
Automatic Determination of May/Must Set Usage in Data-Flow Analysis

Andrew Stone
Colorado State University
stonea@cs.colostate.edu

Michelle Strout
Colorado State University
mstrout@cs.colostate.edu

Shweta Behere
Avaya Inc.

behere@avaya.com

Abstract

Data-flow analysis is a common technique to gather
program information for use in transformations such as
register allocation, dead-code elimination, common sub-
expression elimination, scheduling, and others. Tools for
generating data-flow analysis implementations remove the
need for implementers to explicitly write code that iterates
over statements in a program, but still require them to im-
plement details regarding the effects of aliasing, side effects,
arrays, and user-defined structures. This paper presents
the DFAGen Tool, which generates implementations for lo-
cally separable (e.g. bit-vector) data-flow analyses that are
pointer, side-effect, and aggregate cognizant from an anal-
ysis specification that assumes only scalars. Analysis spec-
ifications are typically seven lines long and similar to those
in standard compiler textbooks. The main contribution of
this work is the automatic determination of may and must
set usage within automatically generated data-flow analy-
sis implementations.

1. Introduction

Program analysis is the process of gathering information
about programs to effectively derive a static approximation
of behavior. This information can be used to optimize pro-
grams, aid debugging, verify behavior, and detect potential
parallelism.

Data-flow analysis is a common technique for statically
analyzing programs. It works by propagating program in-
formation, encoded as data-flow values, through a control
flow graph of statements or basic blocks. One common ex-
ample, reaching definitions, propagates sets of statements
whose definition may reach later uses in the control-flow
graph. Compilers textbooks [1, 3, 4] specify data-flow anal-
yses with data-flow equations. Figure 1 shows a specifica-
tion of reaching definitions that uses such equations. Each
statement has an associated in and out data-flow set. A so-
lution to a data-flow analysis problem is an assignment of
data-flow values in all in and out, such that these sets sat-

isfy the equations.
Data-flow analysis problems may be formalized within

a lattice-theoretic framework [1, 8], which separates the
analysis specification into a transfer function, meet opera-
tor, and analysis direction. The transfer functions that can
iteratively solve the data-flow equations in Figure 1 com-
putes the out set using the statement-specific gen and kill
information and the in set. The meet operator for reaching
definitions is set union and is used to calculate the in set for
a statement as the union of all out sets for statements that
precede the current statement in the control flow. Reaching
definitions is a forward analysis; for backward analyses, the
role of the in and out sets switch in relation to the transfer
function and meet operation.

in[s] =
⋃

out [p]
p∈pred[s]

out [s] = gen [s] ∪ (in [s]− kill [s])

gen[s] = s , if def [s] 6= ∅

kill[s] = all t such that def [t] ⊆ def [s]

Figure 1. Data-flow equations for reaching
definitions, where s, p, and t are program
statements, in[s] and out[s] are the data-flow
sets for statement s, and def [s] is the set of
variables assigned at statement s.

Lattice-theoretic frameworks enable a separation of con-
cerns between the logic for a specific data-flow analysis and
the iterative algorithm and proof of convergence, which can
be generalized to all data-flow analysis problems where the
transfer function satisfies certain properties. This separa-
tion of concerns has led to the development of a number of
data-flow analysis frameworks that ease the implementation
of data-flow analyses.

However, complications in specifying data-flow analyses
still exist, particularly because of the may versus must na-
ture of variable access in a static analysis. This may versus

