.

• Partially Polymorphic Client - a microprint that is en-
tirely covered with the same diluted red color. This
means that it polymorphically manipulates a subset of
hierarchy’s concrete classes but not all of them (e.g.,

4To avoid a non-white background a tiny frame is drawn around a
microprint; together with the manner in which we use the red color (a
metaphor for “hot spot” or polymorphic client) this gives the impression
of a temperature map

the client is written in terms of some sub-hierarchy of
the analyzed one). An example is presented in Figures
5f and 5g.

• Mixed Client - a microprint that contains a continuos
region colored with different levels of red. This pat-
tern usually appears in the context of some type-related
operations (i.e., casts, instanceof expressions and even
instantiations). Moreover, if the region gradually be-
comes more and more red-diluted (frequently, inter-
laced with white regions) then the client presents a
Client / Self Type Checking design problem [4]. An
example is shown in Figures 5h and 5i.

• Indirect Client - a microprint that starts as being light-
gray. This situation usually appears when the client
interacts with the objects defined in the hierarchy
through local variables that are initialized via object
instantiation operations or via the return value of an
intermediate object method. In the latter case, this is a
sign of Law of Demeter violation [12]. A short exam-
ple is shown in Figures 5j and 5k. This pattern is also
an extension point of our vocabulary. The non-light-
gray regions of an indirect client can be red, white,
diluted-red or mixed. Thus, the example form Figure
5k ca also be called an indirect polymorphic client.

2.4. Group Discrimination View

The Level of Abstraction view can easily emphasize ar-
eas from the clients of a hierarchy where only instances of
some particular subclasses may be referred. At the same
time, it can also give us an impression about the size of this
particular set of subclasses (via the dilution of the red). Al-
together, it cannot tell us which are those subclasses. To
eliminate this problem, we introduce the Group Discrimi-
nation view. As in the previous paragraph, we assume for
the moment that each client has only one variable through
which it can access the hierarchy.

First, we identify all the groups (or subsets) of concrete
classes from the hierarchy, groups that are particularly ma-
nipulated in at least one region of a client. Next, a distinct
color5 is assigned to each group we have previously iden-
tified. As a particularity, in order to be consistent with the
previous view, red is assigned only to the group of all con-
crete classes from the hierarchy. Finally, in the client grid,
we use the color-group association to draw the pixels that
render those regions where only the corresponding group of
classes may be referred by the access variable.

5To be consistent with the previous view, we do not use white, light-
gray, gray, dark-gray or black for this purpose; as in the previous view,
light-gray is used in the client grid to draw the regions of a client where no
group can be referred

210

a) The Hierarchy

void polymorphic(A x) {
x.p();

}

b) A Polymorphic Client c) The Polymorphic Pattern

void concrete(B x) {
x.p();

}

d) A Concrete Client e) The Concrete Pattern

void pPolymorphic(SomeA x) {
x.p();

}

f) A Partially Polymorphic Client g) The Partially Polymorphic
Pattern

void mixed(A x) {
if(x instanceof SomeA) {

x.p();
} else if(x instanceof D) {

x.q();
} else {

x.r();
}

}

h) A Mixed Client Code i) The Mixed Pattern

void indirectClient(Intermediate y) {
A x = y.getAnyAObject();
x.p();

}
j) An Indirect Client

k) The Indirect Pattern

Figure 5. The Pattern Language

Additionally, in order to precisely indicate the compo-
sition of each group, a legend is also provided: a view of
the analyzed hierarchy similar with a class diagram. The
classes are represented as rectangles (including Java inter-
faces) while the inheritance relations (including Java imple-
ments relations) are mapped to edges. In the legend we use
the following color code:

• White is used to fill concrete classes.

• Light-gray is used to fill interfaces.

• Dark-gray is used to fill abstract classes.

• The associated color of a group is used to mark by
a small circle each concrete class that is included in
that group; because the composition of the group of all
concrete classes (that is always associated with red) is
straightforward, we do not present its composition in
the legend.

