
Exploiting the Correspondence between
Micro Patterns and Class Names

Jeremy Singer and Chris Kirkham

University of Manchester, UK

Thanks to Mark Harman for presenting

Singer/Kirkham (Manchester) Micro Patterns & Class Names 1 / 18

What are Micro Patterns?

Simple single-class properties

Detect with efficient static analysis

Invented by Gil and Maman [OOPSLA ’05]

Singer/Kirkham (Manchester) Micro Patterns & Class Names 2 / 18

Example Micro Pattern

public class List {
Object head;

List tail;

}

exhibits the recursive
micro pattern, since at
least one instance field
has the same type as
the class itself.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 3 / 18

Another Example Micro Pattern

public class Point {
public int getX() {
return this.x;

}
public int getY() {
return this.y;

}
}

exhibits the data
manager micro
pattern, since all
methods are data
accessors.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 4 / 18

Existing Applications of Micro Patterns

Used for static program analysis and optimization
I detect bugs in development of software project (as

classes change MPs)
I predict object lifetimes for garbage collection (some MPs

live longer)

our new technique: correlate MPs with class names

Singer/Kirkham (Manchester) Micro Patterns & Class Names 5 / 18

Existing Applications of Micro Patterns

Used for static program analysis and optimization
I detect bugs in development of software project (as

classes change MPs)
I predict object lifetimes for garbage collection (some MPs

live longer)

our new technique: correlate MPs with class names

Singer/Kirkham (Manchester) Micro Patterns & Class Names 5 / 18

Java Class Names

Camel Case: multiple words run together, capital
letter marks new word

Descriptive: adjectives and nouns

Example: ByteArrayBuffer

focus on last word in name: suffix

e.g. Buffer

Singer/Kirkham (Manchester) Micro Patterns & Class Names 6 / 18

Java Class Names

Camel Case: multiple words run together, capital
letter marks new word

Descriptive: adjectives and nouns

Example: ByteArrayBuffer

focus on last word in name: suffix

e.g. Buffer

Singer/Kirkham (Manchester) Micro Patterns & Class Names 6 / 18

Using the Semantic Information

In program comprehension, we often use natural
language information

Not generally the case for static program
analysis/optimization
We show a relationship between class names and
micro patterns

I this allows us to use class names for
analysis/optimizations!

Singer/Kirkham (Manchester) Micro Patterns & Class Names 7 / 18

Using the Semantic Information

In program comprehension, we often use natural
language information

Not generally the case for static program
analysis/optimization
We show a relationship between class names and
micro patterns

I this allows us to use class names for
analysis/optimizations!

Singer/Kirkham (Manchester) Micro Patterns & Class Names 7 / 18

Our hypothesis

Class name suffix is often an indicator of
micro patterns exhibited by that class.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 8 / 18

Our investigation

Large corpus of open-source Java applications

around 30,000 classes

around 4,000 distinct class name suffixes

⇒ suffix re-use is common practice for
Java developers

Singer/Kirkham (Manchester) Micro Patterns & Class Names 9 / 18

Our investigation

Large corpus of open-source Java applications

around 30,000 classes

around 4,000 distinct class name suffixes

⇒ suffix re-use is common practice for
Java developers

Singer/Kirkham (Manchester) Micro Patterns & Class Names 9 / 18

Suffix statistics

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 s

uf
fix

es

min num of distinct classes per suffix group

50% of suffixes (2000/4000) unique to a single class

5% (200/4000) shared between 20+ classes

Singer/Kirkham (Manchester) Micro Patterns & Class Names 10 / 18

Rule generation

Examine each of the N classes with suffix S .
If all N classes exhibit micro pattern p

I create a rule that associates S with p

If 90% of N classes exhibit p
I create a rule that associates S with p, with confidence

level 90%.

