
thr2csp
Toward Transforming Threads into
Communicating Sequential Processes
Robert Lange and Spiros Mancoridis
Drexel University

Monday, September 21, 2009

Multithreaded Programming

Dominant paradigm of concurrent computation

Supported by operating systems, POSIX, Java, many
languages and standard libraries

Shared-memory paradigm

Fast on multicore, SMP, and other platform architectures

Concurrent Programming

Hardware speedup is slowing down, but platforms are
becoming more concurrent.

The degree of assurance and comprehension available
for sequential programs today must be available for
concurrent programs tomorrow.

Vision

GOAL: Improved program understanding, maintenance, and
verification of concurrent programs

Monday, September 21, 2009

Problems with Shared-Memory
Multithreading

Lee, E. 2006. The problem with threads. Computer 39, 5, 33-42.

Built on a non-deterministic foundation

Multithreaded program execution is one (of many)
interleavings of the statements of all threads

Determinism must be bolted on by the programmer

Not composable

Entire program must be analyzed any time a thread is added
or altered

Monday, September 21, 2009

Introduction to CSP with C++CSP

N. Brown and P. Welch, “An Introduction to the Kent C++ CSP Library,”
Communicating Process Architectures, vol. 61, pp. 139-156, 2003.

Monday, September 21, 2009

CSP Solutions to the Problems with
Threads

CSP are deterministic by default

Non-determinism must be bolted on via choice constructs
such as ALTing

Parallelism follows naturally from the network graph

CSP are composable

Adding or altering one process cannot alter the behavior of
another process

Each process can be analyzed independently

Monday, September 21, 2009

CSP

MyProcess = x1?t → x2!(10 * (1 + t)) → SKIP

Monday, September 21, 2009

A C++CSP Process

Channels

Run method

Fully Sequential

Inputs

Outputs

class MyProcess : public csp::CSProcess
{
private:
 csp::Chanin<int> x_in;
 csp::Chanout<int> x_out;
protected:
 void run()
 {
 int t;
 int __tmp_x;
 x_in.read(&t);
 t = 1 + t;
 t = 10 * t;
 x_out.write(&t);
 }
public:
 ...
};

Monday, September 21, 2009

A C++CSP Process

Channels

Run method

Fully Sequential

Inputs

Outputs

class MyProcess : public csp::CSProcess
{
private:
 csp::Chanin<int> x_in;
 csp::Chanout<int> x_out;
protected:
 void run()
 {
 int t;
 int __tmp_x;
 x_in.read(&t);
 t = 1 + t;
 t = 10 * t;
 x_out.write(&t);
 }
public:
 ...
};

Monday, September 21, 2009

A C++CSP Process

Channels

Run method

Fully Sequential

Inputs

Outputs

class MyProcess : public csp::CSProcess
{
private:
 csp::Chanin<int> x_in;
 csp::Chanout<int> x_out;
protected:
 void run()
 {
 int t;
 int __tmp_x;
 x_in.read(&t);
 t = 1 + t;
 t = 10 * t;
 x_out.write(&t);
 }
public:
 ...
};

Monday, September 21, 2009

A C++CSP Process

Channels

Run method

Fully Sequential

Inputs

Outputs

class MyProcess : public csp::CSProcess
{
private:
 csp::Chanin<int> x_in;
 csp::Chanout<int> x_out;
protected:
 void run()
 {
 int t;
 int __tmp_x;
 x_in.read(&t);
 t = 1 + t;
 t = 10 * t;
 x_out.write(&t);
 }
public:
 ...
};

Monday, September 21, 2009

Communication Channels

One2One

One2Any

Any2One

Any2Any

Process 00

Process 10

Monday, September 21, 2009

Communication Channels

One2One

One2Any

Any2One

Any2Any

Process 00

Process 10Process 11 Process 12

Monday, September 21, 2009

Communication Channels

One2One

One2Any

Any2One

Any2Any

Process 00

Process 10

Process 01 Process 02

Monday, September 21, 2009

Communication Channels

One2One

One2Any

Any2One

Any2Any

Process 00

Process 10

Process 01 Process 02

Process 11 Process 12

Monday, September 21, 2009

Communication Channels

One2One

One2Any

Any2One

Any2Any

Synchronous

Asynchronous

FIFO Blocking

Overwriting

Monday, September 21, 2009

Choice Among Channels

Chooses which among
the ready channels to
select

Selection strategies

Random

Round robin

Priority

list<Guard*> guards;

guards.push_back(chan1.inputGuard());
guards.push_back(chan2.inputGuard());

