thr2csp

Toward Transforming Threads into
Communicating Sequential Processes

Concurrent Programming

~ Hardware speedup is slowing down, but platforms are
becoming more concurrent.

~ The degree of assurance and comprenension available

for sequential programs today must be available for
concurrent programs tomorrow.

GOAL: Improved program understanding, maintenance, and
verification of concurrent programs

Monday, September 21, 2009

Problems with Shared-Memory
Multithreading

Lee, E. 2006. The problem with threads. Computer 39, 5, 33-42.
* Built on a non-deterministic foundation

% Multithreaded program execution is one (of many)
interleavings of the statements of all threads

* Determinism must be bolted on by the programmer
* Not composable

* Entire program must be analyzed any time a thread is added
or altered

Monday, September 21, 2009

Introduction to CSP with C++CSP

N. Brown and P. Welch, “An Introduction to the Kent C++ CSP Library,”
Communicating Process Architectures, vol. 61, pp. 139-156, 2003.

Monday, September 21, 2009

CSP Solutions to the Problems with
Threads

% CSP are deterministic by default

% Non-determinism must be bolted on via choice constructs
such as ALTIng

% Parallelism follows naturally from the network graph

* CSP are composable

% Adding or altering one process cannot alter the behavior of
another process

% Each process can be analyzed independently

Monday, September 21, 2009

CSP

MyProcess = x17t = x2!/(10 * (1 + t)) = SKIP

Monday, September 21, 2009

A C++CSP Process

% Channels

% Run method

* Fully Sequential
* Inputs

* Outputs

class MyProcess : public csp::CSProcess
{
private:
csp: :Chanin<int> x in;
csp: :Chanout<int> x out;
protected:
void run ()
{
LNttt
int tmp x;
X in.read(&t);
t=1 4+ t;
=1 05% %
X out.write(&t) ;

}
public:

&>

Monday, September 21, 2009

A C++CSP Process

*Channels

% Run method

* Fully Sequential
* Inputs

* Outputs

class MyProcess :

{

ll

A 2
ll

void run ()
{
LNttt
int tmp x;
X in.read(&t);
t=1 4+ t;
=1 05% %
X out.write(&t) ;

}
public:

&>

Monday, September 21, 2009

public csp: :CSProcess

A C++CSP Process

% Channels

*Run method

* Fully Sequential

* Inputs

* Outputs

class MyProcess : public csp::CSProcess
{
private:

csp: :Chanin<int> x in;

csp: :Chanout<int> x out;

lll

{
. LNttt

int tmp x;

X in.read(&t);
t=1 4+ t;

=1 05% %

X out.write(&t) ;

* 4
AN EEEEEEEEEESEESEEEEEEEEEEEEENEEENENEEEEEEEERS

Monday, September 21, 2009

A C++CSP Process

class MyProcess : public csp::CSProcess

{
private:
csp: :Chanin<int> x in;

: Channels csp: :Chanout<int> x out;

protected:
* Run method ‘{'oid run ()

_ LRESET
* Fully Sequential bR A

Monday, September 21, 2009

Communication Channels

*OneZOne

% One2Any

Process 00

* Any20ne
* Any2Any

Process 10

Monday, September 21, 2009

Communication Channels

%* One20ne
Process 00
*OneZAny

* Any20ne

* Any2Any

Process 11 B Process 10 B Process 12

Monday, September 21, 2009

Communication Channels

% One20ne

Process 01 B Process 00 @ Process 02

% One2Any

*AnyQOne

* Any2Any

Process 10

Monday, September 21, 2009

Communication Channels

% One20ne

Process 00 @ Process 02

Process 01

% One2Any
* Any20ne

*AnyZAny

Process 10 B Process 12

Process 11

Monday, September 21, 2009

Communication Channels

% One20ne % Synchronous
% One2Any % Asynchronous
* Any20ne * FIFO Blocking

* Any2Any % Overwriting

Monday, September 21, 2009

Choice Among Channels

list<Guard*> guards;

ll

Chooses which among *guards.push back (chanl.inputGuard()) ;*
iguards.push_back(chanZ.inputGuard());5

the ready Channels to ..
select Alternative alt (guards);

int d;

* Selection strategies |
while (true) {

switch (alt.priSelect()) {

% Random case 0: // chanl
chanl.read (&d) ;
% Round robin 2ICaL

case 1: // chan2
chan2.read (&d) ;

* Priority break;
}
}

Monday, September 21, 2009

Choice Among Channels

list<Guard*> guards;

¥ Chooses which among guards.push back (chanl.inputGuard()) ;

th C’ h | t guards.push back (chan2.inputGuard()) ;
e reaqay cnanneis 1o
SeleCt Alternative alt (guards);

int d;

*Selection strategies

llllllllllllllllllllllllllll

switch i(alt.priSelect()): {

% Random mse 0T
chanl.read (&d) ;
%* Round robin break;

case 1: // chan2
chan2.read (&d) ;

