
Properties of Slicing

Definitions

Martin Ward
martin@gkc.org.uk

Software Technology Research Lab

De Montfort University

Is S a slice of P

A Simplistic Definition

• Program S is a slice of Program P taken

with respect to Variable V if when run on

initial state σ

1. P terminates

2. M P σ |V = M S σ |V
(P and S compute the same final value for V)

An Example

x := 1

is a slice of

x := 1

y := 2

And when P fails to terminate?

is

x := 1

a slice of

x := 1

while true do skip od

or

while true do skip od

x := 1

Goal: Characterize Slicing using

Properties

Two kinds

– Floor

– Ceiling

Floor Requirement

• A “floor” requirement describes

“must includes”

• For example

a program must be a valid slice of itself

Ceiling Requirement

• A “ceiling” requirement describes

“must avoids”

• For example

a non-terminating program cannot be

a slice of a terminating program

More formally

• Define a slicing relation as a set of triples

<S,P,X>

– S is a slice of P taken with respect to X

• Slicing relation R satisfies

floor requirement F iff F ⊆ R

ceiling requirement C iff R ⊆ U – C

A Floor Example
Weaken Criterion

If <S,P,X> R and X′  X

then <S,P,X’> R

Example

“if S preserves the final value of a and b
then it preserves the final value of a”

<S,P,{a,b}> R requiries <S,P,{a}> R

Another Floor Example

Truncation

< S1, S1;S2, {X} > must be included

if S2 is X-preserving

Statement S is X-preserving if it does not

change the value of X

(bit of a simplification)

Final Floor Example

Ditchability

The slicing relation should allow deletion

of any code that does not affect the value

of any variable of interest

Ceiling Examples

Termination Preserving

Must avoid <S, P, X> when P terminates
and S does not

iow, all slices of P must terminate when
P terminates

Ceiling Examples

Non-termination Preserving

Must avoid <S, P, X> when P diverges
and S does not

iow, all slices of P must diverge when
P diverges

Ceiling Examples

Behaviour Preserving

<S, P, X> requires that when P terminates

S also terminates

xX x’s final value is the same for S and P

Properties allow Characterizing

Slicing Approaches

• Weiser’s Definition

– Slice S of Program P is an executable program

obtained from P by removing statements, such

that S replicates part of the behaviour of P

• Definition is Termination Preserving

• Definition is not Non-termination Preserving

Slicing Defined using a Lazy

Semantics

• A lazy or demand semantics can be used

to define the semantic of a slice

x = 1

y = 2

z = x * 3 -- demands x but not y

• Does not satisfy Behaviour Preservation

nor Truncation

Slicing Defined using

Semi-refinement

For Programs S1 and S2

S2 is a semi-refinement of S1 provided

1. If S1 terminates on state σ, then S2 also

terminates on σ with the same set of

possible final states

2. If S1 does not terminate, then S2 can do

anything at all

Slicing Defined using

Semi-refinement

Using semi-refinement satisfies

• Weaken

• Identity

• Termination Preservation

• Ditchability

• Truncation

• but not Non-termination Preserving

Properties bound possible

slicing relations

For example, the two properties

Behaviour Preservation

and

Truncation

are sufficient to restrict possible slicing

relations to just one: semi-refinement

Property Relations

Non-termination preservation is

incompatible with ditchability.

Controversial?
Let P be

a = 42
a = 4
while true do skip

Slice P at the end with respect to a
S1:

a = 42
is a slice of P
as is S2:

a = 46

(a poll of attendees showed little controversy as
none thought that S1 nor S2 was a slice of P)

