
User-Input Dependence Analysis via Graph Reachability

Bernhard Scholz* Chenyi Zhang Cristina Cifuentes
Sun Microsystems Laboratories

Brisbane, Australia
cristina.cifuentes@sun.com

*and The University of Sydney
scholz@it.usyd.edu.au

Abstract

Bug-checking tools have been used with some success in
recent years to find bugs in software. For finding bugs that
can cause security vulnerabilities, bug checking tools re-
quire a program analysis which determines whether a soft-
ware bug can be controlled by user-input.

In this paper we introduce a static program analysis for
computing user-input dependencies. This analysis can be
used as a pre-processing filter to a static bug checking tool
for identifying bugs that can potentially be exploited as se-
curity vulnerabilities. In order for the analysis to be appli-
cable to large commercial software in the millions of lines
of code, runtime speed and scalability of the user-input de-
pendence analysis is of key importance.

Our user-input dependence analysis takes both data and
control dependencies into account. We extend Static Sin-
gle Assignment (SSA) form by augmenting phi-nodes with
control dependencies. A formal definition of user-input de-
pendence is expressed in a dataflow analysis framework
as a Meet-Over-all-Paths (MOP) solution. We reduce the
equation system to a sparse equation system exploiting the
properties of SSA. The sparse equation system is solved as
a reachability problem that results in a fast algorithm for
computing user-input dependencies. We have implemented
a call-insensitive and a call-sensitive analysis. The paper
gives preliminary results on the comparison of their effi-
ciency for various benchmarks.

1. Introduction

A security vulnerability is a software bug that can be ex-
ploited by malicious input to gain control over a system.
Worms, including the Microsoft SQL server Slammer [18]
and the Sun Telnet worm [28], exploit security vulnerabili-
ties in software and can compromise hundreds of thousands

of computers on the Internet within minutes, causing mil-
lions of dollars damage. Manual code inspection is current
industry practice to find security vulnerabilities in code. An
auditor analyzes the code for bugs that can be controlled by
user-input. These inspections are time-consuming, repeti-
tive and tedious. In recent years, bug checking tools that
use static program analysis have successfully found bugs in
software [3, 10, 1, 7, 9]. For classifying bugs as potential
security vulnerabilities, a bug checking tool needs to test
whether a detected bug is dependent on user-input.

The dynamic scripting language Perl [4] implements a
user-input dependence test as a security feature called taint
mode. Data from an untrusted source is tracked and marked
as “tainted”, dynamically, as the program is executed. A
variable on the left-hand side of an assignment becomes
tainted if there is a tainted value on the right-hand side, i.e.,
the variable on the left-hand side is data dependent on the
variables on the right-hand side. At runtime Perl checks the
arguments of a system call. If the arguments are tainted, a
security error is raised. In Perl’s taint mode data dependen-
cies are considered but control dependencies are not taken
into account. However, data dependencies are insufficient
to track data from an untrusted source. For example, the
Perl program $a=<>;$b=$a;system("echo $b");
reads in a value, stores the value in $a, assigns the value
of $a to $b, and outputs the content of variable $b. If this
program is executed in taint mode, variable $b becomes
tainted and the program terminates with an “insecure” er-
ror. Let’s assume that variable $a can only read the val-
ues 0 and 1. Then, the statement $b=$a; can be rewritten
to if($a==1){$b=1;}else{$b=0;} and Perl’s taint
mode cannot capture this implicit data dependency.

Static program analysis has been used to compute user-
input dependencies for security vulnerabilities [13, 24]. The
advantage of static program analysis is that it can take con-
trol dependencies into account and the analysis can consider
all paths in the program, whereas dynamic program analysis
exercises a single execution path. In this paper we propose

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.22

25

1 void copy_to_utf()
2 {
3 int n = 0,
4 i,
5 j;
6 char x[BUFSIZ],
7 y[BUFSIZ];
8 ...
9 n = in(n);

10 if (n > 0) {
11 j = 0;
12 for (i=0;i<n;i++){
13 y[j++] = x[i];
14 y[j++] = 0;
15 }
16 }
17 ...
18 }
19 int in(int a)
20 {
21 int c = getchar();
22 if (isdigit(c)) {
23 a = a + c - ’0’;
24 }
25 return a;
26 }

...
n1:=in(n0);
p0:=(n1>0);
if(¬p0) goto ex;
j0:=0;
i0:=0;

for: i1:=φ′(i0,i2;p1);
j1:=φ′(j0,j3;p1);
p1:=(i1<n1);
if(¬p1) goto ex;
t0:=load x(i1);
store y(j1),t0;
j2:=j1+1;
store y(j2),0;
j3:=j2+1;
i2:=i1+1;
goto for;

ex: ...

int in(int a0){
c0:=getchar();
p2:=isdigit(c0);
if(¬p2) goto br;
a1:=a0+c0-10;

br: a2:=φ′(a0,a1;p2);
return a2;

}

n1

n0

p0

in

a0 c0

r

p2a1

a2

j0

j1

j2

i0

i1

i2

p1

y

x

t0

In

j3

(a) Input Program (b) aSSA (c) Reachability Graph

Figure 1. Motivating example

a new static program analysis technique for locating user-
input dependencies in programs based on SSA form [6].
This analysis can be used as a pre-processing pass to a static
bug checking tool for finding the relevant statements in a
program that are prone to vulnerabilities. Runtime speed
and scalability of this filtering phase is important for use in
large commercial software in the order of millions of lines
of source code. It is beyond the scope of this paper to dis-
cuss and detect security vulnerabilities in programs. In this
work we present a fast and scalable analysis for determining
user-input dependencies of statements and variables stati-
cally.

