

Lightweight techniques for
tracking unique program

statements

Jaime Spacco, Colgate University
jspacco@colgate.edu

Chadd Williams, Pacific University
chadd@pacificu.edu

The problem

● Given two versions of a file...
– track the ancestry of a line as accurately

as possible

● Possible uses:
– Identifying exactly where bugs are

introduced

– Studying software evolution

– Code clone detection

Best available solutions

● Canfora et al.
– LDiff (line difference)

– MSR 2007, ICSE 2009

● Reiss
– large suite of techniques

– ICSE 2008

● Our work
– SDiff (statement difference)

LDiff

Reiss

● Huge suite of techniques
– Combination of simple techniques worked

best on his test suite

● Essentially, a weighted combination of:
– line similarity metric (Levenshtein)

– context similarity metric for surrounding
lines

● More complex techniques available
– Reiss's ICSE 2008 paper lists them all

– didn't perform as well as hybrids of simple
techniques

Our contribution: SDiff

● Statement Diff
● Diff Java statements rather than lines of

text

Finding statements

● Parse Java code to an AST
– use parser from PMD (static style

checker)

● Break the AST into statements
● Turn the statements into a canonical

tokenized format
● match the statements between the two

versions

SDiff

public int f(int x) {
int z=g(x);
int w = getW();
int result=p(z, w, x);
return result; }

public int f(int x)
{

int z=g(x);
int w = getW();
// compute result
int result=p(z,

w,
x);

return result;
}

Matching statements

Advantages of SDiff

● Automatically ignores whitespace,
comments and brackets

● Handles statements broken across
multiple lines

● Can diff by character or by token

Contributions:

● SDiff algorithm
– http://code.google.com/p/sdiff/

● Running best available algorithms:
– on Reiss's test suite

– on a new test suite

Reiss's test suite

● Track 53 lines across 25 revisions of one
source file

● all changes are single lines
– includes adds, deletes and changes

● Only two pairs of adjacent lines

Our test suite

● 20 files from the Eclipse version control
repository

– before and after an edit

– each edit is 3-12 lines

Reiss's test suite

Algorithm Recall %

Reiss w_besti_linei_method 97.7

Reiss w_besti_besti 97.0

LDiff tweaked 85.0

LDiff default 83.0

SDiff 86.2

SDiff, ignore non-executable
statements

96.1

Eclipse test suite

Algorithm Recall %

Reiss w_best_diff 66

Reiss w_smart_best 61

LDiff tweaked 64

LDiff default 45

SDiff tweaked 70

SDiff default 66

Controversial Statement

● You can't match up individual lines
between large diff chunks

– You can only match changes up to N lines

● Some changes shouldn't even have an
ancestry

– a 1-character edit distance to a for loop
header is different if the 40 surrounding
lines have also changed

● Code available:
– http://code.google.com/p/sdiff/

Big questions

● When is it useful to track lines backwards?
– do we care about the ancestry of a curly

brace?

● How large can diff chunks be before we
lose track of them?

Strengths and weaknesses of
each approach

Tasks LDiff Reiss SDiff

Match comments yes yes no

detect edited lines yes yes yes

handle any arbitrary text file yes yes no

Use context of surrounding
lines to assist matching

yes yes yes

supported unordered similarity
metrics

yes no no

detect renamed methods no no yes

detect statements broken
across several lines

no no yes

easy to download and run yes no yes

Strengths and weaknesses of
each approach

Tasks LDiff Reiss SDiff

Match comments yes yes no

detect edited lines yes yes yes

handle any arbitrary text file yes yes no

Use context of surrounding
lines to assist matching

yes yes yes

supported unordered similarity
metrics

yes no no

detect renamed methods no no yes

detect statements broken
across several lines

no no yes

easy to download and run yes no yes

http://code.google.com/p/sdiff/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