Statistical significance issues
I Over all the classes, for the most popular micro pattern,

there is only a 4% chance that two randomly selected
classes will share that micro pattern.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 11 / 18

Rule generation

Examine each of the N classes with suffix S .
If all N classes exhibit micro pattern p

I create a rule that associates S with p

If 90% of N classes exhibit p
I create a rule that associates S with p, with confidence

level 90%.

Statistical significance issues
I Over all the classes, for the most popular micro pattern,

there is only a 4% chance that two randomly selected
classes will share that micro pattern.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 11 / 18

Rule generation

Examine each of the N classes with suffix S .
If all N classes exhibit micro pattern p

I create a rule that associates S with p

If 90% of N classes exhibit p
I create a rule that associates S with p, with confidence

level 90%.

Statistical significance issues
I Over all the classes, for the most popular micro pattern,

there is only a 4% chance that two randomly selected
classes will share that micro pattern.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 11 / 18

Rule statistics

 0

 100

 200

 300

 400

 500

 600

 700

 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 s

uf
fix

 <
->

 m
ic

ro
 p

at
te

rn
 r

ul
es

confidence

For suffixes with at least two classes, from at least
two programs (see paper for more graphs with different parameters)

Around 70 rules at 100% confidence
Singer/Kirkham (Manchester) Micro Patterns & Class Names 12 / 18

Example Rules

Comparable

suffix shared between 10 classes. 100% of these classes
exhibit the PureType micro pattern, i.e. they only
contain abstract methods, they have no fields or static
members.

Exception

suffix shared between 839 classes. 88% of these exhibit
the Sink micro pattern, i.e. their methods do not
propagate calls to any other methods (leaf methods).

Possible optimizations / bug checks for these rules are
presented in paper.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 13 / 18

Example Rules

Comparable

suffix shared between 10 classes. 100% of these classes
exhibit the PureType micro pattern, i.e. they only
contain abstract methods, they have no fields or static
members.

Exception

suffix shared between 839 classes. 88% of these exhibit
the Sink micro pattern, i.e. their methods do not
propagate calls to any other methods (leaf methods).

Possible optimizations / bug checks for these rules are
presented in paper.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 13 / 18

Example Rules

Comparable

suffix shared between 10 classes. 100% of these classes
exhibit the PureType micro pattern, i.e. they only
contain abstract methods, they have no fields or static
members.

Exception

suffix shared between 839 classes. 88% of these exhibit
the Sink micro pattern, i.e. their methods do not
propagate calls to any other methods (leaf methods).

Possible optimizations / bug checks for these rules are
presented in paper.

Singer/Kirkham (Manchester) Micro Patterns & Class Names 13 / 18

Applications of these rules

build or download a database of such
(suffix,pattern) rules
apply at code development time

I to get auto-complete hints

apply at code review time
I to identify possible bugs

Singer/Kirkham (Manchester) Micro Patterns & Class Names 14 / 18

Auto-complete hints

developer types class name in IDE
automatic wizard analyses the suffix

I suggests possible micro patterns for this class
I links to documentation
I fills in skeleton source code

Singer/Kirkham (Manchester) Micro Patterns & Class Names 15 / 18

Development time tool: Eclipse wizard

Singer/Kirkham (Manchester) Micro Patterns & Class Names 16 / 18

Review time tool: Lint-like checker

Given complete source code for a class, check to see if it
violates the micro pattern rules for that suffix. Warn user
of potential problems:

Example
Violation of Recursive micro pattern!

Class TreeNode, declared in

file:TreeNode.xml, line 9, does not contain

any instance fields of type TreeNode.

This rule has confidence 75%

Singer/Kirkham (Manchester) Micro Patterns & Class Names 17 / 18

Conclusions

Class name suffix is often an indicator of micro
patterns exhibited by that class.
Why is this useful?

I formalizing the instinctive behaviour of Java
programmers

F suffix/pattern rules
I exploiting rules for program analysis and optimization

F prototype tools presented

Singer/Kirkham (Manchester) Micro Patterns & Class Names 18 / 18