The contributions of this work are as follows: (1) the
solution of user-input dependence as a Meet-Over-all-Paths
problem, (2) the introduction of Augmented Static Single
Assignment (aSSA) form, that makes control dependencies
upon the values in phi-nodes explicit, (3) a fast algorithm
for computing user-input dependencies that reduces the data
flow equation system to a sparse equation system that is
solved via a graph reachability problem in a rooted directed
graph, and (4) an inter-procedural call-sensitive and call-
insensitive extension of the analysis.

The rest of this paper is organized as follows. Section 2

demonstrates our approach based on a motivating example,
Section 3 presents the user-input dependence analysis, and
Section 4 describes the implementation and the preliminary
results for this work. In Section 5 we survey related work.
We conclude with future work and conclusions.

2. Motivating Example

We illustrate an example in Figure 1(a) that demonstrates
our user input-dependence analysis. The example com-
prises a C-code fragment for copying a character string
in ANSI code to a Unicode array. The function declares
two fixed-size character arrays x and y of the same length
(BUFSIZ). The variable n has value zero before entering
the code fragment and is passed on to function in. Function
in reads a single character from standard input. If the char-
acter is a digit, then the value of the character will be added
to argument a and returned by function in. The result of in
is assigned to variable n and checked to be greater than 0.
Inside the then-branch, the for-loop controls variable i that
ranges from 0 to n-1. Inside the loop body, the content of
array x is copied to array y, with a zero-byte padding.

In the example, a buffer overflow may occur in line 13

26

and line 14 if the length of array y is too small to hold twice
the number of characters of array x, i.e., when index j is
greater than or equal to BUFSIZ—the size of array y. Index
j is control dependent on variable n, which in turn is depen-
dent on the result of function in. In function in, the return
value of the library function getchar is user-input depen-
dent and used for the computation of the return value of
function in. Hence, the result of function in is dependent
on user-input. The buffer overflow poses a potential secu-
rity vulnerability because it can be exploited via user-input.
In the example, an out of bound array access may occur in
line 13 if index i is greater than or equal to BUFSIZ—the
size of array x. Since i is dependent on user-input, it may
imply a potential security vulnerability as well.

The aSSA form of our motivating example is given in
Figure 1(b). All variables have a single assignment, higher-
level control-flow constructs are reduced to if-gotos, and at
confluence points we introduce augmented phi-nodes which
incorporate both control and data dependencies (see Sec-
tion 3). Note that the example makes use of load and
store instructions to denote read and write accesses to
memory, including address computation.

Augmented phi-nodes i1 and j1 are extended phi-nodes
of the SSA form [6]. They control whether the variable
values of i1 and j1, respectively, are taken from inside or
outside the loop depending on predicate p1. Note that pred-
icate p0 of the outer if-statement is not involved in the se-
lection, though both statements are only executable if p0

holds. Similarly, the augmented phi-node of a2 selects be-
tween the value a0 and a1 depending on predicate p2.

We map the user-input dependence test to a graph reach-
ability problem in a rooted directed graph. Graph reachabil-
ity analysis checks whether there exists a path from the root
node to a node in the graph. A simple graph traversal can
compute this problem in O(n +m) where n is the number
of nodes andm is the number of edges in the directed graph.
Nodes in the reachability graph represent results of instruc-
tions (i.e., local variables in SSA form), functions, function
arguments, and global variables. The root node is special
and represents input that is controlled by the user. Edges in
the rooted directed graph represent either data or control de-
pendencies between the nodes. If a node is reachable from
the root node, the user may control the value of the node
and the value becomes user-input dependent. In Figure 1(c)
the reachability graph of our example is depicted. The un-
reachable nodes are depicted in gray whereas the reachable
nodes are depicted in black. All aSSA variables and the two
arrays x and y are each represented by a node.

Consider the value i2:=i1+1 that has a single data de-
pendency on its right-hand side, i.e., i1. There is an edge
from i1 to i2 modeling the data dependency on i1. For an
augmented phi-node we have two kinds of incoming edges:
(1) edges representing data dependencies and (2) edges rep-

resenting control dependencies. For instance, the value
i1:=φ′(i0,i2;p1) depends on i0 and i2 by data depen-
dencies but also on p1 by control dependency. Therefore,
node i1 has incoming edges from i0, i2 and p1. Function
calls are mapped to the reachability graph as follows: the
nodes of the actual arguments are connected to their asso-
ciated nodes representing the formal arguments of the func-
tion. The function node itself is connected to the left-hand
side of the assignment for the return value, and a return ex-
pression inside a function is linked to its function node. For
example, the actual argument n0 is connected to the for-
mal argument a0 and the return value a2 is connected to the
function node in. Variable n1 that is assigned the result of
the function in has the in-coming edge from in. Further-
more, we have two library calls in our example. The call
to getchar returns a value controlled by the user. There-
fore, we connect c0 with the root node r. The library call
to isdigit checks whether the argument is a digit, and,
therefore, connects the actual argument with its result.

As shown in Figure 1(c) the array indices i1 and j1 are
dependent on user-input. Hence, any bugs in the C-code
dependent on these values can be potentially exploited as a
security vulnerability, in particular, lines 13 and 14 of the
C-code in Figure 1(a).

