
Aspect-Aware Points-to
Analysis

Qiang Sun Jianjun Zhao
Shanghai Jiao Tong University

http://stap.sjtu.edu.cn/

OutlineOutline
• Introduction
• Points-to analysis for Java
• Motivating examples
• A semantics for points-to analysis of

AspectJ
• Evaluation
• Related work
• Concluding Remarks

Introduction of AOPIntroduction of AOP
• Aspect-Oriented Programming (AOP)

– AOP has been proposed as a technique for
improving separation of concerns in software
design and implementation.

– AspectJ (a seamless aspect-oriented
extension to Java)

IntroductionIntroduction of AOPof AOP
• Weaving

The process of combining aspect and
object models to create the desired
runtime behavior
– Can happen at build time or dynamically

during runtime
– Depending on technology, what to weave

specified programmatically or declaratively

• An AspectJ program can be divided into two parts:
– Base code, that is, language constructs as in Java
– Aspect code, includes aspectual constructs, like join points,

pointcuts, pieces of advice, intertype declarations.

• A Simple Example:
aspect A {

pointcut exePoints():

execution(* C.m());

after(): exePoints(){ ... }

}

class C {

void m(){...}

}

AspectJAspectJ SemanticSemantic

aspect

pointcut

advice
join point

PointsPoints--ToTo AnalysisAnalysis
• Compute objects each variable can point to

– For each variable x, points-to set pt(x)
• Andersen’s Analysis (Andersen, PhD thesis 1994)

– One abstract location for each allocation site
x = new C() yields pt(x) = { o1 }

– View pointer assignments using a constraint graph
– Propagate points-to relations along the edges of the

constraint graph, adding new edges as indirect
constraints are resolved

• Context- and flow-insensitive
– Context-insensitive: different invocation contexts

without separation
– Flow-insensitive: statements in any order

FlowFlow-- and Contextand Context--Insensitive Insensitive
PointsPoints--to Analysis for Javato Analysis for Java

p@main@X

2

1

r@void set(Y r)@X

this@void set(Y r)@X

q@main@X

l@main@X

• Points-to information representation in
RMR* analysis

*A. Rountev, A. Milanova, and B. Ryder (OOPSLA 2001)

MotivatingMotivating ExamplesExamples
• Aspects in AspectJ are transparent to

classes
– From the source of a class, you can not know

which aspect should be woven into the class.
– If we directly use the existing analysis for

the AspectJ program, the result will be
imprecise.

• In order to handle the unique aspectual
features, a new points-to analysis
technique is needed.

MotivatingMotivating ExamplesExamples

p@main@X

O3

O2

O1

l@ad$2@A

x@ad$1@A

x@ad$2@A

y@ad$1@A
r@void set(Y r)@X

this@void set(Y r)@X

g

g

q@main@X

hf

l@main@X

AA SemanticsSemantics for Pointsfor Points--to to
Analysis of Analysis of AspectJAspectJ

2 : a pS Sϕ a1 : p mS Sϕ a

Pointcut

Call Site Advice

1 2ϕ ϕ ϕ= •

Sm: the actual parameters
at the call site

Sp: the formal parameters
of the pointcut

Sa: the formal
parameters of the advice

A Semantics for PointsA Semantics for Points--to to
Analysis of Analysis of AspectJAspectJ

• To handle pointcuts

1 1

{ , }

() , ()
pS x y

x p y qϕ ϕ

=

= =

• To handle advice

A Semantics for PointsA Semantics for Points--to to
Analysis of Analysis of AspectJAspectJ

(,) : 1(,)after X xx Y yy p xx yy

{ , }aS xx yy=

2 2() , ()xx x yy yϕ ϕ= =

() , ()xx p yy qϕ ϕ= =

Performing PointsPerforming Points--to Analysis to Analysis
for for AspectJAspectJ

• To construct call graph and pointer
assignment graph

• To build up points-to graph based on the
former stage

Performing PointsPerforming Points--to Analysis to Analysis
for for AspectJAspectJ

• Pointer assignment graph
– Allocation site nodes
– Variable nodes
– Field dereference nodes

Performing PointsPerforming Points--to Analysis to Analysis
for for AspectJAspectJ

w
ri

te
[g

]

w
ri te[g]

w
ri

te
[f

]

w
ri

te
[h

]

read[f]
Assignment

EvaluationEvaluation
• Subject programs

• Experiment procedure
– Compare the precision between the existing byte-

code-level Java approach and our source-code-level
approach.

Precision AnalysisPrecision Analysis

Byte-code
approach

Source-code
approach

PerformancePerformance AnalysisAnalysis

Our aspect-aware points-to analysis approach
contains fewer nodes and edges, and improve the
precision significantly.

Byte-code
approach

Source-code
approach

RelatedRelated WorkWork
• Points-to analysis

– A. Rountev, A. Milanova, and B. Ryder
(OOPSLA 2001)

– O. Lhotak and L. Hendren (CC 2003)
– David F. Bacon and Peter F. Sweeney

(OOPSLA 1996)
– B. Steensgaard (POPL 1996)
– L. Andersen (PhD thesis 1994)
– J. Whaley and M. S. Lam (SAS 2002)

ConcludingConcluding RemarksRemarks
• Conclusions

– We proposed an aspect-aware points-to
analysis

– The feature of our analysis
• AspectJ source-code-level
• Flow-insensitive and context-insensitive

• Future work
– Library code
– Flow-sensitive & context-sensitive

Thank you!