* Priority break;
}
}

Monday, September 21, 2009

Forking

* ScopedForking

enables ScopedForking* fork = new ScopedForking() ;
asynChrOnOUS One20neChannel<int> x;
: MyProcess* myprocl;
execution MyProcess* myproc2;
' myprocl = new MyProcess (x.writer())
E Ca!“ng pl’oceSS. fork->fork (myprocl) ;
walits for the child
/ myproc2 = new MyProcess (x.reader());
prOC.eSS .S fork->fork (myproc2) ;
termination when
. delete fork;
ScopedForking e

falls out of scope

Monday, September 21, 2009

INntroducing the thread channels

Monday, September 21 , 2009

Shared Memory Channel
(SHMChannel)

* Asynchronous Any2Any

% Buffer size = 1

% Overwriting

])
% Persistence -- reads do

not remove data from
channel

Monday, September 21, 2009

Shared Memory Channel
(SHMChannel)

* Asynchronous Any2Any

% Buffer size = 1

% Overwriting

])
% Persistence -- reads do

not remove data from
channel

Monday, September 21, 2009

Lock Channel

% Lock

UNLOCK

% Reads token from channel

% Blocks if no token

% Unlock

% Writes token to channel LOCK

% No effect if incorrect token
IS written

Monday, September 21, 2009

Signal Channel

* Bucket synchronization
* Walt

* Fall into bucket
* Signal

* Empty bucket

Monday, September 21, 2009

Signal Channel

* Bucket synchronization

* Wait
% Fall into bucket
% Signal

* Empty bucket

Monday, September 21, 2009

Signal Channel

* Bucket synchronization

* Wait
% Fall into bucket

* Signal

*
Empty bucket

Monday, September 21, 2009

Strategies to implement threading
as CSP

ooooooooooooooooooooooo

Steps

1.Create processes

* ldentify thread entry functions

2.Create channels to link processes together

* |ldentify shared variables (or structs)

3. Transform shared variable accesses into reads/writes on
SHMChannels

4.Handle synchronization

* Mmutexes and condition variables

Monday, September 21, 2009

1. Which functions are threads”?

* |[n POSIX threading, there
IS no keyword to denote a
thread

* Any function with the
correct prototype can be a void* mythr (void*)
thread start function

* Must locate thread start
functions called via the pthread create(? ,? ,mythr,?)
pthread create function

Monday, September 21, 2009

2. What variables does a thread
access?

* Simplifying assumption:
Assume no global shared
variables

* Once again, pthread create typedef struct {

holds the answer pthread mutex t xm;
pthread cond t xcv;
int xst;

Nt X
} shared t;
int main(...) {

shared t s;

pthread create(? ,? ,? ,&s);

Monday, September 21, 2009

2. Transtorming shared variables to
thread channels

typedef struct ({
pthread mutex t xm;
pthread cond t xcv;
int xst;
int x;

} shared t;

int main(...) {
shared t s;

pthread create(? ,? ,? ,&s);

Monday, September 21, 2009

2. Transtorming shared variables to
thread channels

typedef struct { int main (. ... fieeeenan
pthread mutex t xm; : LockChannel s xm; :
pthread cond t xcv; : SignalChannel s xcv; _
int xst; ESHMChannel<int> s xst; :
int x; : SHMChannel<int> s_x;
} shared_t ; ll

pthread create(?,?,?,&s);

(=Y L 2

ink.m2inlaan), |
:shared t s;:;

*
lllllllllllllllllllll

pthread create(? ,? ,? ,&s);

Monday, September 21, 2009

3. Transforming the thread start
funCthn deC‘ara't'On \{roid* partA (void* arg)

}

ooooooooooooooooooooooo

3. Transforming the thread start

llllllllllll

function declaration ohiget ket)

classfpartA}:jpublic CSProcess }
Pl
private:

Chanin<int> xm in; Chanout<int> xm out;

Chanin<int> xcv_in; Chanout<int> xcv_out;
Chanin<int> xst_in; Chanout<int> xst out;
Chanin<int> x_in; Chanout<int> x out;

protected:
void run ()

{
o

Monday, September 21, 2009

3. Transforming the thread start
funCthn deC‘araJ[lOﬂ \{roid* partA (void* arg)

lllllll

class partA : public CSProcess }
{
private:

Chanin<int> xm;in; Chanout<int> Xxm out;

Chanin<int> xcv_in; Chanout<int> xcv_out;

Chanin<int> xst in; Chanout<int> xst out;

Chanin<int> x in; Chanout<int> x out;
protected:

void run ()

lllllll

{
o

Monday, September 21, 2009

3. Transforming the thread start
funCthn deC‘araJ[lOﬂ \{roid* partA (void* arg)

class partA : public CSProcess }
{
PK%MéE% ..