3. User-Input Dependence Analysis

SSA form provides an efficient representation of the def-
use relation on data dependencies without introducing any
false dependencies [6]. However, in this work control de-
pendencies [30, 11] are required as well, which are implicit
in SSA form. To represent control dependencies, we aug-
ment SSA phi-nodes as follows,

x := φ′(y1, . . . , yk; p1, . . . , pl) (1)

where we write Yx (the selection set) for the set
{y1, . . . , yk} and Px (the control set) for {p1, . . . , pl}. In-
formally, Px are the set of nodes which contribute to the
selection of a value from the set Yx, but Px does not explic-
itly state how to make the choice. Therefore an augmented
phi-node is an abstracted gating function [27, 19] 1. As
explained in Section 5, the complexity of aSSA is smaller
than that of GSA, which is important to our needs of per-
formance and scalability in large code bases. In the rest of
this section we formalize a Meet-Over-all-Paths solution for
user-input dependence and show that it can be solved as a
graph reachability problem. Proofs for the paper are avail-
able in its extended version [23].

1In Gated Single Assignment (GSA) form, a gating function explicitly
decides a unique y ∈ Yx from the value of members in Px.

27

s p0n1 j0 i0 i1 j1 t0 j2 i2st1p1

e
Control Flow

Control Dependency

j3st2

Figure 2. Control dependencies of node i1 in flowgraph of Figure 1

3.1. Definition of Tainted Values

The user-input dependence analysis obtains the informa-
tion whether a variable in a program is potentially tainted
(i.e., dependent on user-input) or strictly untainted (i.e., not
dependent on user-input). For a single variable this informa-
tion can be represented in a semi-lattice (L,u) that consists
of element N representing the tainted value and M repre-
senting the untainted value. The meet operation is defined
by:

a u b =

{
M, if a =M and b =M,
N, otherwise.

(2)

Semi-lattice (L,u) is isomorphic to the boolean semi-
lattice (B,∨) assuming element N is 1 and element M is 0.
Hence, the meet operation has the properties of commuta-
tivity, associativity, and idempotence. We extend the meet
operation to

d
i∈I ai for any countable set I . If the index

set I is empty, then the result of the meet operation is M
by convention. The semi-lattice imposes a partial order v,
such that a v b ⇔ a u b = a. In this partial order set L
element M is the top and N is the bottom element.

We define an information lattice (Ln,u,Nn,Mn) where
n is the number of variables. An element ~c ∈ Ln is called
configuration and represents the taint information of vari-
ables that we may assume at a certain point in the flow-
graph. We write Var for the set of variables in the program.
We associate a unique index ix (ix = 1 . . . n) to a variable
x ∈ Var that denotes the position of x in a vector of size
n. The result of meet operation ~a u ~b is vector ~c with ele-
ment ci = ai u bi for all i = 1 . . . n. The top and bottom
elements are Nn = 〈N, . . . ,N〉 and Mn = 〈M, . . . ,M〉, re-
spectively. For the sake of readability, we use the notation
~c(x) for element cix , and ~c[x←a] is a configuration identical
to ~c except for ~c[x←a](x) = a.

We employ the notions of a distributive data flow analy-
sis framework [16] to describe taint information. We define
the MOP solutions for a node u ∈ N by

mop(u) =
l

π∈Path(s,u)

M(π)(Mn). (3)

Function M describes the transfer function of node u and

is extended to paths, i.e., M(π) is the function composition
M(uk) ◦ · · · ◦M(u1) of path π = (u1, . . . , uk). If π is the
empty path, then function M(π) is the identity function.
Note that we do not differentiate between a statement of a
node (as either an assignment or predicate of a branch) and
the node itself. The transfer functions M [[.]] : N → (Ln →
Ln) are defined in the following.

• Nop Statement: does not change the configuration,
i.e., M [[nop]](~c) = ~c.

• Read Operation: taints variable x, i.e., M [[x :=
read]](~c) = ~c[x←N].

• Assignment: If the right-hand side of an assign-
ment contains a tainted value, then the variable on
the left-hand side becomes tainted, i.e., M [[x :=
op(y1, . . . ,yk)]](~c) = ~c[x←

d
1≤i≤k ~c(yi)]; if there are

no variables on the right-hand side, then M [[x :=
op()]](~c) = ~c[x←M].

• Augmented Phi-Node: If one of the arguments or
one of the predicates is tainted, then the result will be
tainted, i.e., M [[x := φ′(y1, . . . , yk; p1, . . . , pl)]](~c) =
~c[x←

d
1≤i≤k ~c(yi)u

d
1≤j≤l ~c(pj)], where predicate pi (i =

1 . . . l) refers to a controlling if-statement of x. Note
that if-statements are modeled as assignments that
have two successor nodes.

In aSSA form variables have a single assignment in the
flowgraph. Therefore, a variable can only become tainted
at the node that contains its assignment.

Definition 1 Variable v ∈ V ar in aSSA form is untainted,
if mop(v)(v) is M.

The information lattice (Ln,u,Nn,Mn) with transfer func-
tion M [[.]] is an instance of a monotone and distributive
dataflow analysis framework, on which we define a simul-
taneous equation system:

~zu = M(u)

 l

v∈preds(u)

~zv

 for all u ∈ N . (4)

28

Note that variable ~zu is a vector in Ln that has n elements in
L, and there are |N | equations. Hence, the equation system
has O(n2) variables in L.

Let Z ∈ L|N |×n denote the vector of variables {zu}u∈N
in the simultaneous equation system, then a concise nota-
tion of this equation system is Z = F (Z), where F is the
right-hand side of the equations. It can be shown that func-
tion F is monotone and distributive, therefore, there exists
a maximum fixed point mfp(F). We write mfp(u) for the
maximum fixed-point of F on node u.