In Figure 6 we present an example of Group Discrimi-
nation view for the hierarchy from Figure 5a. Reading the
code from Figure 6a it is easy to observe that in the blue
region from Figure 6b x can refer only to B instances (B is
marked with a blue circle in Figure 6c). In the green region
x may refer to B or C instances which explains why this
classes are marked with green in the legend.

Group Filtering. Using more than 8-10 colors for catego-
rization purposes may be puzzling for a viewer [21]. Unfor-
tunately, in the case of large hierarchies we can obtain more
than 8 groups of classes. To avoid such a color explosion
we have adopted two strategies:

• If necessary, the Group Discrimination view can be pa-
rameterized with different group filters. In this way, an
analyst can select only particular groups to be rendered
at one time, based on his particular interest. Two of the
most useful filters we have identified during our ex-
perience are: Top8LargestGroups - selects the largest
8 groups, Top8PrevalentGroups - selects the first 8
groups that appear in the largest number of clients.

• The conditional code used to discriminate the concrete
type of an object is always microprinted in gray. This
is because such conditions generate many groups of
classes (e.g., in the implied if-else-if chain, each if con-
dition usually eliminates a single class from the group
created by the previous if). Fortunately, such groups
only appear in chained type-checking conditions (and
only during the condition execution!) which makes
them irrelevant for the viewer. Thus, we can safely
exclude these groups from our visualization.

211

void aClient(SomeA x) {
if(x instanceof B){

x.p();
}
x.q();

}
a) A Client Code

a) The Client Microprint

c) The Legend

Figure 6. A Group Discrimination Example

Aggregation. A client having more that one variable
through which it accesses the hierarchy appears problem-
atic. For example, if two variables refer to instances from
different groups in two distinct, but partially overlapping,
regions of the client then the overlapping portion should be
rendered with distinct colors. In such cases we apply the
following heuristic: the common portion is drawn with the
color of the smaller region. In this way, the larger region
appears as being “in the back” of the smaller one. Although
possible, we have not encountered any situation when this
heuristic totally hides one of the regions.

3. Tool Support

The visualizations proposed in this paper have been im-
plemented in the IPLASMA6 reengineering platform [14]. In
this section we briefly present some implementation details.

In order to approximate7 the LA metric and to determine
the regions of a client where a reference variable may re-
fer only to instances of some particular subtypes, we have
used an intra-procedural static class analysis (SCA) [3]. It
is implemented in MEMBRAIN, a static analysis tool we are
developing. This dataflow analysis determines at particular
program points the set of classes for an object. In other
words, it determines for any reference variable, at a particu-
lar program point, the possible set of classes of the instance
to which that reference may refer to at runtime.

The views have been generated using JMONDRIAN, the
Java version of the MONDRIAN information visualization
framework [16]. Using this tool we can describe a view as
a Java program. Combining this description with the infor-
mation extracted using MEMBRAIN, our views implemen-
tation becomes a trivial task.

6http://loose.upt.ro/iplasma
7In general, precisely computing the LA metric is not possible because,

for example, an instanceof expression can be simulated by an arbitrary
complex equivalent expression

We emphasize that the views generated with JMON-
DRIAN are not “dead” pictures (i.e., are not image files).
The views are “live”. All the rendered entities are objects
that can be interrogated using the mouse (e.g., by clicking
on a class we can ask it for its name, we can ask it how
many methods does it have, etc.) which is essential for the
analysis process.

4. Case Studies

In order to emphasize the benefits of our technique we
have applied our visualizations to several concrete Java pro-
grams. In this section we present the most interesting find-
ings we have made.