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.28

153



Table 1. Reaching definition data-flow sets for example in Figure 2
Statement , s in[s] out[s] gen[s] kill[s]
S1 {} { S1 } { S1 } { S8, S8 }
S2 { S1 } { S1, S2 } { S2 } { S2 }
S3 { S1, S2 } { S1, S2, S3 } { S3 } { S3 }
S4 {S1, S2, S3} { S1, S2, S3 } { } {}
S5 {S1, S2, S3} {S1, S2, S3, S5} { S5 } {S5, S6 }
S6 {S1, S2, S3} {S1, S2, S3, S6} { S6 } { S5,S6 }
S7 {S1, S2, S3,S5,S6} { S1, S2, S3, S5,S6, S7 } { S7 } { }
S8 { S1, S2, S3, S5, S6, S7} { S2, S3, S5, S6, S7, S8 } { S8 } { S1, S8 }
S9 {S2, S3, S5, S6, S7, S8} { S2, S3, S5, S6, S7, S8 } { } { }

int *pointsToOne;
int *pointsToTwo;
int a, b;

S1 a = ...
S2 b = ...
S3 pointsToOne = &a;
S4 if(a < b) {
S5 pointsToTwo = &a;

} else {
S6 pointsToTwo = &b;

}
S7 *pointsToTwo = ...;
S8 *pointsToOne = ...;
S9 printf("Vals = %d, %d\n",

*pointsToOne, *pointsToTwo);

Figure 2. May/must definition example.

must nature occurs due to aliasing, side-effects, and aggre-
gates. Although data-flow equations are typically presented
in the context of scalar variables, these other common pro-
gramming language features must be dealt with when im-
plementing the transfer function for an analysis. For exam-
ple, in Figure 2 the pointer variable pointsToOne must
point to the variable a after statement S3. The pointer vari-
able pointsToTwo may point to variable a or b in state-
ment S7. Therefore statement S7 is included in the set of
reaching definitions generated, but it is unable to kill the
statements S1 and S2. Since pointsToOne must point at
variable a, it kills the definition of variable a in statement
S1.

The existence of may and must definitions and uses due
to aliasing, side-effects, and aggregates makes it necessary
to define transfer functions so that they use may and must
sets in a conservatively correct fashion. Since reaching def-
initions is a may analysis, the set of generated definitions
gen[s] should be conservatively large and the set of killed
definitions kill[s] should be conservatively small. This re-
quires a more precise definition of the gen[s] and kill[s]

in[s] =
⋃

out [p]
p∈pred[s]

out [s] = gen [s] ∪ (in [s]− kill [s])

gen[s] = s , if maydef [s] 6= ∅

kill[s] = all t such that maydef [t] ⊆ mustdef [s]

Figure 3. Data-flow equations for reaching
definitions that are cognizant of may and
must definitions due to aliasing, side-effects,
and/or aggregates

sets as shown in Figure 3 in terms of may and must defini-
tion sets. Notice however, that even for this common and
relatively simple data-flow analysis the assignment of may
and must to the definition sets is non-trivial.

This paper describes how the transfer function imple-
mentations are automatically generated from succinct de-
scriptions that do not indicate whether sets should be may
or must, and that can maintain the “data-flow analysis for
scalars” abstraction. DFAGen handles the may/must issues
due to aliasing, side-effects, and aggregates by applying a
new analysis that determines whether sets should refer to
may or must variants based on data-flow equations and anal-
ysis style (i.e., may or must). DFAGen also enables reuse
between analysis implementations and extensibility through
its use of pre-defined sets, which are used to hide code spe-
cific to any particular compiler and/or analysis infrastruc-
ture.

Section 2 presents how a user specifies a data-flow anal-
ysis to the DFAGen Tool. Sections 3.1 through 3.3 describe
the phases of the DFAGen Tool, which include data-flow
set type inference, may and must determination, and code
generation. Section 4 provides experimental results that in-
dicate the data-flow analysis implementations generated by
the DFAGen Tool are comparable in terms of performance

154



predefined: defs[s]
description: Set of variables defined at a given statement.
argument: stmt s
calculates: set of var, predefined, mStmt2MayDefMap, mStmt2MustDefMap
maycode:

// 17 lines of C++ code using OpenAnalysis framework
// generating mStmt2MayDefMap

mustcode:
// 17 lines of C++ code using OpenAnalysis framework
// generating mStmt2MustDefMap

end

Figure 5. Code specification for def[s] pre-defined set

Analysis: ReachingDefinitions
meet: union
flowvalue: stmt
direction: forward
style: may
gen{s]:

