Jeremy Singer and Chris Kirkham

University of Manchester, UK

Thanks to Mark Harman for presenting

What are Micro Patterns?

@ Simple single-class properties
@ Detect with efficient static analysis
@ Invented by Gil and Maman [OOPSLA '05]

Singer/Kirkham (Manchester) Micro Patterns & Class Names 2/18

Example Micro Pattern

exhibits the recursive
micro pattern, since at
least one instance field
has the same type as
the class itself.

public class List {
Object head;
List tail;

}

Singer/Kirkham (Manchester) Micro Patterns & Class Names 3/18

Another Example Micro Pattern

public class Point {
public int getX() {
return this.x;

}

exhibits the data
manager micro

blic i YO pattern, since all
public int 5et { methods are data
return this.y;

} dCCessors.

}

Singer/Kirkham (Manchester) Micro Patterns & Class Names 4 /18

Existing Applications of Micro Patterns

@ Used for static program analysis and optimization
» detect bugs in development of software project (as
classes change MPs)
» predict object lifetimes for garbage collection (some MPs
live longer)

Singer/Kirkham (Manchester) Micro Patterns & Class Names 5/18

Existing Applications of Micro Patterns

@ Used for static program analysis and optimization

» detect bugs in development of software project (as
classes change MPs)

» predict object lifetimes for garbage collection (some MPs
live longer)

@ our new technique: correlate MPs with class names

Singer/Kirkham (Manchester) Micro Patterns & Class Names 5/18

Java Class Names

@ Camel Case: multiple words run together, capital
letter marks new word

@ Descriptive: adjectives and nouns
@ Example: ByteArrayBuffer

Singer/Kirkham (Manchester) Micro Patterns & Class Names 6 /18

Java Class Names

Camel Case: multiple words run together, capital
letter marks new word

Descriptive: adjectives and nouns
Example: ByteArrayBuffer
focus on last word in name: suffix

e.g. Buffer

Singer/Kirkham (Manchester) Micro Patterns & Class Names 6 /18

Using the Semantic Information

@ In program comprehension, we often use natural
language information

@ Not generally the case for static program
analysis/optimization

@ We show a relationship between class names and
micro patterns

Singer/Kirkham (Manchester) Micro Patterns & Class Names 7 /18

Using the Semantic Information

@ In program comprehension, we often use natural
language information

@ Not generally the case for static program
analysis/optimization

@ We show a relationship between class names and
micro patterns

» this allows us to use class names for
analysis/optimizations!

Singer/Kirkham (Manchester) Micro Patterns & Class Names 7 /18

Class name suffix is often an indicator of
micro patterns exhibited by that class.

Our investigation

@ Large corpus of open-source Java applications
@ around 30,000 classes
@ around 4,000 distinct class name suffixes

Singer/Kirkham (Manchester) Micro Patterns & Class Names

9/18

Our investigation

Large corpus of open-source Java applications
around 30,000 classes
around 4,000 distinct class name suffixes

= suffix re-use is common practice for
Java developers

Singer/Kirkham (Manchester) Micro Patterns & Class Names 9 /18

Suffix statistics

4500
4000 +\
3500 \
3000

0

[

$ ™0

5 2500

B

ksl

g 2000

£

5

2

1500 \\
1000 \\

500 T

s
—
——

0

0 2 4 6 8 10 12 14 16 18 20
min num of distinct classes per suffix group

@ 50% of suffixes (2000/4000) unique to a single class
@ 5% (200/4000) shared between 20+ classes

Singer/Kirkham (Manchester) Micro Patterns & Class Names 10 / 18

@ Examine each of the N classes with suffix S.
o If all N classes exhibit micro pattern p
» create a rule that associates S with p

Rule generation

@ Examine each of the N classes with suffix S.
o If all N classes exhibit micro pattern p
» create a rule that associates S with p

@ If 90% of N classes exhibit p

» create a rule that associates S with p, with confidence
level 90%.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 11 /18

Rule generation

Examine each of the N classes with suffix S.
If all N classes exhibit micro pattern p
» create a rule that associates S with p

If 90% of N classes exhibit p

» create a rule that associates S with p, with confidence
level 90%.
Statistical significance issues
» Over all the classes, for the most popular micro pattern,

there is only a 4% chance that two randomly selected
classes will share that micro pattern.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 11 /18

Rule statistics

700

600

500

400

300

200

number of suffix <-> micro pattern rules

100

I

0

0.5 0.6 0.7 0.8 0.9 1
confidence

@ For suffixes with at least two classes, from at least

two Programs (see paper for more graphs with different parameters)
@ Around 70 rules at 100% confidence

Singer/Kirkham (Manchester) Micro Patterns & Class Names 12 /18

Example Rules

suffix shared between 10 classes. 100% of these classes
exhibit the PureType micro pattern, i.e. they only
contain abstract methods, they have no fields or static
members.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 13 /18

Example Rules

suffix shared between 10 classes. 100% of these classes
exhibit the PureType micro pattern, i.e. they only
contain abstract methods, they have no fields or static
members.

suffix shared between 839 classes. 88% of these exhibit
the Sink micro pattern, i.e. their methods do not
propagate calls to any other methods (leaf methods).

Singer/Kirkham (Manchester) Micro Patterns & Class Names 13 /18

Example Rules

suffix shared between 10 classes. 100% of these classes
exhibit the PureType micro pattern, i.e. they only

contain abstract methods, they have no fields or static
members.

suffix shared between 839 classes. 88% of these exhibit
the Sink micro pattern, i.e. their methods do not
propagate calls to any other methods (leaf methods).

Possible optimizations / bug checks for these rules are
presented in paper.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 13 /18

Applications of these rules

@ build or download a database of such
(suffix,pattern) rules
@ apply at code development time
» to get auto-complete hints
@ apply at code review time
» to identify possible bugs

Singer/Kirkham (Manchester) Micro Patterns & Class Names 14 / 18

Auto-complete hints

@ developer types class name in IDE
@ automatic wizard analyses the suffix

» suggests possible micro patterns for this class
» links to documentation
» fills in skeleton source code

Singer/Kirkham (Manchester) Micro Patterns & Class Names 15 / 18

Java - TestProject/src/TestSrc.xml - Eclipse SDK =

Eile Edit Navigate Search Project Run Window Help

e H@ % 0 | Bwe || e e wr
*Packag 5 Werarc | 5| S TesSream
9@ BR T
b = TestProject

* CLASS: TreeNode

* Utility class for
binary tree data structure

2

public class TreeNode| (
implements RecursiveMicroPattern

+

L[P—
roblems E% De @ =0

i i
822 |

‘ Wiitable | Insert

e
| Ha Plug-in Development -
Micro Patterns & Class Names

Review time tool: Lint-like checker

Given complete source code for a class, check to see if it
violates the micro pattern rules for that suffix. Warn user
of potential problems:

Violation of Recursive micro pattern!
Class TreeNode, declared in
file:TreeNode.xml, line 9, does not contain
any instance fields of type TreeNode.

This rule has confidence 75

Singer/Kirkham (Manchester) Micro Patterns & Class Names 17 / 18

Conclusions

@ (lass name suffix is often an indicator of micro
patterns exhibited by that class.
@ Why is this useful?

» formalizing the instinctive behaviour of Java
programmers

* suffix/pattern rules
» exploiting rules for program analysis and optimization
* prototype tools presented

Singer/Kirkham (Manchester) Micro Patterns & Class Names 18 / 18

