
The Semantics of Abstract Program Slicing

Damiano Zanardini

CLIP, Technical University of Madrid

SCAM’08, Beijing, September 28th, 2008

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 1 / 6

Introductionp

The topic

To slice programs with respect to some properties of their values, not the
values themselves

Motivations

a slice can be too big for practical purposes

we are often interested in properties of data: e.g., why a given
reference is null at a given program point

The outcome

Possibly smaller slices, which are sound with respect to the property of
interest

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 2 / 6

Tools and Methodologyp

Abstract Interpretation

to model properties as abstract domains

to deal with static analysis issues

Quite a theoretical focus

The technical machinery consists of a rule system, static analysis for
invariance, and an algorithm schema

:-) the framework is proven to be sound

:-(nothing implemented so far, no focus on efficiency

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 3 / 6

Examplep

Well-formed lists: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈1, 2, 3, 4, 5, 6, [0]〉
The properties of interest are represented by abstract domains for nullity
and well-formedness:

ρnil ρwf

wellFormed(x) ≡ notNil(x) ∧ lastEl(x).data = 0

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 4 / 6

Examplep

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next; ↑
list1.next := list2; (does nothing!)
list2 := list1; ↑
list1 := tmp;
} Aρwf(list2)?
if (nil(list2) ∨ illFormed(list2)) { ↑

res := nil } else { res := list2 } Aρnil
(res)?

Slicing criterion

The focus is on why res is null (or not) at the end

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 4 / 6

Examplep

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next; ↑
list1.next := list2; (does nothing!)
list2 := list1; ↑
list1 := tmp;
} Aρwf(list2)?
if (nil(list2) ∨ illFormed(list2)) { ↑

res := nil } else { res := list2 } Aρnil
(res)?

Slicing criterion

The focus is on why res is null (or not) at the end

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 4 / 6

Examplep

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next; ↑
list1.next := list2; (does nothing!)
list2 := list1; ↑
list1 := tmp;
} Aρwf(list2)?
if (nil(list2) ∨ illFormed(list2)) { ↑

res := nil } else { res := list2 } Aρnil
(res)?

Slicing criterion

The focus is on why res is null (or not) at the end

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 4 / 6

Examplep

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next; ↑
list1.next := list2; (does nothing!)
list2 := list1; ↑
list1 := tmp;
} Aρwf(list2)?
if (nil(list2) ∨ illFormed(list2)) { ↑

res := nil } else { res := list2 } Aρnil
(res)?

Slicing criterion

The focus is on why res is null (or not) at the end

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 4 / 6

Examplep

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉

list2 := a2;

(does nothing!)

if (nil(list2) ∨ illFormed(list2)) {
res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 4 / 6

What’s upp

What happened?

We could remove a considerable part of the code because the reason for
well-formedness of list2 is elsewhere

When a command can be removed

it preserves some property

x := x + 2 preserves the parity of x

such property was obtained by propagating the slicing criterion
backwards from the end of the program (WLOG)

the final nullity of res is propagated backwards to the well-formedness
of list2

These requirements can be given a semantic characterization

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 5 / 6

My questions (i.e., your questions)p

Going into practice: how can we do it?

decide when commands are invariant on the abstract property

propagate questions backwards (i.e., implement the rule system)

infer data dependencies at the abstract level

implement the algorithm

What is this all about?

Is developing such a framework, and keeping an eye on theory-related
issues

desirable

useful

of any interest

Damiano Zanardini (CLIP, UPM) SCAM’08 Beijing, September 28th, 2008 6 / 6