{s | defs[s] != empty}
kill{s]:

{t | defs[t] subset defs{s]}

Figure 6. DFAGen specification for reaching
definitions

AnalysisDef ⇒ Analysis : id
meet :

(union | intersection)
flowtype : id
direction :

(forward |backward)
style : (may |must)
gen[ id ] :Set
kill[ id ] :Set

Set ⇒ id[id] |BuildSet | emptySet |Expr
Expr ⇒ Expr Op Expr |Set
Cond ⇒ Expr CondOp Cond |Expr

Op ⇒ union | intersection |difference |
CondOp ⇒ and |or | subset | superset |

equal |not equal |proper subset |
proper superset

BuildSet ⇒ {id : Cond}

Figure 7. Grammar for analysis, gen[s], and
kill[s] set definition

PredefinedSetDef ⇒
predefined : id[ id ]

description : line
argument : id id
calculates :

(id | set of id) , predefined, id, id
maycode :

code
end
mustcode :

code
end

Figure 8. Grammar for pre-defined set defini-
tion

2.4. Pre-defined data-flow sets

Pre-defined sets map program entities such as statements
to sets of other program entities that can be used in data-
flow equations. Pre-defined sets have may and must imple-
mentations associated with them and DFAGen determines
which implementation is appropriate for a given context.
DFAGen has some built-in pre-defined sets, such as ‘vari-
ables defined at statement’, ‘variables used at statement’,
and ‘expressions contained in statement’, and provides a
means for analysis writers to define their own. Our ap-
proach provides enough flexibility to generate new analyses
easily.

Figure 5 shows an example pre-defined set specification,
in this case for the set of variables defined at a statement.

3. Compilation Phases in DFAGen Tool

The DFAGen Tool automatically compiles the data-flow
analysis specifications provided by the user into a data-flow
analysis implementation. The current prototype generates
code that interoperates with the OpenAnalysis toolkit. Dur-
ing the compilation process, the may/must status of each

155



Figure 4. Analysis generation process using the DFAGen Tool

to hand-written versions. The final sections describe related
work and conclusions.

2. Using the DFAGen Tool

DFAGen generates analysis implementations for the
class of unidirectional, locally separable data-flow prob-
lems, which are also referred to as GEN/KILL problems
or classical bit-vector problems. This section elaborates on
this class of data-flow problems, describes how the DFAGen
Tool is used within the context of a compiler infrastructure
and analysis framework, presents the DFAGen specification
language, and illustrates how pre-defined sets enable exten-
sibility and reuse between analysis specifications.

2.1. Unidirectional, locally separable data-
flow problems

DFAGen generates analysis implementations for the
class of unidirectional, locally separable data-flow prob-
lems. Locally separable (LS) data-flow problems are a sub-
set of finite, distributive, and subset-based (FDS) data-flow
problems [10]. The lattice is finite, the transfer functions are
distributive, and data-flow facts are subsets of some univer-
sal set of finite size. The main difference between LS and
FDS is that locally separable data-flow problems assume
a transfer function of the form: f(X) = gen[s] ∪ (X −
kill[s]), where gen[s] is the set of data-flow facts generated
by statement s, kill[s] is the set of data-flow facts killed
by statement s, X is the in/out set for a forward/backward
analysis, and f(X) is the out/in set for a forward/backward
analysis. The term ‘locally separable’ indicates that the
gen[s] and kill[s] sets do not depend on the in[s] or out[s]
sets.

Common examples of locally separable problems are
liveness, reaching definitions and available expressions.
These analyses as well as others that fall within this cat-
egory are used in various programs optimizations as well
as debugging tools. For example, liveness can be used for
dead code elimination and register allocation; reaching def-
initions can be used for detecting uninitialized variables,

loop invariant code motion, generating a program depen-
dence graph [5]; available expressions can be used for com-
mon sub-expression elimination etc. Most of these analyses
can be also be used in program slicers and debugging tools.
Other program optimization examples are busy-code mo-
tion, partial dead-code elimination, assignment motion, and
strength reduction [1].

