
Aspect-Aware Points-to Analysis

Qiang Sun
Department of Computer Science

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240, China

sun-qiang@sjtu.edu.cn

Jianjun Zhao
Department of Computer Science

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240, China

zhao-jj@sjtu.edu.cn

Abstract

Points-to analysis is a fundamental analysis technique
whose results are useful in compiler optimization and soft-
ware engineering tools. Although many points-to analysis
algorithms have been proposed for procedural and object-
oriented languages like C and Java, there is no points-
to analysis for aspect-oriented languages so far. Based on
Andersen-style points-to analysis for Java, we propose flow-
and context-insensitive points-to analysis for AspectJ. The
main idea is to perform the analysis crossing the bound-
ary between aspects and classes. Therefore, our technique
is able to handle the unique aspectual features. To investi-
gate the effectiveness of our technique, we implement our
analysis approach on top of the ajc AspectJ compiler and
evaluate it on nine AspectJ benchmarks. The experimental
result indicates that, compared to existing Java approaches,
the proposed technique can achieve a significant higher pre-
cision and run in practical time and space.

1. Introduction

Points-to analysis is a useful technique which is widely
used in compiler optimization and program analysis tasks.
The goal of points-to analysis is to compute a points-to rela-
tion between variables of pointer types and allocation sites.
The recent work [12, 13, 15] for Java has shown that flow-
and context- insensitive points-to analysis can be efficient
and practical for large Java systems.

Aspect-oriented programming (AOP) has been proposed
as a technique for improving separation of concerns in soft-
ware design and implementation [1, 3, 10]. AOP works by
providing explicit mechanisms for capturing the structure of
crosscutting concerns such as exception handling, synchro-
nization, performance optimizations, and resource sharing,
which are usually difficult to express clearly in source code
using existing programming techniques. AOP can also con-
trol the code tangling problem, making the underlying con-
cerns more apparent, and enable the software more easy to
develop, maintain, and evolve.

AspectJ [5], one of the most widely used AOP languages,
is a seamless aspect-oriented extension to Java by adding

some new constructs such as join point, advice, and aspect.
An AspectJ program can be divided into two parts: base
code which includes classes, interfaces, and other language
constructs as in Java, and aspect code which includes as-
pects for modeling crosscutting concerns in the program.
With the inclusion of join points, an aspect woven into the
base code is solely responsible for a particular crosscutting
concern, which raises the system’s modularity.

Since the executable code of AspectJ programs is pure
Java bytecode produced by an AspectJ compiler, an obvi-
ous approach is to apply directly the existing Java anal-
ysis to the bytecode of AspectJ programs, and then map
the results back to the source code. However, as pointed
out in [19], there is a significant discrepancy between the
AspectJ source code and the woven Java bytecode, which
makes the analysis results quite imprecise. In our exper-
imental study, this naive approach typically produces 2.5
times larger result set on average.

An alternative approach used in our proposed technique
is to perform source-code-level analysis for AspectJ pro-
grams. However, the source-code-level analysis is compli-
cated by AspectJ semantics. Since an AspectJ program con-
sists of not only classes but also aspects that can crosscut
many classes, any points-to analysis should deal with not
only classes, but also aspects that may affect these classes.
To this end, analysis starts from an entry point of a class
and if there is an aspect that may affect the class being ana-
lyzed, the analysis should move into the aspect to compute
the points-to information occurred due to effect of the as-
pect. Moreover, because aspects in AspectJ are transparent
to classes, that is, if you just look at the source of a class,
you can not know which aspect should be woven into the
class. Therefore, in order to perform points-to analysis for
AspectJ programs correctly and precisely, a new points-to
analysis technique which can handle the unique aspectual
features is needed.

In this paper, we propose a flow- and context-insensitive
points-to analysis for AspectJ programs based on an
Andersen-style points-to analysis for Java [15]. We show
how the analysis can cross the boundary between a class
and its related aspects, and therefore produces fine pre-
cise results as for AspectJ programs. The main features of

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.30

143

our approach are to first get information related to those
statements that use join points, and then achieve the infor-
mation of aspects that will be attached to these statements
through the join points.

The main contributions of our work are threefold.

- We define a general-purpose points-to analysis for As-
pectJ which extends the semantics of Rountev et al.’s
points-to analysis for Java [15] which is originally de-
rived from Andersen’s points-to analysis for C [6].

- We implement a points-to analysis tool for AspectJ
programs based on the ajc compiler.

- We perform an empirical evaluation on nine AspectJ
benchmarks. The experimental result indicates that a
significant higher precision can be achieved compared
to the existing Java approach.

The rest of the paper is organized as follows. Section 2
briefly introduces Andersen’s points-to analysis for Java.
Section 3 discusses the problems when applying existing
points-to analysis to AspectJ. Section 4 defines our points-
to analysis for AspectJ. Section 5 presents the details of our
analysis steps. Section 6 evaluates our analysis tool by ex-
perimental results. Section 7 discusses some related work.
Concluding remarks are given in Section 8.

2. Flow- and Context-Insensitive Points-to
Analysis for Java

Several flow- and context-insensitive points-to analysis
for Java have been proposed [12–15, 17], which are topi-
cally based on similar analysis for C. In this section, we fo-
cus on one analysis proposed by Rountev et al. [15] (we
call it RMR analysis for short), which is derived from An-
dersen’s points-to analysis for C [6].