4.1. The Analyzed Software

For our evaluation we have selected two Java systems:
Jung8 and an internal old product. Table 2 presents several
high-level characteristics of these systems. On one hand,
they give an impression about the size of these programs
(e.g., Lines of Code). On the other hand, the Average Num-
ber of Derived Classes (ANDC) and the Average Hierarchy
Height (AHH) system-level metrics [11] explain the reason
for selecting the case studies. The ANDC metric is the av-
erage number of classes directly derived from a base class
(if a class has no derived classes then it contributes with a
value of 0 to ANDC) while the AHH metric is the average
of the Height of the Inheritance Tree (HIT) for all the root
classes from a system (a class is a root class if it is not de-
rived from another one; stand-alone classes have a HIT of
0). According to the statistical thresholds from [11], the val-
ues of these metrics tell us that hierarchies are frequent in
all the presented systems and that the hierarchies are rela-
tively wide and deep. Such hierarchies characteristics make
these systems a good choice in order to obtain a relevant
evaluation of our technique.

4.2. A Maintenance Episode

Class hierarchies play an essential role in object-oriented
design. Thus, when investigating a system for the first time,
an engineer is interested to understand the roles the most
important class hierarchies have for that system (e.g., is a hi-
erarchy used to define polymorphic clients?, how should he
use a hierarchy from the point of view of polymorphism?,
are there any design problems that are worth to be elim-
inated to simplify further maintenance?, etc.). To answer
these questions, the engineer can investigate the external
clients of these hierarchies (i.e., clients that are not inside
the hierarchies) using the TYPE HIGHLIGHTING views.

8jung.sourceforge.net

212

System Number of Number of Lines of Average Number of Average Hierarchy
Classes Methods Code Derived Classes Height

Jung 391 3038 22 447 0.41 0.34
InternalProduct 124 1002 11 210 0.68 0.37

Table 2. Overall Characteristics of the Analyzed Systems

Figure 7 presents these views 9 for the UserDataCon-
tainer hierarchy from Jung (UserDataContainer is the root
of the hierarchy). This is the tallest hierarchy from our se-
lected systems having a height of 8, it has the largest number
of descendants (63), and one of the largest number of exter-
nal clients (121). In the followings we present several of the
most interesting findings we have made while interpreting
the TYPE HIGHLIGHTING views for this hierarchy.

Case 1. We have quickly noticed that the hierarchy has
only one significant polymorphic client (the entirely red
client marked A in both views). On one hand, this tells us
that the hierarchy is not intensively used to define polymor-
phic behavior (i.e., it is not intended to be a type hierar-
chy). On the other hand, this tells us that the aforemen-
tioned client might contain an important high-level policy
for all the objects of UserDataContainer type. Manually
analyzing the code of this client (with a mouse click on its
microprint) we have found that it is responsible to serial-
ize (apparently in an XML format) any object whose class
is defined in the analyzed hierarchy. Thus, if one wants to
insert a new subclass into this hierarchy, he must carefully
treat this class responsibility.

Case 2. The Level of Abstraction is almost entirely red-
diluted. That is, it contains many partially polymorphic
clients (e.g., B) and many red-diluted portions in indirect or
mixed clients (e.g., C). This means that many clients poly-
morphically manipulates only instances of some subsets of
the concrete classes from the hierarchy. Are there different
clients that manipulate the same subset of concrete classes?
To answer this question we have used the Group Discrim-
ination view parameterized with the Top8PrevalentGroups
filter. Based on Figure 7b we can conclude that the clients
of this hierarchy are dedicated for different sub-hierarchies
of the investigated one: the cyan ones for one sub-hierarchy,
the green ones for another sub-hierarchy, etc. We have im-
mediately manually investigated the code of these clients
and we have noticed that our assumption is true: green
clients work with instances that provide Vertex interface,
cyan clients work with instances that provide Edge inter-
face, etc. All these interfaces are sub-interfaces of User-

9For space limitation reasons, the views are significantly smaller than
on a computer screen and the legend is not presented since it is not vital
for the current discussion

DataContainer. Correlating with the discussion from the
previous paragraph, we can now conclude that the analyzed
hierarchy is not a type hierarchy but it contains some sub-
hierarchies that might also be type hierarchies (e.g., Vertex
sub-hierarchy, Edge hierarchy, etc.). From the polymor-
phism point of view, the main purpose of UserDataCon-
tainer interface is to homogenize the serialization policy.