2.2. Using DFAGen within a compiler in-
frastructure

The DFAGen Tool currently generates analysis imple-
mentations for compilation and use within the OpenAnal-
ysis framework [11]. Figure 4 illustrates the process by
which an analysis specification along with code for calcu-
lating the may and must versions of each predefined set are
fed into the DFAGen and an analysis implementation is gen-
erated. The pieces of the system that are compiler-specific
are the code snippets for the predefined sets and the code
generation phase of the DFAGen Tool. All other phases are
independent and can be used within other compiler infras-
tructures.

2.3. DFAGen specification language

DFAGen allows compiler writers to specify data-flow
analyses with set equations and a small set of properties.
The properties to be specified are the meet function, data-
flow set type, direction, and analysis style (may or must).
Figure 6 shows the DFAGen specification for reaching def-
initions. Each property is specified with a simple keyword,
for example, the meet function for reaching definitions is
specified with the ‘union’. The gen[s] and kill[s] sets that
define the transfer function are specified in terms of math-
ematical set notation. These equations can reference pre-
defined sets, such as defs[s], which is the set of defi-
nitions generated at statement s. They can also use set op-
erations such as union, intersection, and difference, and use
set construction to build sets based on various conditional
operations such as subset, proper subset, and set equality.

Figure 7 shows the grammar for specifying gen[s] and
kill[s] sets in the DFAGen specification language.

156



pre-defined set in the analysis specification is inferred au-
tomatically. Prior to performing may/must analysis, DFA-
Gen parses the specification and predefined set files, con-
structs an abstract syntax tree for the specification, and veri-
fies analysis legality. After may/must analysis, the DFAGen
Tool generates code that implements the specified analysis.

3.1. Type Inference and Type Checking

Type Inference Prior to generating code it is necessary to
ensure that the specified data-flow equations use types con-
sistently. For example, the type for GEN and KILL sets are
inferred and checked against the specified flow-type. DFA-
Gen’s first phase of compilation generates Abstract Syntax
Trees (ASTs) for the whole specification including the GEN
and KILL equations. Type inference analyzes these ASTs
in a bottom-up manner assigning type information to each
AST node.

We can directly infer the types for pre-defined set refer-
ence nodes from their specifications. All leaf nodes in the
AST are guaranteed to be references to either pre-defined
sets or the empty set. From leaf node types we can synthe-
size parent types.

Another motivation for type inference is to determine the
domain of values for which the condition in a set builder
should be checked. Figure 7 presents the syntax for set
builders, and Figure 6 shows examples of its usage.

Types the current DFAGen prototype can handle include
statements, expressions, variables, and sets of these types.

Type Checking After type inference DFAGen performs
type checking. For any set operator, the type of its operands
should match. Also, gen[s] and kill[s] sets should be typed
as the set of the specified flow value.

Example: Reaching Definitions Figure 9 presents the re-
sults of applying type inference on the example in Figure 6.
The type for predefined set references can be inferred from
their specification. For example, defs is specified to be type
‘set of vars’ in Figure 5. The return type for conditional
operators is always ‘boolean’. We infer that the BuildSet
nodes are typed as ‘set of stmts’ from the flow-type speci-
fied in Figure 6.

3.2. Propagating May and Must Informa-
tion

In DFAGen’s specification language the ‘style’ keyword
is used to specify whether an analysis is may or must. A
may analysis propagates data-flow values representing ex-
ecution behavior that may be true. A must analysis propa-
gates data-flow values representing execution behavior that
must, under all possible executions, be true. For example,

liveness analysis determines, at each statement in a pro-
gram, the set of variables that may be referenced before re-
definition. Since liveness is concerned with what variables
may be referenced, rather than those that are guaranteed to
be referenced, it is a may analysis.