To perform points-to analysis for Java programs, RMR
analysis [15] defines three sets. The first is set R which
contains all reference variables in the analyzed program
and also includes the static fields in classes. The second
is set O which contains the names of all objects that are
created at object allocation sites; for each allocation site
si, object name oi ∈ O is unique in whole program. The
third is set F which contains instance fields in the classes,
but not includes the static fields. There are two types of
edges in the points-to graphs. Edge (r, oi) ∈ R × O repre-
sents that reference variable r points to object oi and Edge
(〈oi, f〉, oj) ∈ (O × F) × O represents that field f of ob-
ject oi points to object oj .

Points-to graph is a directed multi-graph which can be
used to represent the points-to information in a program.
As an example, Figure 1 shows a sample program and Fig-
ure 2 shows its points-to graph. In Figure 2, there are nodes
representing variables and objects and edges representing
points-to relationships. o1 and o2 mean the objects cre-
ated in the sample program. We represent the variables in
whole program using the form of “xx@xx@xx”. For exam-
ple, r@void set(Y r)@X means variable r in the method

public class Y {} public class X {
Y f,g,h;
void set(Y r)
{

this.f = r;
}
public static void main(String[] args) {

X p = new X(); // creating O1
Y q = new Y(); // creating O2
Y l;
p.set(q);
p.h = q;
l = p.f;

}
}

Figure 1. A Java program.

Figure 2. A points-to graph for the Java pro-
gram in Figure 1.

void set(Y r) of class X . void set(Y r) represents the sig-
nature of the method which contains the method name, the
formal parameter list and the return type of the method. The
directed edges without any properties represent the points-
to relationship from a variable to an object. The edges from
an object to another means the field of one object points to
another object, whose property contains the field informa-
tion.

As summarized in [15], the statements kinds that can
be handled by RMR analysis are listed below. In addition
to these statements, RMR analysis can also deal with other
kinds of statements such as calls to constructors and static
methods by a similar way.

- Direct assignment: l = r

- Instance field write: l.f = r

- Instance field read: l = r.f

- Object creation: l = new C

- Virtual invocation: l = r0.m(r1, . . . , rk)

The semantics of RMR analysis can be defined accord-
ing to a group of transfer functions [15]. These functions
add new edges to points-to graphs during analysis. Each
transfer function represents the semantics of a program
statement. The function sets for different statements are
shown in Figure 3 in the format f(G, s) ⇒ G′, where s
is a statement, G is an input points-to graph, and G′ is the

144

- f(G, l = newC) = G ∪ {(l, oi)}
- f(G, l = r) = G ∪ {(l, oi)|oi ∈ Pt(G, r)}
- f(G, l.f = r) = G ∪ {(〈oi, f〉, oj)|oi ∈

Pt(G, l) ∧ oj ∈ Pt(G, r)}
- f(G, l = r.f) = G ∪ {(l, oi)|oj ∈ Pt(G, l) ∧ oi ∈

Pt(G, 〈oj , f〉)}
- f(G, r0.m(r1, . . . , rn)) =

G ∪ {resolve(G,m, oi, r1, . . . , rn)|oi ∈ Pt(G, r0)}
- resolve(G,m, oi, r1, . . . , rn) =

let mj(p0, p1, . . . , pn, retj) = dispatch(oi,m) in
{(p0, oi)} ∪ f(G, p1 = r1) ∪ . . . ∪ f(G, l = retj)

Figure 3. Points-to effects of program state-
ments for Andersen’s analysis [15].

resulting points-to graph. Pt(G, x) represents the points-to
set of x in graph G. The solution computed by the anal-
ysis is a points-to graph that is the closure of the empty
graph under the application of all transfer functions for pro-
gram statements.

There are some obvious effects on the points-to graph
for most statements. For instance, it will generate some new
points-to edges from l to all objects pointed to by r for state-
ment l = r, and for virtual call sites, we should compute
the results for every receiver object pointed to by r0. The
resolve function defined by the let expression (For exam-
ple, let x = t1 in t2, means that the expression t1 is eval-
uated and the name x is bound to the resulting value while
evaluating t2), computes the points-to information at the
call site. Function dispatch uses the class of the receiver ob-
ject pointed to and the compile-time target of the call to
get the actual method mj invoked at run-time. p0, . . . , pn

are variables which represent the formal parameters of the
method. For instance, p0 is used to represent the implicit pa-
rameter this and retj is used to represent the return values
of mj . All values returned by the method are assigned to an
auxiliary variable, which makes each method have a unique
return variable.

3. Motivating Example

We next discuss the problems that may occur, when ap-
plying RMR analysis to AspectJ programs.