Case 3. We have also noticed the big indirect clients at
the bottom part of Figure 7a. For example, the client D has
163 lines of code. According to the specification of the in-
direct client visual pattern, this client violates the “Law of
Demeter”. A manual investigation of this client code has
revealed that the violation really occurs and that it is due
to some static method invocation that provides instances of
some classes from the analyzed hierarchy. Another interest-
ing observation was that the red-diluted area of this client
can be extracted into a new method splitting in this way the
biggest client of our hierarchy. This may have important
benefits for the system further maintenance.

Case 4. A microprint conserves the contour of a client
code. Moreover, in our grid, the clients are sorted accord-
ing to their number of lines of code. Thus, it should be no
surprise that based on our views we have been able to eas-
ily identify clients that are strongly duplicated. The E and
F clients represent just one such situation we have encoun-
tered (see Figure 7a). Since these clients also manipulate
the same set of concrete classes from the hierarchy (both are
orange in Figure 7b) we cannot find any reason for which
two such clients are needed instead of one. To the best of
our manual investigation effort, we conclude that the afore-
mentioned clients can be unified into a single one.

4.3. Estimate Restructuring Activities

During our experience we have encountered an interest-
ing situation that is worth to be presented. Visualizing the
Level of Abstraction view for the internal clients of a hier-
archy (i.e., methods inside the hierarchy) from the second
system, we have immediately observed the presence of two
mixed clients. For space limitation reasons, we have not in-
cluded this view here. However, in Figure 8 we present the
Group Discrimination view for the same hierarchy (without
any group filter).

213

a) Level of Abstraction b) Group Discrimination filtered with Top8PrevalentGroups

Figure 7. Type Highlighting Views for UserDataContainer Hierarchy

a) The Client Grid

b) The Legend

Figure 8. Group Discrimination View for a Hierarchy from InternalProduct

214

Since all these methods are placed inside the investi-
gated hierarchy, the polymorphic clients (i.e., the entirely
red ones) are probably template methods. However, the
most interesting clients are the aforementioned mixed ones
(clients A and B from Figure 8) located in the root of the hi-
erarchy. According to the visual pattern specification they
probably contain a Self Type Checking design flaw [4].

A manual investigation of the code of these two clients
has confirmed our assumption. A long list of disjunctions
between instanceof expressions is used to identify the con-
crete type of this. Moreover, the this instance is differently
treated in the cyan code, respectively in the orange one. The
cyan code is dedicated only for the classes marked with
cyan in the legend while the orange one is dedicated for
the classes marked with orange (see Figure 8). An encour-
aging aspect of our manual investigation was the discovery
of a comment that recognizes the flaw and briefly proposes
a restructuring solution according to the Self Type Checking
reengineering pattern from [4].

Even more encouraging for us was that, based on Fig-
ure 8, we have been able to plan and estimate the effort
of applying the reengineering pattern. Let us consider re-
structuring the client A. First, a new abstract method will be
inserted in the root of the hierarchy. Next, two new abstract
classes will be created as direct descendants of the root:
one will become a common superclass for all the classes
marked with cyan while the second one will become a com-
mon superclass for all the orange-marked classes. The cyan
client code will implement the abstract method in the for-
mer abstract class while the orange code will implement the
method in the later one. Next, using the legend, we can
easily see how inheritance relations should be changed, an
operation which is not simple to plan just by reading the
client code. For example, our client code cannot tell us that
the rightmost concrete classes (see Figure 8) already have a
common superclass and that this is the one that must extend
the corresponding newly inserted class (and not its descen-
dants). Finally, the cyan and orange code in our client will
be replaced by a simple call to the new abstract method.
This restructuring episode emphasizes how our visualiza-
tions can be used to plan a design flaw elimination and to
estimate the implied effort (e.g., in Java a class can extend
only one class which might be problematic in similar re-
structuring episodes; based on Group Discrimination view
one can quickly distinguish such problems).