All pre-defined sets have two variants: may and must.
DFAGen determines which variant to use by performing
may/must analysis. May/must analysis analyzes gen[s] and
kill[s] equation ASTs in a top-down manner tagging nodes
as either upper or lower bounded. A node tagged as ‘upper’
requires its child nodes to be tagged in mannar such that the
generated code will produce the largest possible set. Simi-
larly, a node tagged as ‘lower’ needs child nodes tagged so
as to produce the smallest possible set. A pre-defined set
reference tagged as ‘upper’ indicates that generated code
will use the may variant of that set, and a pre-defined set
reference tagged as ‘lower’ indicates the must variant will
be used.

The may/must analysis assigns the top nodes for the
GEN and KILL expressions in the AST upper/lower bound
values based on style of the specified analysis (may or
must). Table 2 shows how this bound is determined. Ta-
ble 3 shows how upper and lower bound values are propa-
gated to left and right children for the various set operations
currently implemented. The next few sections explain and
prove the correctness of the contents of Table 3.

Determining may/must of expression nodes Each of
DFAGen’s binary expression operators is shown in the Op
production of Figure 7. Each of these operators have left
and right operands that reference or compute sets, these sets
are tagged either as ‘upper’ or ‘lower’. There are four per-
mutations of upper/lower values for two operands. We es-
tablish lattices of these permutations. These lattices have
unique top and bottom may/must values, which when ap-
plied to the op node’s children will generate the upper and
lower bound sets respectively.

We use the notation that the left side of an operator is
either some lower bound set al, or some upper bound set
au, and that the right side is either some lower bound set bl

or some upper bound set bu. In the next few sections, we
establish lattices for the difference, union, and intersection
operators, and the subset relation. The lattices are shown
graphically in Figure 11. In the following proofs the partial
ordering operator (represented as ≤) is subset equals unless
otherwise indicated.

Difference Given two sets u and l where u is an upper
bound set and l is a lower bound set such that l ≤ u, we
know the following relationships hold for any set x:

157



Figure 9. Type checking for reaching definitions

Figure 10. May/must propagation for reaching definitions

au ∪ bu

al ∪ bu au ∪ bl

al ∪ bl

au − bl

al − bl au − bu

al − bu

al ⊂ bu

al ⊂ bl au ⊂ bu

au ⊂ bl

Figure 11. Lattices for difference and union operators, and subset relation

158



x− u ≤ x− l (1)

l − x ≤ u− x (2)

The left child operand for the difference operator can be
al or au, where al ≤ au. A similar relationship holds for the
right child operand, bl ≤ bu. Based on those relationships
and those in equations (1) and (2), the following partial or-
dering holds between the four possible operand variants for
the difference operator.

al − bu ≤ au − bu ≤ au − bl (3)

al − bu ≤ al − bl ≤ au − bl (4)

Union and Intersection Given two sets u and l where u
is an upper bound set and l is a lower bound set such that
l ≤ u, we know that given any set x:

x ∪ l ≤ x ∪ u (5)

l ∪ x ≤ u ∪ x (6)

The same holds true for intersection:

x ∩ l ≤ x ∩ u (7)

l ∩ x ≤ u ∩ x (8)

Similar to difference we establish a partial ordering for
union and intersection. The ordering for union is:

al ∪ bl ≤ al ∪ bu ≤ au ∪ bu (9)

al ∪ bl ≤ au ∪ bl ≤ au ∪ bu (10)

The ordering for intersection is the same.

3.2.1 Determining may/must of condition nodes

Condition nodes are used within the context of set-builder
expressions. The upper-bound of a set-builder expression
occurs when the condition is evaluated as ‘true’ as many
times as possible, the lower-bound occurs when the condi-
tion is evaluated as ‘false’ as many times as possible. All
condition operators are shown in the CondOp production of
Figure 7.

Similar to the set operation nodes we establish a partial
ordering on all possible may/must permutations for the left
and right operands of a condition operator. It has been es-
tablished [1] that in a partial ordering:

x ≤ y if and only if x ∧ y = x (11)

for some meet operator ∧ that is idempotent, commuta-
tive, and associative. For this proof we use logical-and as
the meet operator.