Consider the program presented in Figure 4. When we
perform points-to analysis for it using RMR analysis, the
analysis does not care about the effect from the aspect A
though it has potential impact on changing the points-to
graph of the analyzed program. If we don’t process the after
advice in this example, p.h will only points to o2. However,
the points-to set of p.h, in fact, contains o2 and o3, due to the
effect of the after advice. This problem is caused by the so-
called “obliviousness principle” of AOP languages [9], i.e.,
the class being analyzed does not know which aspects may

public aspect A {
pointcut p1(X x, Y y):

call(void X.set(Y))&&target(x)&&args(y);
pointcut p2(X x):

set(Y X.h)&&target(x)&&!within(A);
before(X x,Y y):p1(x,y){

x.g = y;
}
after(X x):p2(x)
{

Y l = new Y(); // creating O3
x.g = l;

}
}
public class Y {} public class X {

Y f,g,h;
void set(Y r)
{

this.f = r;
}
public static void main(String[] args) {

X p = new X(); // creating O1
Y q = new Y(); // creating O2
Y l;
p.set(q);
p.h = q;
l = p.f;

}
}

Figure 4. An AspectJ program.

or may not be woven into it. So if the analysis starts from a
class, it will not consider the effects from aspects, and there-
fore, may lead to imprecise or even incorrect points-to in-
formation.

The semantics of the join points will affect the RMR
model directly. The join points that should be taken into
consideration are shown in Table 1.

Join Point Kind May Effect
constructor call object creation
constructor execution
method call virtual invocation
method execution
get instance field read
set instance field write

Table 1. Join point kinds effecting points-to
analysis for AspectJ.

At the join point with the form of constructor call or ex-
ecution, advice implicitly invoked may do some operations
which change the points-to graph. For example, there is an
instruction this.f = r in the advice, which means when
an object is created, its f field is written into object ref-
erenced by variable r. Comparing with the program with-
out aspects, this object’s f field may point to more objects.
The advices match the join points with the form of get or
set may also effect the points-to graph. In such case, an ad-
vice can change the object written in or read from the field
of object.

145

Another problem is that some new constructs such as ad-
vice, introduction, various kinds of pointcuts, and inter-type
declarations are added to AspectJ. These constructs are dif-
ferent in nature from those in Java, and therefore should also
be handled differently by the analysis.

In the rest of the paper, we propose our extension of the
semantics of RMR analysis to perform points-to analysis
for AspectJ programs.

4. A Semantics for Points-to Analysis of As-
pectJ

The semantics of our points-to analysis extends that of
RMR analysis [15]. We extend this semantics to handle the
special issues of AspectJ programs.

In order to keep backward-compatible with existing Java
application. Our analysis for AspectJ is also defined in
terms of three sets, i.e., R, O, and F . R is the set of all ref-
erence variables in the analyzed program, including static
fields both in classes and aspects. Each reference variable
is represented in whole program. O is the set of names for
all objects created at object allocation sites in both aspects
and classes; for each allocation site si, there is a unique
object name oi ∈ O in whole program. F is the set of
all instance fields in both aspects and classes, not includ-
ing static fields. Our analysis builds points-to graphs which
contain two types of edges. Edge (r, oi) ∈ R × O rep-
resents that reference variable r points to object oi. Edge
(〈oi, f〉, oj) ∈ (O × F) × O represents that field f of ob-
ject oi points to object oj . Figure 4 and Figure 5 show a
sample program and its points-to graph respectively.

Figure 5. A points-to graph for AspectJ pro-
gram in Figure 4.

The points-to graph of an AspectJ program is very simi-
lar with that of a Java program. The difference in the points-
to graph of an AspectJ program is that it contains more vari-
ables and objects related with aspects. Since the implicit in-
vocation of advice, the advice doesn’t have a name. So in
order to distinguish them, we use the sequence number of
defined order to identify the advice within one aspect. For
example, for l@ad$2@A, l is variable name, A means as-

pect A, and ad$2 represents the second advice of aspect A
in defined order.

In addition to the issues mentioned above, our analysis
can also appropriately handle the language constructs that
contribute to aspects in AspectJ. These constructs are:

- Pointcuts: this(), target(), and args()

- Advice: after returning and around

The semantics of our analysis is also defined in terms of
transfer functions that add new edges to points-to graphs
during analysis. Each transfer function represents the se-
mantics of a program statement. The functions for different
statements are shown in Figure 3 in the format f(G, s) ⇒
G′, where s is a statement, G is an input points-to graph,
and G′ is the resulting points-to graph. Pt(G, x) denotes
the points-to set of x in graph G. The solution computed
by the analysis is a points-to graph that is the closure of
the empty graph under the application of all transfer func-
tion for program statements.

Compared to the RMR analysis, our analysis considers
the source of both classes and aspects. In order to deal with
aspects in AspectJ, the analysis semantics should be ex-
tended for the following cases:

- There is a declaration of class inheritance for an aspect

- The context references of pointcuts and advice, and

- The return value for a piece of advice can be used as a
variable to return

In the following, we will show how to handle these cases
in our analysis.

4.1. To Handle Pointcut

We first define the parameter list which will be used later.

tList ::= T v, tList|T v
vList ::= v, vList|v
v ::= variable
T ::= type

tList represents the formal parameter list containing both
variables and their types, while vList means the list only
includes the variables without their types.

When using pointcuts this, target, and args, there
are some similar situations like parameter passing between
methods for aspects. In such a case, some edges should be
added to the points-to graph just like how we handle the re-
lationships between formal and actual parameters between
methods. Set Scs contains all the call sites in the source
code. sitei ∈ Scs, sitei has the form as follows:

sitei : l = r0.m(r1, . . . , rn)

The pointcut for the places that the matched advices will be
woven. A simple form of pointcut is defined.

146

PC ::= pointcut pcname(tlist) : MD&&CD
D ::= this(v)|target(v)|args(vlist)
CD ::= D&&CD|D
MD ::= method-call or -execution designator

We define the actual parameter set, delivered by the call site,
as set Sm.