5. Related Work

The microprinting technique has been introduced in [19].
The authors also introduce a set of dedicated microprints
(e.g., Control Flow Microprint) based on which one can
easily discover methods having complex logic, can see if
a class relies or not on its superclass for certain behavior,

etc. Eick et. al. present in [7] a tool for visualizing statistics
at the level of lines of code for large programs. The tool rep-
resents each source file as a column (a tall rectangle that fits
in a screen) while each code line from the file is represented
as a line within this column. The analyst can chose what
lines of code (from the entire program) to visualize via a
color scale that depends on the used statistic. Through this
tool, different analyses can be performed e.g., visualizing
the age of each line of code.

From the point of view of granularity, our technique is
located between the two aforementioned approaches: we
simultaneously visualize the microprints of all the clients of
a hierarchy (i.e., not only a single method but neither the
entire code of the program). From the point of view of the
displayed information, we are focused on polymorphism-
related information (i.e., the manner in which each client
manipulates types of objects defined in a hierarchy).

Demeyer et. al. propose in [5] a step-by-step method-
ology to identify the “hot spots” from an object-oriented
system. By inspecting overriding methods, they firstly de-
tect potential hook methods. Next, by locating the callers
of these hooks, potential template methods are identi-
fied. These templates are actually polymorphic clients (i.e.,
methods whose behavior can be extended by varying the
classes that implement the hooks [13]). The classical Tem-
plate Method design pattern [9] can also be identified based
on the Class Blueprint visualization introduced in [6].

The Level of Abstraction view can also be used to iden-
tify polymorphic clients for a hierarchy. Additionally, it can
also be used to achieve this task even if the polymorphic
clients invoke hook methods that are never overridden, a
limitation of the approach from [5]. Moreover, it helps an
engineer to analyze the potential template methods (in or-
der to see if they are really polymorphic clients), an entirely
manual operation in all the aforementioned methodologies.
However, at the moment, our approach cannot be used when
concrete classes do not exist yet in the analyzed hierarchy.

The Client/Self Type Checking design problems are in-
troduced in [4] as a form of the more general missing poly-
morphism design flaw. The authors also present a simple
method, based on regular expressions, to automatically de-
tect this class of problems. The idea of using the clients
to analyze a hierarchy also appears in [20]. The authors
propose a technique, based on concept analysis, to automat-
ically restructure a hierarchy in such a way that each object
contains only the members that are needed. Although an ex-
tremely valuable contribution, the approach is not focused
on the importance the polymorphism plays for program ex-
tensibility (e.g., it does not treat the problem of restructuring
a hierarchy in order to eliminate a client type checking).

Our Level of Abstraction view can also be used to de-
tect Client Type Checking and even some forms of Self Type
Checking. Additionally, correlating Level of Abstraction

215

with the Group Discrimination view, it enables an engineer
to quickly observe the problem prevalence (by simultane-
ously seeing all the clients of the hierarchy), can offer vi-
sual restructuring hints and can help to plan and estimate
the effort of applying the corrective reengineering pattern.

6. Conclusions and Future Work

We have presented in this paper (i) a token-level met-
ric (ii) a scaled visualization technique, and (iii) visual pat-
terns to capture the extent to which the clients of a hierarchy
polymorphically manipulate the objects defined in the hier-
archy. The technique can also be used to identify groups of
subtypes that are treated in a particular manner (e.g., non-
polymorphically) by these clients. In this section we present
some pros and cons and draw some future work directions.

Our views can efficiently present a huge amount of infor-
mation (i.e., simultaneously for all the clients) that can be
easily manipulated by an analyst in order to answer impor-
tant program comprehension questions related to polymor-
phism (e.g., can we polymorphically manipulate the objects
defined in a hierarchy at the highest possible level of ab-
straction?). At the same time, our views can help detect
several design problems and can be used to plan and esti-
mate the effort of eliminating them. We also mention here
that several findings we have made using our views could
be quantified (e.g., using only metrics) in order to automati-
cally detect them without the need of a visual investigation.
However, the views are an essential part of the quantization
process: they help bridging the gap between the detection
goal (e.g., detect polymorphic clients) and the mechanical
approach used to reach it (e.g., create an appropriate met-
ric). This makes our views an essential research vehicle.