We use the following four facts about the subset relation:

Meet Style Gen Kill
union may Upper bound Lower bound

intersection must Lower bound Upper bound

Table 2. Determining bounds based on meet
operator

au ⊂ bl ⇒ al ⊂ bl (12)

au ⊂ bu ⇒ al ⊂ bu (13)

al ⊂ bl ⇒ al ⊂ bu (14)

au ⊂ bl ⇒ au ⊂ bu (15)

to establish the following lattice:

au ⊂ bl ≤ al ⊂ bl ≤ al ⊂ bu (16)

au ⊂ bl ≤ au ⊂ bu ≤ al ⊂ bu (17)

To prove these relations we note that equation (11) holds
when x ∧ y ⇔ x. x ∧ y ⇒ x is trivially true. To show
x⇒ x ∧ y, it is sufficient to show x⇒ y.

Using equation 11 we develop four implications that
prove the relations in the lattice:

(au ⊂ bl) ∧ (al ⊂ bl)⇐⇒ (au ⊂ bl) (18)

(al ⊂ bl) ∧ (al ⊂ bu)⇐⇒ (al ⊂ bl) (19)

(au ⊂ bl) ∧ (au ⊂ bu)⇐⇒ (au ⊂ bl) (20)

(au ⊂ bu) ∧ (al ⊂ bu)⇐⇒ (au ⊂ bu) (21)

Since it’s the case that 11 holds when x ⇒ y, it is also
the case that:

• Equation 18 holds since equation 12 holds.

• Equation 19 holds since equation 14 holds.

• Equation 20 holds since equation 15 holds.

• Equation 21 holds since equation 14 holds.

3.2.2 Example: Reaching Definitions

Consider Figure 10 to understand how may and must propa-
gation takes place for reaching definitions (specified in Fig-
ure 6).

As the meet operator is union and the type is may, the
gen[s] set node is tagged as ‘upper bound’ and the kill[s]
set node is tagged as ‘lower bound’. This information is
propagation from top to bottom in the abstract syntax trees.
As we reach the pre-defined sets, based on the bound infor-
mation, we decide whether is a may or must node. The set

159



Upper bound Lower bound
lhs rhs lhs rhs

difference upper lower lower upper
union upper upper lower lower

intersection upper upper lower lower
subset lower upper upper lower

superset upper lower lower upper
proper subset lower upper upper lower

proper superset upper lower lower upper
equal upper upper lower lower

not equal upper upper lower lower
not equal to empty set upper - lower -

Table 3. Determining may/must information

has type may if it has an upper bound and has a type must if
it has a lower bound. For the set operator ! = empty, the lhs
child takes the type may. Thus, the defs[s] for the gen[s]
set has type may. A similar process is followed to determine
the type of the leaf nodes for the kill[s] set.

3.3 Code Generation

Generated analyses follow an iterative approach for data-
flow analysis, and do not use work-lists. The analysis takes
previously generated alias analysis results, and a control-
flow graph, as parameters. Nodes in the control flow graph
are visited and the transfer statement is called for the node
only if the IN and OUT sets change for the node. Based
on the specified flow-value, we develop data flow sets. De-
pending on the type of the analysis, we initialize the top and
bottom of the lattice. OpenAnalysis has an interface named
as DFAGenDFSet for the DFAGen Tool. Various classes
implement this interface such as StmtDFSet, ExprDFSet
and LocDFSet based on the available types in DFAGen such
as stmt, expr and var. Once we know the may/must informa-
tion for the pre-defined sets, code for the pre-defined sets is
directly obtained from their specification file. DFAGen gen-
erates code for the gen[s] and kill[s] sets corresponding to
their specification. The results of alias analysis and side-
effect analysis are utilized in the generation of the analysis
specification to obtain precise results. DFAGen can calcu-
late the gen[s] and kill[s] sets in the transfer function or
it can pre-calculate these sets and just use it in the transfer
function. The user is provided with an option to make a
choice regarding the calculation of gen[s] and kill[s] sets.
Our evaluation shows that the analysis runs faster if the
gen[s] and kill[s] sets are calculated initially rather than in
the transfer function.