Sm = {r1, . . . , rn} ∪ {r0} ∪ {this} (1)

From above, r0 means receiver object. When method m is
static, {r0} and {this} are empty sets. We build up a for-
mal parameter set Sp for the call site’s pointcut. Sp contains
all variables appearing in tList of the pointcut declaration.
According to the semantic of AspectJ language, there is a
mapping ϕ1 from Sp to Sm, which will be illustrated as fol-
lows:

ϕ1 : Sp �→ Sm (2)

From the form (2) just mentioned, we get dom(ϕ1) = Sp,
rank(ϕ1) ⊆ Sm. Through the mapping above we can make
clear the relationships between actual parameters of call site
and formal parameters of pointcut.

For example, in Figure 4, at the call site p.set(q), the ac-
tual parameter set Sm is {p, q, this}. We consider the point-
cut

pointcut p1(X x, Y y) : call(voidX.set(Y))
&&target(x)&&args(y);

then we can get the Sp and ϕ1:
Sp = {x, y},ϕ1(x) = p, ϕ1(y) = q.

4.2. To Handle Advice

Unlike method calls, in which formal parameter values
are explicitly passed by the caller, an advice gets the con-
text information from the environment where the call site as
a join point is selected by the pointcut. In other words, the
formal parameter values are provided by the pointcut. We
define the advice signature form as follows:

A ::= AT (tList) : pcname(vList′)
AT ::= before|after|around|after returning
vList′ ::= v, vList′|T, vList′|T |v

In the case that the advice only uses a subset of the param-
eter set provided by the matched pointcut, the locations of
the unused parameter variables in vList are occupied by
the corresponding types, so we define the form vList′. We
make an Sa set for the formal parameters of advice. Sa con-
tains all variables appearing in tList of the advice signa-
ture. Through the semantic of AspectJ language, we can get
a mapping, ϕ2, from Sa to Sp:

ϕ2 : Sa �→ Sp (3)

From the form (3) just mentioned, we get dom(ϕ2) = Sa,
rank(ϕ2) ⊆ Sp. From the product of two mappings, we di-
rectly have ϕ, the mapping relationship, getting from for-
mal parameters of advice and actual parameters of call site.

ϕ = ϕ1 · ϕ2 (4)

For example, there is an after advice matching the point-
cut p1 in Figure 4. The advice signature is as follows:

after(X xx, Y yy) : p1(xx, yy)

After computing Sa, ϕ2 and ϕ for this advice, we can get
that:
Sa = {xx, yy}, ϕ2(xx) = x, ϕ2(yy) = y.
ϕ(xx) = p, ϕ(yy) = q.

We can get the mapping relationship of formal param-
eters of advice and actual parameters of call site. We use
this approach to improve the precision of analysis. For ex-
ample, in Figure 6, two before advices match the com-
bined pointcuts which share the same part p(c) in aspect
AS. If we transfer the variables l1 and l2 from method
main() to two before advices through pointcut p(C c), i.e.
l1 → c, l2 → c, c → c1, c → c2, we can get that both l1
and l2 will be transferred to c1 and c2. If we compute the
mapping from the formal parameters of before advice to ac-
tual parameters of call site, variables l1 and l2 will be di-
rectly assigned to c1 and c2 respectively.

public aspect AS {
pointcut p(C c):call(* *.foo(*))&&args(c);
before(C c1):p(c1)&&target(A)
{

// to do something ...
}
before(C c2):p(c2)&&target(B)
{

// to do something ...
}

}
public class A {

public void foo(C c)
{

// to do something ...
}

}
public class B {

public void foo(C c)
{

// to do something ...
}

}
public class C {

public static void main(String[] args) {
C l1 = new C();
C l2 = new C();
A a = new A();
B b = new B();
a.foo(l1);
b.foo(l2);

}
}

Figure 6. Parameter transfer effecting preci-
sion.

As a result, for handling advice, we should add the fol-
lowing rules:

- f(G, r0.m(r1, . . . , rn)) = G ∪ {resolve(G,m, s, a,
oi, oj , r1, . . . , rn)|oi ∈ Pt(G, r0)∧oj ∈ Pt(G, this)}

- resolve(G,m, s, a, oi, oj , r1, . . . , rn) =
let advice(b0, b1, p1, . . . , pk) = dispatch(s, a)

147

in {(b0, oi)} ∪ {(b1, oj)} ∪
f(G, p1 = ϕ(p1)) ∪ . . . ∪ f(G, pk = ϕ(pk))

where m is a method name, s is a statement, a is the as-
pect to be woven, o1 is a receiver object, oj is this, ri is
a actual parameter, and l is the reference variable that re-
ceives a return value. The formal parameters used by ad-
vice are b0, b1, p1, . . . , pk. From the definition of ϕ, we get
ϕ(pi) ∈ {r1, . . . , rn}(1 ≤ i ≤ k, k ≤ n). Also, we sup-
pose that the transferred aspects have been determined. The
above rules are used as an extension of the rules presented
in Section 2, but do not replace them.