As a potential problem, the LA metric is not concern sen-
sitive. For example, a client might implement more than one
concern. Thus, it is reasonable to ask how much influence
a variable has for an instruction while computing its LA. At
the moment, we totally disregard this aspect. Pixel aliasing
may also be a problem while interpreting our views.

The most important future work direction is to define a
dedicated comprehension / reengineering process for class
hierarchies, based on our visualizations and on our previ-
ous work [17]. As another direction, we plan to also take
into consideration the relevance of a variable for an instruc-
tion while computing the LA metric. At the same time we
want to address other implementation issues: the usage of
an inter-procedural SCA, being more sensitive at different
forms of type identification (not only via instanceof), etc.

Acknowledgments. This work is supported by the Romanian Ministry of
Education and Research under the research grants CNCSIS (TD 2007 &
2008 Code 126) and CEEX(5880/18.09.2006). We would like to thank R.
Marinescu and M. Minea for reviewing several versions of this paper. We
also thank the anonymous reviewers of SCAM 2008.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compil-
ers: Principles, Techniques and Tools (2nd Edition). Addison
Wesley, 2007.

[2] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discovering
Unanticipated Dependency Schemas in Class Hierarchies. In
Proceedings of CSMR. IEEE Computer Society, 2005.

[3] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy analy-
sis. In W. Olthoff, editor, Proceedings ECOOP ’95, volume
952 of LNCS, pages 77–101, Aarhus, Denmark, Aug. 1995.
Springer-Verlag.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[5] S. Demeyer, M. Rieger, and S. Tichelaar. Three Reverse En-
gineering Patterns. Writing Workshop at EuroPLOP, 1998.

[6] S. Ducasse and M. Lanza. The Class Blueprint: Visually
Supporting the Understanding of Classes. Transactions on
Software Engineering, 31(1):75–90, Jan. 2005.

[7] S. G. Eick, J. L. Steffen, E. E., and S. Jr. SeeSoft—A Tool for
Visualizing Line Oriented Software Statistics. Transactions
on Software Engineering, 18(11):957–968, Nov. 1992.

[8] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach (2nd Edition). International Thom-
son Computer Press, 1996.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[10] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the Evo-
lution of Class Hierarchies. In Proceedings of CSMR. IEEE
Computer Society, 2005.

[11] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[12] K. J. Lieberherr, I. M. Holland, and A. Riel. Object-Oriented
Programming: An Objective Sense of Style. In Proceedings
of OOPSLA, 1988.

[13] B. Liskov. Data Abstraction and Hierarchy. In Proceedings
of OOPSLA, 1987.

[14] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and
R. Wettel. iPlasma: An Integrated Platform for Quality As-
sessment of Object-Oriented Design. In Proceedings of ICSM
(Industrial and Tool Volume), 2005.

[15] R. C. Martin. Agile Software Development. Principles, Pat-
terns, and Practices. Prentice-Hall, 2002.

[16] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An Agile
Visualization Framework. In Proceedings of SoftVis. ACM
Press, 2006.

[17] P. F. Mihancea. Towards a Client Driven Characterization of
Class Hierarchies. In Proceedings of ICPC. IEEE Computer
Society Press, 2006.

[18] D. L. Parnas. Software Aging. In Proceedings of ICSE. IEEE
Computer Society, 1994.

[19] R. Robbes, S. Ducasse, and M. Lanza. Microprints: A Pixel-
based Semantically Rich Visualization of Methods. In Pro-
ceedings of ISC, 2005.

[20] G. Snelting and F. Tip. Understanding Class Hierarchies Us-
ing Concept Analysis. ACM Trans. on Programming Lan-
guages and Systems, pages 540–582, May 2000.

[21] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

216