Theorem 1 mop(u)(x) = mfp(u)(x) for all u ∈ N and
x ∈ Var.

Since lattice Ln has finite height, the maximum fixed
point is computed by a finite number of applications of F
on the top element, i.e., F ◦ · · · ◦ F (M|N |×n).

3.2. Compression of the Simultaneous
Equation System

SSA form has specific properties that allow the compres-
sion of the simultaneous equation system to O(n) variables
in L. We make the following observations about the struc-
ture of statements in aSSA form:

1. For each variable there exists a single assignment in
the program, i.e., for all x ∈ Var, there is a unique
u ∈ N such that x is defined at u. We use u ∈ N as a
synonym for x ∈ Var if u defines x, and vice versa.

2. Every node x := op(y1, . . . , yk) is dominated by yi
for all i = 1 . . . k, hence all definitions yi reach node
x.

3. Every augmented phi-node x := φ′(y1, . . . , yk;
p1, . . . , pl) is not necessarily dominated by elements
in Yx, however, we still have statement x reachable
from y for all y ∈ Yx.

4. Every augmented phi-node x := φ′(y1, . . . , yk;
p1, . . . , pl) is reachable by its predicates pi for all
pi ∈ Px.

We observe for each assignment x := op(y1, . . . , yk),
each yi is equal to the value mop(x)(yi) at yi’s definition
node since node x is reachable from yi for all i = 1 . . . k.
For an augmented phi-node x it holds as well for all vari-
ables on its right-hand side y ∈ Yx and all predicates
p ∈ Px.

This observation allows us to construct a new simultane-
ous equation system with variables ẑx ∈ L for all x ∈ Var.

ẑx =

N, if x := read,

M, if x := op(),
d

1≤i≤k ẑyi , if x := op(y1, . . . , yk),d
1≤i≤k ẑyi u

d
1≤j≤l ẑpj , if x := φ′(y1, . . . , yk;

p1, . . . , pl).
(5)

Let ~̂z ∈ Ln denote the vector of variables and F̂ the right-
hand side of the equation system. Since F̂ is monotone,
there is a maximal fixed point mfp(F̂). We write m̂fp(x) for
the maximal solution of F̂ on variable x.

Theorem 2 For all x ∈ V ar, mop(x)(x) = m̂fp(x).

3.3. Linear Boolean Equation Systems and
Reachability

The compressed equation system is solved by a reacha-
bility graph. To show that the reachability solves the max-
imum fixed point of the compressed equation system, we
establish a relationship between a linear boolean equation
system and the reachability graph. Later we show that any
instance of the compressed equation system is solvable by a
linear boolean equation system. Note that the linear boolean
equation system is a theoretical vehicle. In the actual im-
plementation the reachability graph is constructed directly
from the flowgraph.

For the boolean lattice (B,∨,∧, 1, 0) we establish a par-
tial order a ≤ b if a ∨ b = a. In this partial order 0 is the
top element and 1 is the bottom element. The partial order
≤ is further extended to vectors, i.e., ~a,~b ∈ Bn, ~a ≤ ~b, if
ai ≤ bi, for all i = 1, . . . , n.

Definition 2 Given A ∈ Bn×n and ~b ∈ Bn in the boolean
lattice (B,∨,∧, 1, 0), define ~x ∈ Bn the maximal solution
of the boolean equation system

xi = (
n∨
j=1

aij ∧ xj) ∨ bi, for i = 1, . . . , n. (6)

where aij is the element of matrix A in row i and column
j, and xi and bi are the ith elements of vector ~x and ~b,
respectively.

We associate to Equations (6) a reachability graph that
is a rooted directed graph G = (V,Arc, r) where V =
{r, v1, . . . , vn}, r is the distinguished root node, and Arc =
{(vj , vi) ∈ V ×V |aij = 1}∪{(r, vi) ∈ V ×V |bi = 1}. We
associate node vi inG with variable xi in the linear boolean
equation system. A node vi ∈ V is in the set of reachable
nodes R ⊆ V , if there exists a path from r to vi. We also
say that a node u is reachable if u ∈ R.

29

Theorem 3 In the maximal solution ~x, an element xi has
value 1 iff vi ∈ R.

The next theorem connects the solution ~x of the linear
boolean equation system with the MOP solution, where we
assume there is a one-to-one mapping from each variable
in the compressed equation system of Equations (5) to a
unique variable in the linear boolean equation system. Note
that semi-lattice (B,∨) is isomorphic to (L,u).

Theorem 4 Given the same index I = {1, . . . , n}, in the
maximal solution ~x of Equations (6), we have for all i =
1, . . . , n,

~xi = 1 iff m̂fp(ui) = N

3.4. Inter-procedural Analysis, Arrays, and
Pointers

We have two approaches for the inter-procedural user-
input dependence analysis: a call-insensitive and a call-
sensitive analysis. The insensitive analysis is less precise
but fast, whereas the sensitive analysis has more precision
at the expense of longer runtimes (cf. Section 4). The
call-insensitive analysis maps the whole program to a sin-
gle reachability graph using the mapping as sketched in
the motivating example in Figure 1. The following out-
lines the idea: for a function f we add a new variable
f to Var, that represents the return value of f . Value
mop(u)(f) reflects whether the return value of f is tainted
at node u. The transfer function of a call-site is M [[x :=
call f (y1, . . . , yk)]](~c) = ~c[x←~c(f),a1←~c(y1),...,ak←~c(yk)]

where y1, . . . , yk are actual arguments and a1, . . . , ak are
formal arguments of function f . The result x becomes
tainted if f is tainted. A formal argument ai becomes
tainted if the actual argument yi is tainted.