: Chanin<int> xm in; Chanout<int> xm out;

Chan1n<1nt> XCV_ in; Chanout<int> xcv_out;
: Chanin<int> xst in; Chanout<int> xst out;
.Chan1n<1nt> X in; Chanout<int> x out

A 2
lll

{
o

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void* partA (void* arqg) void run ()
{ {
Interts int lcl x;
shared t* s = (shared t*) arg; int lcl xst;
int lcl xm
pthread mutex lock(&s->xm); int lcl xcv;
s->x =1 + s->x;
s->xst = 1; xm in.read(&lcl xm);
pthread cond signal (&s->xcv); X in.read(&lcl x);
pthread mutex unlock (&s->xm) ; TeleX=f s kol ixy
} x out.write(&lcl x);

leloxstas-d
xst out.write(&lcl xst);
Jelixey =17
xcv_out.write(&lcl xcv);

xm out.write(&lcl xm) ;

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void* partA (void* arqg) void run ()
{ {
int t; int-lcl x;
shared t* s = (shared t*) arg; int lcl xst;
int lcl xm
O O s BILCE e
‘s->x = 1 + s->x;
b R R S E xm in.read(&lgl xm) ./

pthread cond signal (&s->x :X in.read(&lcl x);
pthread mutex unlock (&s->xm) ; 2R A RS e A A e S 2
} ix_out.write(&lcl x);
:lcl xst = 1;
ixst
IEIjEEV"Q"T} A
xcv_out.write(&lcl xcv);
xm out.write(&lcl xm) ;

}

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void* partA (void* arqg) void run ()

{ {
int t; int-lcl x;
shared t* s = (shared t*) arg; int lcl xst;
--- » int lCl_xm
fpthread;mutex_lock(&s—>xm); : int lcl xcv;
=T e e S LS e e et A \
s->xst = 1; {km;in.read(&lcl_xm); ;
Pthread cond signal (&s->xcv) ; XTI TEAd {ETEL Y :
{pthread;mutex_unlock(&s—>xm);? Folix=—>1 F "lcl Exs

x out.write(&lcl x);
lel xste=-1>
xst out.write(&lcl xst);

Jelixey =17
xcv _out.write(&lcl xcv);

| e s

{km;put.write(&lcl_xm);

)
]
L/
L 4

Monday, September 21, 2009

3 & 4. Transforming thread bodies

void* partA (void* arqg) void run ()
{ {
int t; int-lcl x;
shared t* s = (shared t*) arg; int lcl xst;
int lcl xm
pthread mutex lock(&s->xm); int lcl xcv;
s->x =1 + s->x;
S S e e e e T S . xm_in.read(&lcl_xm) ;
fpthread;cond_signal(&s—>xcv);} X in.read(&lcl x);
‘ﬁiﬁfééa:ﬁﬁﬁéi:ﬁﬁl3ﬁkT§§:$£ﬁy? TeleX=f s kol ixy
} x out.write(&lcl x);

lel xste=-1>
xst out.write(&lcl xst)j

{IEE:;EQH;"IE %
ixcv_out.write (&lcl xcv) ;;
Xm out Wwrite (41¢Y &m) =

}

Monday, September 21, 2009

Strategies to improve the quality of

generated CSP

ooooooooooooooooooooooo

Process Simplification Strategies

* Predicated wait simplification
% Unused read elimination

* Empty lock elimination

Monday, September 21, 2009

Process Simplification

xm in.read(&lcl lock);

xst_in.read(&lcl_xst); pthread_mutex_lock(s->xm);

if (1 !'= lcl_xst) { 1f (1 != s->xst) {
xm_out.write (&lcl_xm); pthread_cond_wait(s->xcv, s->xm);
Xcv_in.read(&lcl xcv); }

xm in.read(&lcl xm);

}

pthread_mutex_unlock(s->xm);

xm out.write(&lcl xm) ;

Xcv_in.read(&lcl xcv);
xm in.read(&lcl xm);

xm out.write(&lcl xm) ;

Monday, September 21, 2009

Process Network Simplification
Strategies

* Multiple-read/write elimination / cycle elimination
% Channel splitting

% Process splitting
* Shared Memory Channel Conversion

% Lock and Signal Channel Elimination

Monday, September 21, 2009

SHMChannel Splitting

~

ooooooooooooooooooooooo

SHMChannel Splitting

-

ooooooooooooooooooooooo

Process Splitting

~

ooooooooooooooooooooooo

Process Splitting

D

ooooooooooooooooooooooo

Channel + Process Splitting

ooooooooooooooooooooooo

Wrap-up

% Threads are problematic

* Threads can be implemented as CSP with functional
equivalence

% Simplification steps can reduce complexity of resulting
CSP code semi-automatically

Monday, September 21, 2009

Future Work

% Handle sources of side-effects more intelligently (e.g.,
shared pointers)

* Strategies to convert shared memory channels to proper
CSP channels and eliminate explicit synchronization

% Tools to provide user assistance

Monday, September 21, 2009

Controversy!

* Multithreading will be an obstacle to deploying safe,
stable, highly concurrent programs.

* Wait, that’s probably not very controversial...

* Multithreading is to concurrency what assembly language is
to programming.

* Incurring the cost of converting legacy threaded
programs into CSP-style programs may provide long-
term benefits of improved maintainability and improved
opportunity for parallelism.

Monday, September 21, 2009

Thank you.

Monday, September 21, 2009