Extensions are also needed for after returning and around
advice. Since an after advice can access the return value of a
method, an edge for after returning advice should be added
to the points-to graph during analysis. For the return value
of the identifier ret of the form m(p0, p1, . . . , pn, ret), we
should add an edge to the points-to graph according to the
following rule:

f(G, ar = ret)

Where ar is a variable of the after returning advice that can
access the return value. For around advice, it determines by
whether the advice contains the preceed() call or not. If it
contains a proceed() call, we need to add some edges for
the woven statements as well as the statements for the tar-
get aspects. If it contains no proceed() call, we just need
to add some edges for the statements of the target aspects.
Moreover, if there is a return value, we should add an edge
for the return value and the reference variables that receive
it with the following rule:

f(G, l = aret)

Here aret is the return value of around advice. Moreover,
in addition to those edges mentioned above, some edges
within the advice should also be created, we can use the
same way to create this kind of edges as we do for before
and after advice.

4.3. Advice Call Tree

To be more specific, when multiple advices match a join
point, an advice call tree as shown in Figure 7 is con-
structed. Considering the advice precedence issue, we travel
this tree in preorder, in which before advice is visited first
which is followed by around advice after which stands af-
ter advice. There we can get these advices in the execution
order of run-time. For example, there is a method call as fol-
lows:

Sitei : l = r0.m(r1, . . . , rn).

Call point represents the Sitei statement operated by the
program. Execution point indicates that the program has al-
ready reached the method m to be executed. The pointcut
p contains the method-call designator call(∗.m(..)), which
will select the join point of call type (call point) at Sitei, af-
terwards three types of advices, before, around, after, are all

matched by p. What’s more, there is a proceed() call in ev-
ery around advice. Each tree level has at most one around
advice, which calls advices of the next lower level of the
tree by proceed() call. At the execution point, there is a
pointcut p′, which contains the method-execution designa-
tor execution(∗.m(..)). The advices match to the join point
with the execution type (execution point) by p′, whose ex-
ecution after and before hand is quite similar. When we ar-
rive the final proceed() call of around advice, it calls the
method m through the proceed() call.

Intra-aspect precedence rules are a bit complex. If two
advices are defined in the same aspect, their precedence is
determined by their defined orders and types. There are two
main rules:

- One of the pieces of advice is after advice. In this
case, the advice defined later in the file takes prece-
dence .

- Neither advice is of the after type. In this case, the
advice defined earlier in the file takes precedence.

Within an aspect, the types of advices that match the
same join point lead to a sequence which can be represented
by a regular expression:

after∗(before + around)∗after∗.

Since there is no precedence circularity, we can spread the
discussion into inter-aspect from which the conclusion is
also available.

We deal with the after advice in a particular way accord-
ing to the advice precedence rules. The after advices which
match to the same join point are called in two situations.
Take the after advices matching the call point for example
in Figure 7. One situation is that after the first around advice
(around advice 1) is executed, the after advice 11, 12, . . . , 1l
will be called; the other situation is that the after advices
are called by the proceed() call of the last around advice
(around advice p), which are after advice 21, 22, . . . , 2m. It
is impossible for them to be called by the proceed() calls in
the middle levels of the advice call tree.

5. Performing Points-to Analysis for AspectJ

We next present our implementation for the points-to
analysis technique for AspectJ using pointer assignment
graph [12].

5.1. Analysis Approach

Referred to Section 2, the result of our points-to anal-
ysis is also represented as points-to graphs. We begin to
take the empty points-to graph G as input, and meanwhile
to construct a pointer assignment graph, the illustration of
transfer functions, in the process of analysis. Through the
procedures of traveling pointer assignment graph in which
transfer functions are iteratively used, the points-to infor-
mation is added up to the graph G till the end of changes
from which we get the final points-to graph G′.

148

Figure 7. Advice call tree.

Our analysis is divided into two stages. One is to con-
struct the call graph and the pointer assignment graph, and
the other is to build up points-to graph based on the for-
mer stage. In the following, we discuss these issues in de-
tails.

5.2. Call Graph Construction

We use the call graph for the inter-procedural points-to
analysis. Because of polymorphism, in static analysis, it is
hard to fix a method called in run-time at a call site. Call
graph can construct an approximation set of methods called
at a call site. Procedure calls in Java is explicit, such as a
method call, constructor call, etc. But in AspectJ, advices
are called implicitly. Some advice match the certain point-
cuts, the pointcuts select the join point in program, so at the
join point these advices should be called. So the call graph
for an AspectJ program should represent not only the vir-
tual call in the base code, but also the implicit call of advice
in the aspect code. In this work, we extend the RTA [8] al-
gorithm, originally developed for Java, to construct the call
graph for an AspectJ program.

5.3. Data Structures for Analysis

Before performing the analysis, our analysis needs a ta-
ble called aspect table which can be used to store the aspect-
class relationships. We construct the aspect table before the
analysis. Each item in the aspect table presents the relation-
ship between a class and an aspect with the following form:

(class name, aspect name, statement number,
pointcut, caller, callee)

where class name denotes the name of a class, aspect name
an aspect name, statement number a statement name, and

pointcut a pointcut name, caller a method name and the
callee also a method name which is called by caller. If the
statement has no call relationship between the methods, the
caller and callee are both null. If the statement contains a
virtual call, we will consider all the possible callee meth-
ods and all the advices involved in the each call path. Each
call path can be determined by a pair (caller, callee).