The call-sensitive approach is performed in two phases.
In the first phase the call-graph of the input program is split
into a set of topologically ordered strongly connected com-
ponents (SCC) containing functions that potentially invoke
recursively each other. Each SCC is analyzed in reverse
topological order by constructing a separate reachability
graph for the SCC. For each function in the SCC a sum-
mary function that expresses user input dependencies be-
tween global variables, arguments and result values of func-
tions is constructed. A call-site in the SCC invokes either a
function that is in the SCC, or a function for which there
exists already a summary function, or an external function
(libraries, system calls, etc.). In the former case, we use
the connection scheme as used for the insensitive-analysis.
In the latter case, we wire the dependencies as given in
the summary function. For external functions, we rely on
specifications as shown in Figure 3 and explained in Sec-
tion 4. After constructing the reachability graph we probe

/* user-input dependent variables,
arguments, results */

_input stdin;
_input int scanf(const char *, _input ...);
_input int getchar(void);
int main(_input int argc, _input char *argv);

/* summary functions */
int isdigit(int n){ return n; }
char *strcpy(char *str1, char *str2 {

str1 = str2; return str2; }
void *malloc(size_t size){ return size; }

Figure 3. Excerpt of configuration file

which arguments, globals, and results of function are user-
input dependent, and mark them user-input dependent in the
summary functions of the SCC. Dependencies to arguments
and globals are computed by resetting the root node of the
reachability graph to either a global or an argument and
probing the connectivity for arguments, globals and result
of functions again. The second phase proceeds in the topo-
logical order, propagating tainted information from callers
to callees. The worst-case complexity of the sensitive ap-
proach is O(

∑
s∈SCC

[(ng(s) + na(s)) ∗ (n(s) +m(s)) +
ng(s)2 + na(s) ∗ ng(s) + na(s)2] where ng(s) and na(s)
are the number of global variables and the number of ar-
guments in strongly connected component s, and n(s) and
m(s) are the number of nodes and edges in the reachability
graph of a strongly connected component s. Note for both
the insensitive and the sensitive analysis we use a simple
may-alias analysis for indirect call-sites that gives a set of
possibly invoked functions for a call-site. If this set cannot
be determined, we make the worst-case assumption that the
arguments and the result become user-input dependent.

The call-sensitive approach is call-sensitive in the ab-
sence of immediate recursive functions. If the call graph
contains SCCs with more than one function, we construct
a single reachability graph for the strongly connected com-
ponent. Hence, the functions inside the SCC are treated in
a call-insensitive fashion. To implement a call-sensitive ap-
proach for immediate recursive functions, a more sophisti-
cated solver than reachability would be required. For exam-
ple, a recursive boolean function solver [14] could be used
to solve immediate recursive functions in a call-sensitive
fashion at the expense of exponential worst-case time com-
plexity.

Arrays: for an array a we introduce a new variable in
Var. The meaning of mop(u)(a) reflects whether the con-
tents of a is tainted in node u. We have a transfer function
for reading an element and a transfer function for writing
an element in the array. The transfer function for a read is
M [[x := load a(y)]](~c) = ~c[x←~c(a)u~c(y)], i.e., the result of

30

Problem Size Dependence Array Access
Progs #loc #inst %uiii %uiis #cr #cw #ncr #ncw %uiri %uirs %uiwi %uiws

mysqld-4.1.22 1111594 1321523 81.2 76.6 95617 62938 11168 5021 90.7 88.9 93.4 91.6
mysqld-3.22.32 218531 202847 74.3 68.8 14342 7005 2774 1176 86.1 83.4 89.4 88.6
sendmail 179753 169166 72.4 63.8 15923 7300 4303 1152 92.8 90.2 81.8 77.1
httpd 103066 164162 81.0 74.0 11849 6610 3113 690 91.7 90.8 91.7 90.6
perlbmk 85464 176866 74.4 72.0 19333 9137 1823 1592 98.2 97.9 94.8 94.5
vortex 67220 65685 70.7 66.6 4512 2473 1106 398 93.9 90.9 95.2 95.0
pppd 27048 32540 56.4 39.1 1899 1409 1380 731 41.4 28.8 31.6 18.9
sshd 20729 18489 66.7 59.6 1644 736 273 123 83.2 63.7 74.8 54.5
mailx 14609 25717 69.8 54.2 880 713 843 254 91.9 83.0 83.5 75.6
zoneadmd 7485 7835 64.4 63.0 239 247 163 28 95.1 95.1 85.7 85.7
mail 6934 7286 55.6 48.2 272 148 220 73 92.7 87.7 79.5 78.1

Table 1. Experiment: problem size and percentages of user-input dependent instructions. #loc is the
number of lines of code, #inst is the number of instructions in LLVM’s IR, %uii is the percentages
of user-input dependent instructions, #cr is the number of constant read array accesses, #cw is the
number of constant write array accesses, #ncr is the number of non-constant read array accesses,
#ncw is the number of non-constant write array accesses, %uir and %uiw are the percentages of user-
input dependent read and write accesses as a percentage of non-constant array accesses. Note the
subscripts ‘i’ and ‘s’ indicate the call-insensitive case and the call-sensitive case, respectively.

the read access becomes tainted if either the index is tainted
or the contents of the array is tainted. The transfer func-
tion for a write is M [[store a(y), x]](~c) = ~c[a←~c(x)u~c(y)],
i.e., the array becomes tainted if either the index or the
value is tainted. Similar to functions, all write accesses are
joined with a meet operation in the compressed equation
system. For global variables we have two transfer functions
for the read and write access, i.e., M [[x := load g]](~c) =
~c[x←~c(g)] and M [[store g, x]](~c) = ~c[g←~c(x)].