Alternative alt(guards);

int d;

while (true) {
 switch (alt.priSelect()) {
 case 0: // chan1
 chan1.read(&d);
 break;
 case 1: // chan2
 chan2.read(&d);
 break;
 }
}

Monday, September 21, 2009

Choice Among Channels

Chooses which among
the ready channels to
select

Selection strategies

Random

Round robin

Priority

list<Guard*> guards;

guards.push_back(chan1.inputGuard());
guards.push_back(chan2.inputGuard());

Alternative alt(guards);

int d;

while (true) {
 switch (alt.priSelect()) {
 case 0: // chan1
 chan1.read(&d);
 break;
 case 1: // chan2
 chan2.read(&d);
 break;
 }
}

Monday, September 21, 2009

Forking

ScopedForking* fork = new ScopedForking();

One2OneChannel<int> x;
MyProcess* myproc1;
MyProcess* myproc2;

myproc1 = new MyProcess(x.writer());
fork->fork(myproc1);

myproc2 = new MyProcess(x.reader());
fork->fork(myproc2);

delete fork;

ScopedForking
enables
asynchronous
execution

Calling process
waits for the child
process’s
termination when
ScopedForking
falls out of scope

Monday, September 21, 2009

Introducing the thread channels

Monday, September 21, 2009

Asynchronous Any2Any

Buffer size = 1

Overwriting

Persistence -- reads do
not remove data from
channel

Shared Memory Channel
(SHMChannel)

Monday, September 21, 2009

Asynchronous Any2Any

Buffer size = 1

Overwriting

Persistence -- reads do
not remove data from
channel

Shared Memory Channel
(SHMChannel)

2

Monday, September 21, 2009

Lock Channel

Lock

Reads token from channel

Blocks if no token

Unlock

Writes token to channel

No effect if incorrect token
is written

UNLOCK

LOCK

Monday, September 21, 2009

Signal Channel

Bucket synchronization

Wait

Fall into bucket

Signal

Empty bucket

Monday, September 21, 2009

Signal Channel

Bucket synchronization

Wait

Fall into bucket

Signal

Empty bucket

Process 00

Monday, September 21, 2009

Signal Channel

Bucket synchronization

Wait

Fall into bucket

Signal

Empty bucket
Process 00

Monday, September 21, 2009

Strategies to implement threading
as CSP

Monday, September 21, 2009

Steps

1.Create processes

Identify thread entry functions

2.Create channels to link processes together

Identify shared variables (or structs)

3.Transform shared variable accesses into reads/writes on
SHMChannels

4.Handle synchronization

mutexes and condition variables
Monday, September 21, 2009

1. Which functions are threads?

In POSIX threading, there
is no keyword to denote a
thread

Any function with the
correct prototype can be a
thread start function

Must locate thread start
functions called via the
pthread_create function

void* mythr(void*)

pthread_create(?_,?_,mythr,?_)

Monday, September 21, 2009

2. What variables does a thread
access?

Simplifying assumption:
Assume no global shared
variables

Once again, pthread_create
holds the answer

typedef struct {
 pthread_mutex_t xm;
 pthread_cond_t xcv;
 int xst;
 int x;
} shared_t;

int main(...) {
 shared_t s;

 pthread_create(?_,?_,?_,&s);

Monday, September 21, 2009

typedef struct {
 pthread_mutex_t xm;
 pthread_cond_t xcv;
 int xst;
 int x;
} shared_t;

int main(...) {
 shared_t s;

 pthread_create(?_,?_,?_,&s);

2. Transforming shared variables to
thread channels

Monday, September 21, 2009

typedef struct {
 pthread_mutex_t xm;
 pthread_cond_t xcv;
 int xst;
 int x;
} shared_t;

int main(...) {
 shared_t s;

 pthread_create(?_,?_,?_,&s);

2. Transforming shared variables to
thread channels

int main(...) {
 LockChannel s_xm;
 SignalChannel s_xcv;
 SHMChannel<int> s_xst;
 SHMChannel<int> s_x;

 pthread_create(?,?,?,&s);