For a pointcut, we can get all advices which match the
join points caught by it. In the case of several advices
matching the same join point, in order to build advice call
tree (Figure 7), we also need to compute their precedence.
For an around advice a, if there is no proceed() statement in
it, the advices which have a lower precedence than a would
not be executed. If a has a proceed() statement, the advices
associated with the proceed() statement of a will be looked
up from the advice call tree discussed in Section 4.

For the dynamic pointcuts such as cflow, the match-
ing for the shadows and the advices is nondeterministic at
compiling time. So these pointcuts may also influence the
precision of our points-to analysis for AspectJ. One possi-
ble solution is to add a branch for each possible matching
of dynamic pointcuts as Xu described in [19] which uses
“maybe” to cover the case of “must” and “never”. Another
technique proposed by [7] can minimize or eliminate the
overhead of cflow using both intra- and inter-procedural
analyses.

5.4. Pointer Assignment Graph

Our pointer assignment graph consists of three types of
nodes and four types of edges. The types of nodes include
the allocation site nodes, simple variable nodes, and field
dereference nodes. Allocation site nodes model the alloca-
tion sites in both classes and aspects and are used to rep-
resent the objects in run-time. Variable nodes model local

149

variables in methods and advices, the method and advice
parameters including formal parameters and actual parame-
ters, return values, implicit parameter this, and static fields.
Field dereference nodes model the instance fields being ac-
cessed in the program; a variable node and a field node
pair represents the variable’s field access. Field dereference
node as the property of the field write edge or field read
edge is included in the edges of these two types.

Allocation Assignment Field Write Field Read
s : l = newC l = r l.f = r l = r.f

os → l r → l r
write[f]−−−−−−→ l r

read[f]−−−−−→ l
f(G, l = newC) f(G, l = r) f(G, l.f = r) f(G, l = r.f)

Table 2. The four types pointer assignment
graph edges.

Four types of edges are illustrated in Table 2. The first
line is the edge type names which are followed by the state-
ments to be processed in the second line. The third line
shows the edge forms. The last line corresponds to the trans-
fer functions according to each edge type respectively.

Figure 8. A pointer assignment graph for As-
pectJ program in Figure 4.

Figure 8 shows a pointer assignment graph for the sam-
ple program in Figure 4. The variable and object nodes of
the pointer assignment graph share the same representation
with that of the points-to graph. The types of edges corre-
spond to the illustration in Table 2. For example, the edge
read[f] is a field read edge and f is a field dereference node.

5.5. Points-to Graph Construction

Once a pointer assignment graph has been constructed,
we can construct the points-to graph according to the trans-
fer functions. We use the iterative algorithm and worklist al-
gorithm [12] to construct the points-to graph.

The iterative algorithm is a naive and baseline algorithm
which can be used to check the correctness of the results

of the more complicated algorithms. First, as the input, an
empty points-to graph is initialized according to allocation
edges. Second, the algorithm iteratively applies every trans-
fer function f(G, l = r), f(G, l.f = r), and f(G, l = r.f)
to the points-to graph according to assignment edges, field
write edges, and field read edges until there is no change in
the points-to graph.

Comparing with the iterative algorithm, worklist algo-
rithm is better but more complex. At the beginning, the
algorithm builds up allocation relationships and initial-
izes worklist maintained by solver, which contains variable
nodes whose points-to objects need to be propagated. Af-
ter that, the algorithm deals with worklist and all the field
write and read edges iteratively to obtain the final solu-
tion. When a variable node p is included by worklist, the al-
gorithm applies the transfer functions to the points-to graph
along the pointer assignment graph edges. These edges

have the form of p → q, p
write[f]−−−−−→ q, q

write[f]−−−−−→ p,

and p
read[f]−−−−→ q. If the points-to relationship of vari-

able q has changed during these operations, q should be
added to the worklist.

5.6. Analysis Implementation

We implement a points-to analysis tool for AspectJ on
top of ajc 1.5.4 AspectJ compiler. In our implementation,
we manipulate the abstract syntax tree and join point match-
ing information created by ajc to build the pointer assign-
ment graph, and then construct the points-to graph.

6. Evaluation

Subject Programs. We use nine widely used AspectJ
benchmarks to evaluate our analysis shown in Table 3. The
first seven programs are selected from AspectJ Benchmarks
(AJBenches) [1] and the rest two are taken from the As-
pectJ example package [2]. Table 3 provides the detailed
information of our benchmark programs. For each program,
the number of lines of code, classes, aspects, methods, ad-
vices and call sites are shown in Table 3. The experiment is
conducted on a DELL C521 PC with 1.80 Ghz AMD Sem-
pron(tm) Processor and 1.00 Gb memory, under the envi-
ronment of Sun JDK 1.5.0.10.

Procedure. In our experiment, we compare the precision
between the existing byte-code-level Java approach and our
source-code-level approach. For each benchmark, we com-
pile it into bytecode using the abc compiler [1] and then use
the Dava decompiler tool in Soot [4] to decompile the wo-
ven code back to Java source code. We employ the exist-
ing Java approach [15] to perform points-to analysis on the
Java source and our approach to perform analysis on the As-
pectJ source code.

Result. The experimental results are shown in Tables 4
and 5. For the experiment data of each benchmark in Ta-
bles 4, the first row is the result using our analysis, and the
second row is the result using the existing Java approach.