Pointers: for pointers we encode a simple may points-
to analysis in the reachability graph. We consider the
load and store operations for pointers separately. Both
store and load operations might taint data of the program,
e.g., “store p, x” adds an edge from x to p, and “x :=
load p” adds an edge from p to x. To handle the effect
that an address value is loaded into a variable, we add re-
verse edges to load operations (and phi-nodes) such that
all possible memory objects that might be referenced in the
store operations become connected. For pointer arguments
the mapping of call-sites needs to be extended as well. A
reverse edge is added between the actual and formal argu-
ment to ensure that taint information can traverse from the
callee to the caller through the pointer arguments.

4. Preliminary Results

We have implemented the call-insensitive and call-
sensitive user-input dependence analysis in the LLVM
framework [17], which is a low-level virtual machine for
the C programming language family. Its instruction set is

strictly typed and has been designed for a virtual architec-
ture that avoids machine specific constraints. Every value or
memory location has an associated type and all instructions
obey strict type rules. LLVM code is represented in SSA
form. We implemented a may-alias analysis for function
pointers to better support the accuracy of our user-input de-
pendence analysis. We also use our own may-alias analysis
in the reachability graph.

The result of the user-input dependence analysis are an-
notations in the intermediate representation of LLVM, de-
noting which variables and statements are user-input de-
pendent. When used in combination with the Parfait bug
checker [5], these annotations guide other program anal-
yses in our bug checking tool to find security bugs. For
example, for checking security-relevant array accesses that
are out of bound, the bug checking tool analyzes only the
array accesses that are dependent on user inputs; reducing
the number of array accesses that are checked.

The user-input dependence analysis reads the input pro-
gram as an LLVM bytecode file and a configuration file
that specifies which external global variables, arguments
and results of functions are user-input dependent, as well
as output dependencies on inputs to a function. An ex-
cerpt of a configuration file for functions and globals in the
C library is listed in Figure 3. The qualifier _input de-
clares a global variable, arguments or results of a function
as user-input dependent. For example, the main function
has two user-input dependent arguments (argc and argv)
that are controlled by the user. Therefore, in the declara-
tion, the qualifier _input is added. Summary functions

31

Problem Size Insensitive Sensitive Runtime
Progs #inst #fn #glob #nodi #edgi #scc #nods #edgs τi τs

mysqld-4.1.22 1111594 6151 31580 1370632 1903894 5737 1465480 2232975 153.4 361.29
mysqld-3.22.32 218531 1453 4987 211073 314668 1025 212886 324410 6.49 8.74
sendmail 169166 1002 4416 176242 499148 644 254541 4508623 6.51 71.01
httpd 164162 966 5348 172351 318029 792 186347 376830 5.02 8.95
perlbmk 176866 841 1964 180301 333772 520 492883 3154620 3.28 2018.19
vortex 65685 288 1342 68255 124067 218 87048 375277 0.43 2.42
pppd 32540 433 1714 35014 67045 272 44406 98754 0.24 0.64
sshd 18489 582 1105 20074 32805 165 22546 35851 0.12 0.29
mailx 25717 276 682 26820 61359 169 31331 77000 0.21 0.44
zoneadmd 7835 324 439 8396 16900 31 8773 17996 0.07 0.11
mail 7286 131 465 7860 40925 35 8321 42281 0.2 0.25

Table 2. Experiment: reachability graph size and the running time. #inst is the number of instruc-
tions in the IR, #fn is the number of functions in the program, #glob is the number of globals in
the program, #scc is the number of strongly connected components in the call-sensitive case (in
the call-insensitive case it is always 1), #nod and #edg are the numbers of nodes and edges in the
reachability graph, and τ is the analysis time in seconds. Note the subscripts ‘i’ and ‘s’ indicate the
call-insensitive case and the call-sensitive case, respectively.

express dependencies rather than operations per se. For ex-
ample, the strcpy summary function states that the argu-
ment str1 and the result of the function depends on the
argument str2, i.e., if str2 is user-input dependent the
result of strcpy and the actual argument str1 will be-
come user-input dependent.

To evaluate our user-input dependence analyses, we use
benchmarks including programs from the OpenSolarisTM

operating system, two versions of the MySQL TM database,
the Apache httpd server (v2.2.6), and programs from SPEC
CINT 2000. Table 1 gives the problem sizes and a com-
parison with respect to the percentage of instructions that
are user-input dependent in the benchmarks. The percent-
age of user-input dependent instructions ranges from 60%
to 85%2 for the insensitive analysis and from 42% to 78%
for the sensitive analysis (see column %uiii and %uiis in
Table 1). For array accesses, the number of user-input de-
pendent accesses is small for both analysis. Constant array
accesses are usually not regarded as security vulnerabilities,
therefore, the security bug checking tool will only analyze
a small fraction of all array accesses in the program. The
results show that, on average, 83% of non-constant array
accesses are user-input dependent for the insensitive analy-
sis and 78% for the context sensitive analysis.

The runtime of the insensitive and sensitive analysis
varies significantly. As seen in Table 2, the insensitive anal-
ysis is linear on the number of instructions in the intermedi-
ate representation. The sensitive analysis uses significantly
more time, since for each strongly connected component in

2A portion of standard C library is not fully specified in the configura-
tion file and worst-case assumption were made.

the call graph, the dependencies between global variables,
arguments and results need to be re-computed separately (as
shown in column τs in Table 2). The analysis was executed
on a SUN Fire X4600 (16GB Ram, 4xOpteron 8220) un-
der light load. For the perl benchmark it takes the sensitive
analysis more than 33 minutes, this is because the sensitive
approach considers too many global variables in different
strongly connected components, which results in a much
longer runtime. More experimental data and comparisons
are needed for this work, as outlined in Section 6.