Monday, September 21, 2009

3. Transforming the thread start
function declaration void* partA(void* arg)

{
 ...
}

Monday, September 21, 2009

3. Transforming the thread start
function declaration void* partA(void* arg)

{
 ...
}class partA : public CSProcess

{
private:
 Chanin<int> xm_in; Chanout<int> xm_out;
 Chanin<int> xcv_in; Chanout<int> xcv_out;
 Chanin<int> xst_in; Chanout<int> xst_out;
 Chanin<int> x_in; Chanout<int> x_out;
protected:
 void run()
 {
 ...
 }
public:
 partA(const Chanin<int>& _xm_in, const Chanout<int>& _xm_out,
 const Chanin<int>& _xcv_in, const Chanout<int>& _xcv_out,
 const Chanin<int>& _xst_in, const Chanout<int>& _xst_out,
 const Chanin<int>& _x_in, const Chanout<int>& _x_out)
 : xm_in(_xm_in),xm_out(_xm_out),xcv_in(_xcv_in),xcv_out(_xcv_out),
 xst_in(_xst_in), xst_out(_xst_out), x_in(_x_in), x_out(_x_out)
 {}
};

Censored: Ugly C++ boilerplate

Monday, September 21, 2009

3. Transforming the thread start
function declaration void* partA(void* arg)

{
 ...
}class partA : public CSProcess

{
private:
 Chanin<int> xm_in; Chanout<int> xm_out;
 Chanin<int> xcv_in; Chanout<int> xcv_out;
 Chanin<int> xst_in; Chanout<int> xst_out;
 Chanin<int> x_in; Chanout<int> x_out;
protected:
 void run()
 {
 ...
 }
public:
 partA(const Chanin<int>& _xm_in, const Chanout<int>& _xm_out,
 const Chanin<int>& _xcv_in, const Chanout<int>& _xcv_out,
 const Chanin<int>& _xst_in, const Chanout<int>& _xst_out,
 const Chanin<int>& _x_in, const Chanout<int>& _x_out)
 : xm_in(_xm_in),xm_out(_xm_out),xcv_in(_xcv_in),xcv_out(_xcv_out),
 xst_in(_xst_in), xst_out(_xst_out), x_in(_x_in), x_out(_x_out)
 {}
};

Censored: Ugly C++ boilerplate

Monday, September 21, 2009

3. Transforming the thread start
function declaration void* partA(void* arg)

{
 ...
}class partA : public CSProcess

{
private:
 Chanin<int> xm_in; Chanout<int> xm_out;
 Chanin<int> xcv_in; Chanout<int> xcv_out;
 Chanin<int> xst_in; Chanout<int> xst_out;
 Chanin<int> x_in; Chanout<int> x_out;
protected:
 void run()
 {
 ...
 }
public:
 partA(const Chanin<int>& _xm_in, const Chanout<int>& _xm_out,
 const Chanin<int>& _xcv_in, const Chanout<int>& _xcv_out,
 const Chanin<int>& _xst_in, const Chanout<int>& _xst_out,
 const Chanin<int>& _x_in, const Chanout<int>& _x_out)
 : xm_in(_xm_in),xm_out(_xm_out),xcv_in(_xcv_in),xcv_out(_xcv_out),
 xst_in(_xst_in), xst_out(_xst_out), x_in(_x_in), x_out(_x_out)
 {}
};

Censored: Ugly C++ boilerplate

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void run()
{
 int lcl_x;
 int lcl_xst;
 int lcl_xm
int lcl_xcv;

 xm_in.read(&lcl_xm);
x_in.read(&lcl_x);

 lcl_x = 1 + lcl_x;
 x_out.write(&lcl_x);
lcl_xst = 1;

 xst_out.write(&lcl_xst);
 lcl_xcv = 1;
xcv_out.write(&lcl_xcv);

 xm_out.write(&lcl_xm);
}

void* partA(void* arg)
{
 int t;
 shared_t* s = (shared_t*) arg;

 pthread_mutex_lock(&s->xm);
 s->x = 1 + s->x;
 s->xst = 1;
 pthread_cond_signal(&s->xcv);
 pthread_mutex_unlock(&s->xm);
}