150

Program #LOC #Class #Aspect #Method #Advice #CallSite
bean 121 2 1 20 2 48
cona1 1942 21 9 181 46 665
cona2 291 2 1 21 10 135
dcm 1668 29 4 174 8 543
figure 94 5 1 22 1 29
nullcheck 1474 23 1 156 1 480
qsort 72 2 1 8 4 21
telecom 248 8 2 31 4 98
spacewar 1537 22 9 161 24 627

Table 3. Subject Programs.

In each cell of Tables 5, a slash / separates the result us-
ing our analysis and the existing Java approach. Clearly, in
most cases, our analysis approach outperforms the existing
Java approach.

Precision Analysis. We first analyze the precision of
deference sites and call sites for each benchmark. The deref-
erence sites consider all occurrences of field reference,
〈o, f〉, in which o means an object and f means a field of
o. The percentage of dereference sites are given with 0, 1,
2, 3-10, and more than 10 elements in their points-to sets.
Dereference sites with 0 items in the set mean that no ob-
ject is written in the field of object. We consider all vir-
tual calls and report the percentage of such call sites with
1, 2, and more than two targets. More than one target meth-
ods are found using the class of the receiver object. For in-
stance, o is the receiver object for a method call, o.m(), all
the methods with the form of m() defined in all subclasses
of o’s class will be found. Calls with 1 target indicate that
they are monomorphic calls at run-time.

Program Deference Sites (% of total) Call Sites (% of total)
0 1 2 3-10 10+ 1 2 3+

bean 55.6 44.4 0.0 0.0 0.0 100.0 0.0 0.0
64.3 35.7 0.0 0.0 0.0 100.0 0.0 0.0

cona1 95.1 4.0 0.0 0.9 0.0 99.4 0.6 0.0
85.3 13.8 0.0 0.9 0.0 99.0 0.5 0.5

cona2 86.3 13.7 0.0 0.0 0.0 100.0 0.0 0.0
73.3 26.7 0.0 0.0 0.0 100.0 0.0 0.0

dcm 94.1 4.9 0.0 1.0 0.0 98.5 1.5 0.0
72.7 26.2 0.5 0.6 0.0 99.8 0.2 0.0

figure 64.1 35.9 0.0 0.0 0.0 100.0 0.0 0.0
62.5 37.5 0.0 0.0 0.0 100.0 0.0 0.0

nullcheck 83.0 13.2 1.4 2.2 0.2 98.3 1.7 0.0
86.8 11.8 0.3 0.9 0.2 99.5 0.5 0.0

quicksort 82.4 17.6 0.0 0.0 0.0 100.0 0.0 0.0
70.6 29.4 0.0 0.0 0.0 100.0 0.0 0.0

telecom 72.3 21.5 3.1 3.1 0.0 100.0 0.0 0.0
64.1 34.2 1.7 0.0 0.0 100.0 0.0 0.0

spacewar 85.0 11.7 3.2 0.0 0.0 97.2 0.5 2.3
76.1 23.0 0.9 0.0 0.0 98.8 0.8 0.4

Table 4. Precision.

Since our approach is flow- and context- insensitive, the
analysis result is safe which means the result of points-
to relationships contains all the possibilities that may oc-
cur at run-time. The smaller the points-to object set is, the
more useful the result is. However, the precision required is
highly dependent on the application to be analyzed, so we
can not get an absolute measure of precision. Table 4 com-
pares the dereference sites and call sites analyzed by our

tool from the source code and those from the woven byte-
code.

For most cases, the percentage of deference sites with
one item or more items is significantly lower. For some sim-
ple benchmark program such as benchmark bean, our ap-
proach produces the higher percentage of dereference sites
with one or more items. We find that in these benchmarks
some advice bodies, inlined at their shadows by the weav-
ing process, have only a few statements. In these cases, in-
lining eliminates inter-procedure parameters transfer, which
reduces the percentage of deference sites with one or more
items.

From Table 4, we can see the percentage of call sites with
one target from analyzing woven bytecode is a little higher
than those from analyzing source code. Because after weav-
ing a lot of advices become to the Java methods, which are
not polymorphic.

Performance Analysis. We also study the performance
of our analysis algorithm. We use the number of nodes and
edges to represent the scale of pointer assignment graph.
The time for building the pointer assignment graph is mea-
sured for each benchmark. In Table 5, BGT means the time

Program #Node #Edge BGT(ms)
bean 78/108 32/54 63/78
cona1 1088/1107 414/546 468/593
cona2 164/233 52/140 62/125
dcm 696/3283 417/2066 984/39594
figure 61/86 31/44 0/15
nullcheck 558/1978 248/2907 531/11968
quicksort 44/59 18/36 0/15
telecom 166/204 62/118 47/109
spacewar 773/1739 271/1563 735/4078

Table 5. Performance.

of building the pointer assignment graph. From Table 5, we
can see that the pointer assignment graphs built from source
code are smaller than those built from bytecode, and the
building time for the former is shorter than that for the lat-
ter. The reason is that after weaving, some advices are in-
lined into the Java source code, which makes Java source
code contains more statements than that before waving.

Conclusions. In addition to reducing the cost in space
and time, our analysis is also independent from the particu-
lar weaving techniques used to generate the final Java byte-
code. Such feature has some important advantages in per-
forming bytecode level analysis. The aspect-aware points-
to analysis proposed in this paper, is practical to construct,
easy to understand, contains significantly fewer nodes and
edges, enables pre-weaving analysis of interactions between
classes and aspects.