5. Related Work

In this section we review the literature in the areas of
user-input dependence analysis, taint analysis, information
flow, slicing, and data flow analysis.
User-Input Dependence Analysis. Static taint analy-
sis [29, 20, 12] and user-input dependence analysis [13, 24]
are concerned with tracking user-input data in source code.
In contrast to static taint analysis, user-input dependence
analysis does not have any notion of sanitization, which is
a mechanism used to untaint data after it has been sanity
checked.

Static approaches for taint analysis and user-input depen-
dence analysis include type systems [12], data flow analy-
sis [20], and Program Dependence Graph (PDG) [13, 24]
with path conditions. Type checking is efficient, but in prac-
tice it is potentially less precise than our approach. PDG
represents control-dependencies explicitly, but in practice
their control relation is too strong for our purpose (in our
approach only those conditions that join the selection of a

32

value at a confluence point are taken into account). The path
conditions are helpful to eliminate infeasible paths which
makes the analysis more precise. Def-use relations are ex-
plicit through use of an SSA representation.

Program Dependence Web (PDW) achieves both con-
trol and data-dependencies [19, 27], but its construction
and representation is more elaborate. Programs in PDW
are represented as Gated Single Assignment (GSA) form,
where phi-nodes in SSA are replaced by gating functions
that explicitly decide how to make a selection from the po-
tential values. GSA form uses path expressions to repre-
sent the condition under which an operand of a phi-node
is selected. Path expressions are regular expressions whose
alphabet is the set of edges in the control flow graph. With-
out reusing re-occurring regular expression in its represen-
tation, the space complexity of GSA form is in the worst
case O(n3 ∗ 4n) [15]. By reusing common sub-expressions
in GSA form (which might be less preferred if conditions
need to be traversed separately), the space complexity is re-
duced betweenO(mα(m,n) + t) andO(n3) depending on
which algorithm is used where n is the number of nodes, m
is the number of edges in the control flow graph, and t is
a parameter determined by the topology of the control flow
graph [25].

aSSA form uses a subset of nodes for its representa-
tion. The representation of aSSA has a space complexity
ofO(n2) since for each phi-node n nodes could be control-
ling nodes. The algorithm for computing aSSA rely on fast
dominator algorithms running in linear time. Hence, aSSA
has an advantage in terms of speed and space for larger pro-
grams though it abstracts away the exact conditions under
which the operands of a phi-node are taken.
Information Flow. Information Flow is a notion concern-
ing confidentiality that tracks information passage between
variables or communication channels inside a program. By
adopting the well-known multi-level security policies [2],
a program is regarded as secure if there is no information
from any variable v to any other variables that are not dom-
inated by v’s security level. Since it was first proposed as a
program analysis method in [8], various work has been done
to extend this notion, including by secure type systems,
static program analysis, or formal verification, e.g., [22, 13].
Information flow is tracked by assignment, whereby infor-
mation flows from its right-hand side variables to the left-
hand side variable, and by control, whereby information
flows from its predicate to the variables defined inside the
control structure.

The user-input dependence analysis presented in this
paper is closely related to information flow analysis. Its
methodologies are analogous in respect of tracking infor-
mation flow, i.e., information is propagated from user-input
(as high security level) throughout a program via control-
and data-dependencies. However, our control dependency

is stricter than the notion of control dependency used for
information flow. In our approach conditions contribute to
the reachability of a phi-node only, if it is not regarded as
controlling. Note in Figure 1(b), i1 and j1 are not control-
dependent on p0, although they are executed in the branch
of condition p0.

In the terminology of information flow, we consider in-
tegrity but not confidentiality, and we do not have the notion
of a security policy.
Data Flow Analysis. The theory of monotone data flow
analysis frameworks was established in [16]. Reps et
al. [21] maps an inter-procedural data flow analysis to a
reachability graph. The mapping requires an exploded con-
trol flowgraph, i.e., a graph that encodes the data flow facts
and the transfer functions as a reachability graph. In this
paper we compress the reachability graph by exploiting the
properties of SSA form resulting in a fast algorithm. In
our approach we have O(n) nodes in the reachability graph
where n is the number of variables. In contrast, the ap-
proach of Reps et al. has O(n × |N |) nodes in the reacha-
bility graph where |N | is the number of basic blocks. Note
that Reps’ et al. work is a general framework for solving
instances of separable data flow analysis problems.

Slicing [26] is a related technique to user-input depen-
dence analysis. Most slicing approaches rely on PDGs in-
troducing imprecision due to false data dependencies. For-
ward and backward slicing is concerned with computations
and their immediate or intermediate dependent/depending
computations. In contrast, we use a more precise represen-
tation to find dependencies on user-inputs.

6. Future Work

The efficiency of the algorithm meets the requirement of
quickly analyzing large code bases in the millions of lines
of source code. However, the results presented in this work
are preliminary as our treatment of pointers is too conser-
vative. We plan to use a more precise may-alias analysis as
provided by LLVM. Further, to better understand precision
and speed trade-offs, we would like to conduct a compari-
son study with the path-conditition approach of Snelting et
al. [24].

