

Software Improvement Group

Static Estimation of Test Coverage

Tiago Alves & Joost Visser

September 20, 2009 Arent Janszoon Ernststraat 595-H NL-1082 LD Amsterdam info@sig.nl www.sig.nl

Motivation

Test Coverage in Software Quality assessment:

2

- NO full installation available (missing sources or libraries)
- NO execution (unavailable hardware, time constraints, no reproducible test environment)
 - NO instrumentation of source/byte code

Research questions:

- Is it possible to determine test coverage without running tests?
- What trade-offs can be made between scalability and precision?

Requirements

- Use only static analysis
- Scale to large systems
- Robust against incomplete systems

Solution sketch

Static estimation of test coverage

1. Extract

3

- Extract structural and call information
- Determine set of test classes

2. Slice (modified)

- Slice graph starting from the test methods
- Set of methods reached from test code
- Take into account class initializer calls

3. Count (per class)

- Determine number of defined methods
- Determine number of covered methods

4. Estimate method coverage

- Class level
- Package level
- System level

Experimental design

Data set selection and characterization

• 12 Open-source and proprietary Java systems (1.6k - 267k LOC)

Execution of experiment

- SemmleCode execution (text file export + scripts for CSV conversion)
- XML Clover extraction (XSLT transformations to CSV conversion)
- Custom built java tool to read CSV files and XLS creation

Statistical analysis

- Histograms (distribution)
- Scatter charts (correlation)
- Spearman (correlation)
- Inter-quartile ranges (dispersion)

Statistical analysis (System coverage comparison)

5

System	Static	Clover	Diff
JPacMan	88.06%	93.53%	-5.47%
SIG Certification	92.82%	90.09%	2.73%
G System	89.61%	94.81%	-5.19%
Dom4j	57.40%	39.37%	18.03%
SIG Utils	74.95%	70.47%	4.48%
JGAP	70.51%	50.99%	19.52%
Collections	82.62%	78.39%	4.23%
PMD	80.10%	70.76%	9.34%
R System	65.10%	72.65%	-7.55%
JFreeChart	69.88%	61.55%	8.33%
SIG DocGen	79.92%	69.08%	10.84%
SIG Analyses	71.74%	88.23%	-16.49%

Static estimation of test coverage

Statistical analysis (System coverage through time)

Static coverage Coverage —— Clover coverage Coverage

Spearman correlation: 0.888**

Static estimation of test coverage

Statistical analysis (Class and package coverage comparison)

7

System name	Spearman		
System name	Class	Package	
JPacMan	0.476*	1	
SIG Certification	0.368**	0.520	
G System	0.774**	0.694**	
Dom4j	0.584**	0.620*	
SIG Utils	0.825**	0.778**	
JGAP	0.733**	0.786**	
Collections	0.549**	0.776**	
PMD	0.638**	0.655**	
R System	0.727**	0.723**	
JFreeChart	0.632**	0.694**	
SIG DocGen	0.397**	0.459**	
SIG Analyses	0.391**	0.486**	

Collections

Static and Clover coverage at class level

Static estimation of test coverage

Static coverage

Why the values differ? (Sources of imprecision)

Overestimation	Underestimation		
Control flow	Frameworks / Library call backs		
Dynamic dispatch			
Overloading			
Failing tests			
(when comparing w/ Clover)			
Identification of test cases			

Conclusion

It is possible to determine test coverage without running tests!

9

- Spearman: high correlation between static and clover coverage
- In general static coverage identifies the same values as clover

Trade-offs between scalability and precision?

- Average absolute difference for system coverage: 9%
- Class and Package coverage needs further improvement

Future research

- Use LOC as weight for better estimation
- Merge with Kastrén "Towards a deeper understanding of test coverage"
- More heuristics: McCabe, #Tests, #asserts, Test(LOC) / Code(LOC)

10

Questions?

Static estimation of test coverage