7. Related Work

We next discuss some related work in the area of points-
to analysis for Java in particular and the flow-insensitive
and context-insensitive points-to analysis in general. To the

151

best of our knowledge, our points-to analysis algorithm pre-
sented in this paper is the first one for AspectJ programs.

In the past several years, points-to analysis [6, 16] has
been an active research field. A very good overview of the
current state of algorithms and metrics for points-to analy-
sis are given by Hind [11]. How well the algorithms scale
to large programs is an important issue. Trade-offs are made
between efficiency and precision by various points-to anal-
ysis. On one hand, with less precise results equality-based
analysis [16] runs in almost linear time. On the other hand,
with cubic worst-case complexity subset-based analysis [6]
produces more precise results.

The points-to analysis used for C to Java [12, 15] is
adapted by several groups. Andersen’s analysis is extended
by RMR analysis [15] to efficiently represent and solve sys-
tems of annotated inclusion constraints. The annotations
play two roles in our analysis of which method annota-
tions are used to model the semantics of virtual calls pre-
cisely and efficiently, and field annotations allow us to dis-
tinguish between different fields of an object. In addition,
RMR analysis keeps track of all reachable methods in order
to avoid analyzing irrelevant library code. Lhotak and Hen-
dren [12] use a framework called SPARK, which allows ex-
perimentation with many variations of points-to analysis for
Java to implement points-to solvers that are more efficient in
time and space than the other reported work, including that
of Whaley and Lam [18]. They make it the most efficient
Java points-to analysis solver of which we have ever known.
SPARK is implemented as the part of Soot bytecode analy-
sis, optimization, and annotation framework which uses the
Jimple intermediate representation as the input, rather than
the Java source code directly. However, our analysis tool
uses the AspectJ source code as input.

8. Concluding Remarks

In this paper, we propose a flow- and context-insensitive
points-to analysis for AspectJ. Our analysis adopt some
successful ideas from the points-to analysis for Java. We
showed how our analysis can be extended to cross the
boundary between a class and its related aspects, and there-
fore the analysis produces fine precise analysis results as for
Java programs. The main features of our approach are to get
information related to those statements that use join points
and the information of aspects that will be attached to these
statements through the join points. By doing so, the analy-
sis can correctly handle aspects efficiently.

There are several plans in our minds. First, since user
code and library code have intricate interconnections, we
will extend existing model to consider both the user code
and library code. Second, we will improve our analysis ap-
proach to deal with AspectJ features better. Third, we also
plan to do the flow- and context-sensitive points-to analy-
sis for AspectJ programs.

Acknowledgements
This work was supported in part by National High Tech-

nology Development Program of China (Grant No.
2006AA01Z158), National Natural Science Foundation of
China (NSFC) (Grant No. 60673120), and Shanghai Pu-
jiang Program (Grant No. 07pj14058). We would like to
thank Sai Zhang, Si Huang and Cheng Zhang for their dis-
cussion on this work.

References

[1] The AspectBench Compiler. http://abc.comlab.ox.
ac.uk/.

[2] AspectJ compiler 1.5, May 2005. http://www.
eclipse.org/aspectj/.

[3] AspectJ Development Tools (AJDT). http://www.
eclipse.org/ajdt/.

[4] Soot. http://www.sable.mcgill.ca/soot.
[5] The AspectJ Team.The AspectJ Programming Guide, 2002.
[6] L. Andersen. Program analysis and specialization for the C

programming language. Technical Report 94-19, University
of Copenhagen, 1994.

[7] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhotak, O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. Optimising AspectJ. In In PLDI, pages 117–
128, 2005.

[8] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++
virtual function calls. pages 324–341.

[9] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Workshop on
Advanced Separation of Concerns, OOPSLA 2000, 2000.

[10] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.Videira,
J.M.Loingtier, and J.Irwin. Aspect-oriented programming.
In In Proc. of ECOOP 1997, 2002.

[11] M. Hind. Pointer analysis: Haven’t we solved this prob-
lem yet? In 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
(PASTE’01), Snowbird, UT, 2001.

[12] O. Lhotak and L. Hendren. Scaling Java points-to analy-
sis using SPARK. In Proc. Conf. Compiler Construction,
2622:153–169, 2003.

[13] D. Liang, M. Pennings, and M. J. Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to
analyses for Java. pages 73–79, 2001.

[14] C. Razafimahefa. A study of side-effect analyses for Java. In
Master’s thesis, McGill University, Dec. 1999., 1999.

[15] A. Rountev, A. Milanova, and B. Ryder. Points-to analy-
sis for Java based on annotated constraints. Technical Re-
port DCS-TR-424, Rutgers University, Nov 2000.

[16] B. Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages, pages
32–41, 1996.

[17] M. Streckenbach and G. Snelting. Points-to for Java: A gen-
eral framework and an empirical comparison. Technical re-
port, University Passau, nov 2000.

[18] J. Whaley and M. S. Lam. An efficient inclusion-based
points-to analysis for strictly-typed languages. In Proceed-
ings of the 9th International Static Analysis Symposium,
September 2002.

[19] G. Xu and A. Rountev. Regression test selection for AspectJ
software. In In Proc. of the 29th International Conference
on Software Engineering, pages 65–74.

152