4 Evaluation

We assume, and do not evaluate, that data-flow analy-
sis implementers might make errors when determining may
and must sets within the specification of a transfer function,
and therefore automating may/must determination is bene-
ficial.

We evaluate the DFAGen prototype in terms of the size
of the specification and predefined set specifications versus
an analysis implementation in OpenAnalysis. We also com-
pare the performance of automatically generated analysis
implementations against manual implementations of live-
ness and reaching definitions. Our results are presented in
Tables 4 and 5.

In Table 4 we compare the source lines of code of a
manual and automatically generated data-flow analysis im-
plementation. The ”Specification LOC” column shows the
number of lines of code in a DFAGen specification file.
A compiler writer developing the data-flow analysis would
only need to write these seven lines of code. The column
Pre-defined set LOC refers to how many lines of C++ code
are used to specify the ‘def’ and ‘use’ predefined set struc-
tures. Since many analyses will only use predefined sets
included with DFAGen, and predefined sets can be shared
across multiple analyses, we believe predefined set LOC
will not play a large role in most analysis specifications.

Table 5 shows the time to execute manual implemented
liveness and reaching definitions analysis compared to the
execution time of the automatically generated implemen-
tation. The benchmarks come from the 2006 SPEC suite.
The number of lines of code analyzed is presented in the
“Benchmark SLOC” column. Currently, generated analyses
take longer to execute than manual implementations. How-
ever, we believe that incorporating some simple optimiza-
tions into the code generation phase of the DFAGen Tool,
particularly applied to the generation of pre-defined sets,
will lead to near-equivalent times as the manual-written ver-
sions.

All evaluations were done on an Intel(R) Pentium(R) 4
CPU with 2.40 GHz and a cache size of 512 MB.

5 Related Work

Guyer and Lin [6, 7] present a data-flow analysis
framework and annotation language for specifying domain-
specific analyses that can accurately summarize the effect of
library function calls with the help of library writer annota-
tions. Their system defines a set of data-flow types includ-
ing container types such as set-of<T>. Their system also
includes a declarative language for specifying the domain-
specific transfer functions and side-effect information for
calls to library routines. They enable pessimistic versus op-
timistic descriptions of data-flow set types, but that only de-

160



Analysis Manual LOC Automatic LOC Specification LOC Predefined set LOC
Liveness 394 798 7 98

Reaching Definitions 402 433 7 98

Table 4. Lines of code in manual and DFAGen generated analyses

Benchmark
Benchmark

SLOC
Liveness

manual time
Liveness

automatic time
Reaching defs
manual time

Reaching defs
automatic time

470.lbm 904 0.27 0.39 0.32 0.53
429.mcf 1,574 0.54 0.71 0.62 0.89

462.libquantum 2,605 0.99 1.28 0.76 1.14
401.bzip2 5,731 11.81 13.06 43.07 52.68
458.sjeng 10,544 8.6 9.74 12.38 17.27

456.hmmer 20,658 14.41 17.95 17.02 25.88

Table 5. Evaluations with SPEC C benchmarks

termines the meet operator as being intersection or union.
Using may versus must information in the transfer function
appears to still be the responsibility of the tool user.

The Program Analyzer Generator, PAG [2, 9], provides
a language for specifying general lattices and transfer func-
tions. The possible data types for the data-flow set is much
more expansive than what can be expressed in this initial
prototype of DFAgen, therefore PAG is capable of express-
ing data-flow analyses other than those considered to be bit-
vector analyses. PAG users express transfer functions with a
fully functional language called FULA. This approach pro-
vides more flexibility in terms of specifying the transfer
function when compared to the limited set builder notation
provided by DFAgen. The main difference however is that
in PAG a user must determine how transfer functions will
be affected by pointer aliasing and side-effects. DFAgen on
the other hand seeks to automate this difficulty.