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void run()
{
 int lcl_x;
 int lcl_xst;
 int lcl_xm
int lcl_xcv;

 xm_in.read(&lcl_xm);
x_in.read(&lcl_x);

 lcl_x = 1 + lcl_x;
 x_out.write(&lcl_x);
lcl_xst = 1;

 xst_out.write(&lcl_xst);
 lcl_xcv = 1;
xcv_out.write(&lcl_xcv);

 xm_out.write(&lcl_xm);
}

void* partA(void* arg)
{
 int t;
 shared_t* s = (shared_t*) arg;

 pthread_mutex_lock(&s->xm);
 s->x = 1 + s->x;
 s->xst = 1;
 pthread_cond_signal(&s->xcv);
 pthread_mutex_unlock(&s->xm);
}

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void run()
{
 int lcl_x;
 int lcl_xst;
 int lcl_xm
int lcl_xcv;

 xm_in.read(&lcl_xm);
x_in.read(&lcl_x);

 lcl_x = 1 + lcl_x;
 x_out.write(&lcl_x);
lcl_xst = 1;

 xst_out.write(&lcl_xst);
 lcl_xcv = 1;
xcv_out.write(&lcl_xcv);

 xm_out.write(&lcl_xm);
}

void* partA(void* arg)
{
 int t;
 shared_t* s = (shared_t*) arg;

 pthread_mutex_lock(&s->xm);
 s->x = 1 + s->x;
 s->xst = 1;
 pthread_cond_signal(&s->xcv);
 pthread_mutex_unlock(&s->xm);
}

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void run()
{
 int lcl_x;
 int lcl_xst;
 int lcl_xm
int lcl_xcv;

 xm_in.read(&lcl_xm);
x_in.read(&lcl_x);

 lcl_x = 1 + lcl_x;
 x_out.write(&lcl_x);
lcl_xst = 1;

 xst_out.write(&lcl_xst);
 lcl_xcv = 1;
xcv_out.write(&lcl_xcv);

 xm_out.write(&lcl_xm);
}

void* partA(void* arg)
{
 int t;
 shared_t* s = (shared_t*) arg;

 pthread_mutex_lock(&s->xm);
 s->x = 1 + s->x;
 s->xst = 1;
 pthread_cond_signal(&s->xcv);
 pthread_mutex_unlock(&s->xm);
}

Monday, September 21, 2009

Strategies to improve the quality of
generated CSP BETA!

Monday, September 21, 2009

Process Simplification Strategies

Predicated wait simplification

Unused read elimination

Empty lock elimination

Monday, September 21, 2009

Process Simplification

xcv_in.read(&lcl_xcv);
xm_in.read(&lcl_xm);
...
xm_out.write(&lcl_xm);

xm_in.read(&lcl_lock);
xst_in.read(&lcl_xst);
if (1 != lcl_xst) {
 xm_out.write(&lcl_xm);
 xcv_in.read(&lcl_xcv);
 xm_in.read(&lcl_xm);
}
...
xm_out.write(&lcl_xm);

pthread_mutex_lock(s->xm);
if (1 != s->xst) {
 pthread_cond_wait(s->xcv, s->xm);
}
...
pthread_mutex_unlock(s->xm);

Monday, September 21, 2009

Process Network Simplification
Strategies

Multiple-read/write elimination / cycle elimination

Channel splitting

Process splitting

Shared Memory Channel Conversion

Lock and Signal Channel Elimination

Monday, September 21, 2009

SHMChannel Splitting

MAIN

THR1

X

Monday, September 21, 2009

SHMChannel Splitting

MAIN

THR1X2

X1

Monday, September 21, 2009

Process Splitting

MAIN

THR1

X

Monday, September 21, 2009

Process Splitting

MAIN1

THR1

X

MAIN2

Monday, September 21, 2009

Channel + Process Splitting

MAIN1

THR1

X2

MAIN2

X1

Monday, September 21, 2009

Wrap-up

Threads are problematic

Threads can be implemented as CSP with functional
equivalence

Simplification steps can reduce complexity of resulting
CSP code semi-automatically

Monday, September 21, 2009

Future Work

Handle sources of side-effects more intelligently (e.g.,
shared pointers)

Strategies to convert shared memory channels to proper
CSP channels and eliminate explicit synchronization

Tools to provide user assistance

Monday, September 21, 2009

Controversy!

Multithreading will be an obstacle to deploying safe,
stable, highly concurrent programs.

Wait, that’s probably not very controversial...

Multithreading is to concurrency what assembly language is
to programming.

Incurring the cost of converting legacy threaded
programs into CSP-style programs may provide long-
term benefits of improved maintainability and improved
opportunity for parallelism.

Monday, September 21, 2009

Thank you.

Monday, September 21, 2009