7. Conclusion

In this paper we introduced a new user-input dependence
analysis, which takes both data and control dependencies
into account. The underlying program representation for
our analysis is Static Single Assignment form, which we ex-
tend to Augmented Static Single Assignment (aSSA) form
to capture control dependencies. aSSA is a simplified ver-
sion of Gated Single Assignment (GSA) form and a more

33

compact representation than the combined Program Depen-
dence Graph (PDG) and SSA representation. We exploit
properties of aSSA form to reduce the classic Meet-Over-
all-Paths solution into a simplified graph reachability prob-
lem. This reduction is novel to our knowledge and results
in a fast algorithm for solving the user-input dependence
analysis.

The preliminary results confirm that our approach is vi-
able as a filtering/pre-processing phase of our bug-checking
tool when run on large code bases. The analysis pin-points,
in a runtime efficient manner, which statements in the code
are dependent on user-inputs. If the further analysis per-
formed by the bug-checking tool on such statements deter-
mines that a bug exists, then that bug is potentially a security
vulnerability as it can be exploited externally via user input.

Acknowledgments

We would like to thank Nathan Keynes, Erica Mealy,
Kirsten Winter, Eduard Mehofer, Nigel Horspool and Lian
Li for their input to improve the presentation of this paper.

References

[1] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. In Proc. of the Symp. on
Princ. of Prog. Lang., pages 1–3, January 2002.

[2] D. E. Bell and L. J. LaPadula. Secure computer system: Uni-
fied exposition and multics interpretation. Technical Report
MTR-2997 Rev. 1, The MITRE Corporation, Bedford, MA
01730, March 1976.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static ana-
lyzer for finding dynamic prog. errors. Software—Practice
& Experience, 30:775–802, 2000.

[4] T. Christiansen. Perl security. http://www.perl.com/
doc/manual/html/pod/perlsec.html Taint mod-
ule available November 1997.

[5] C. Cifuentes and B. Scholz. Parfait – designing a scalable
bug checker. In Proceedings of the ACM SIGPLAN Static
Analysis Workshop, 12 June 2008.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. on
Program. Lang. and Syst., 13(4):451–490, October 1991.

[7] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive pro-
gram verification in polynomial time. In Proc. of the Conf. on
Prog. Lang. Design and Impl., June 2002.

[8] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7):504–513, July 1997.

[9] A. Deutsch. Static verification of dynamic properties.
PolySpace White Paper.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific programmer-written com-
piler extensions. In Proc. of the Symp. on Operat. Syst. De-
sign and Impl., pages 23–25, Oct. 2000.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro-
gram dependence graph and its use in optimization. ACM
Trans. on Prog. Lang. and Syst., 9(3):319–349, Jul. 1987.

[12] J. Foster, M. Fahndrich, and A. Aiken. A theory of type
qualifiers. In In Proc. of the Conf. on Prog. Lang. Design
and Impl., pages 192–203, 1999.

[13] C. Hammer, J. Krinke, and G. Snelting. Information flow
control for Java based on path conditions in dependence
graphs. In Proc. of the Int. Symp. on Secure Software En-
gineering, 2006.

[14] B. Herlihy, P. Schachte, and H. Sondergaard. Un-kleene
boolean equation solver. International Journal on Founda-
tions of Computer Science, 18(2):227–250, 2007.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation.
Addison-Wesley, 2 edition, 2000.

[16] J. B. Kam and J. D. Ullman. Global data flow analysis and
iterative algorithms. J. ACM, 23(1):158–171, 1976.

[17] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceed-
ings of the 2004 International Symposium on Code Gen-
eration and Optimization (CGO’04), Palo Alto, California,
March 2004.

[18] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm. IEEE Security
and Privacy, 1(4):33–39, 2003.

[19] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe.
The program dependence web: a representation supporting
control-, data-, and demand-driven interpretation of impera-
tive languages. In Proc. of the conf. on Prog. Lang. Design
and Impl., pages 257–271, 1990.

[20] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. In-
terprocedural analysis for privileged code placement and
tainted variable detection. In Proc. of the European Conf. on
Object-Oriented Prog., pages 362–386, July 2005.

[21] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In Proc. of the
Symp. on Princ. of Prog. Lang., pages 49–61, 1995.

[22] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):1–15, January 2003.

[23] B. Scholz, C. Zhang, and C. Cifuentes. User-input de-
pendence analysis via graph reachability. Technical Re-
port SMLI TR-2008-171, Sun Microsystems Laboratories,
16 Network Circle, Menlo Park, CA 94025, March 2008.

[24] G. Snelting, T. Robschink, and J. Krinke. Efficient path con-
ditions in dependence graphs for software safety analysis.
ACM Trans. on Softw. Eng. and Meth., 15(4):410–457, Oc-
tober 2006.

[25] R. E. Tarjan. Fast algorithms for solving path problems.
Journal of the ACM, 28(3):594–614, July 1981.

[26] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, September 1995.

[27] P. Tu and D. Padua. Efficient building and placing of gating
functions. In Proc. of the Conf. on Prog. Lang. Design and
Impl., pages 47–55, 1995.

[28] US-CERT. Vulnerability Note VU#881872, Sun Solaris tel-
net authentication bypass vulnerability. http://www.kb.
cert.org/vuls/id/881872.

[29] G. Wassermann and Z. Su. Sound and precise analysis of
web applications for injec-tion vulnerabilities. In Proc. of
the Conf. on Prog. Lang. Design and Impl., 2007.

[30] M. Weiss. The transitive closure of control dependence: the
iterated join. ACM Lett. Program. Lang. Syst., 1(2):178–190,
1992.

34