The Sharlit tool [12] for building data-flow analyses fo-
cuses on enabling modularity and extensibility while au-
tomatically providing performance improving techniques
to the data-flow analysis implementation, specifically path
simplification. They do not discuss how aliasing and side-
effects are handled. This is probably due to the fact that in a
quad-based IR it is possible to perform dataflow analysis on
the “register” values only and assume any memory accesses
might conflict and/or be modified by any function calls.

Zeng et al. [13] have developed a domain-specific lan-
guage for generating data-flow analyzers. The authors have
developed a data-flow analyzer generator that synthesizes
data-flow analysis phases for Microsoft’s Phoenix compiler
framework. The authors focus on intra-procedural analysis,
similar to DFAGen. Similarly in DFAGen the user can spec-
ify the code for the pre-defined sets. However, AG (Ana-
lyzer Generator) does not automatically determine may and
must usage of those sets. Also, analysis specification is still

imperative versus declarative.

6 Conclusions

Implementing data-flow analysis even within the context
of a data-flow analysis generator is complicated by the need
to handle issues such as may and must pointer, side-effect,
and aggregate information within the transfer function im-
plementation. DFAGen is a data-flow analysis generator
tool that given on the order of tens of lines of specifica-
tion can generate all of the necessary implementation de-
tails. The presented tool depends on the availability of code
for the generation of may and must versions of sets such
as definition and use sets, but we present techniques that
enable the tool to infer when may and must versions of the
pre-defined sets are needed. Future work includes extending
DFAGen to non-separable data-flow analyses and including
a tuple data type within the specification language. It would
be possible to extend DFAGen to allow for the specification
and generation of set-based analyses by enabling the GEN
and KILL set specifications to be parameterized by the in-
coming/outgoing set. Set-based analyses are necessary in
our technique for automatic may/must determination.

Acknowledgment

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, Of-
fice of Science, U.S. Department of Energy, under award
#ER25724. We would like to thank Paul Hovland and Amer
Diwan for their comments and suggestions with regard to
this paper.

161



References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Com-
pilers: Principles, Techniques, and Tools, second edition.
Pearson Addison Wesley, 2007.

[2] M. Alt and F. Martin. Generation of efficient interprocedural
analyzers with PAG. In Static Analysis Symposium, pages
33–50, 1995.

[3] A. W. Appel and J. Palsberg. Modern Compiler Implemen-
tation in Java, second edition. Cambridge University Press,
2002.

[4] K. D. Cooper and L. Torczon. Engineering a Compiler. El-
sevier, 2004.

[5] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[6] S. Z. Guyer and C. Lin. An annotation language for op-
timizing software libraries. In 2nd Conference on Domain
Specific Languages, October 1999.

[7] S. Z. Guyer and C. Lin. Optimizing the use of high perfor-
mance software libraries. Lecture Notes in Computer Sci-
ence, 2017, 2001.

[8] G. A. Kildall. A unified approach to global program opti-
mization. In ACM Symposium on Principles of Program-
ming Languages, pages 194–206, October 1973.

[9] F. Martin. PAG – an efficient program analyzer genera-
tor. International Journal on Software Tools for Technology
Transfer, 2(1):46–67, 1998.

[10] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95: Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 49–61, New
York, NY, USA, 1995. ACM Press.

[11] M. M. Strout, J. Mellor-Crummey, and P. Hovland.
Representation-independent program analysis. In Pro-
ceedings of The Sixth ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
(PASTE), September 5-6 2005.

[12] S. W. Tjiang and J. L. Hennessy. Sharlit–a tool for building
optimizers. In The ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 1992.

[13] J. Zeng, C. Mitchell, and S. A. Edwards. A domain-
specific language for generating dataflow analyzers. Elec-
tronic Notes in Theoretical Computer Science, 164(2):103–
119, 2006.

162


