Deriving Coupling Metrics from Call
Graphs

Simon Allier, Stéphane Vaucher,
Bruno Dufour, Houari Sahraoui

GEODES

Ca= 1D

'i DIRO,

Université de Montréal

Software metrics

= Software metrics are widely used for:
* Quantifying software quality using models
* Predicting software attributes (e.g. fault-proneness)
* Summarizing complex systems
* Studying the evolution of software systems over time

= Metrics are often defined in high-level, language-
agnostic ways

Ambiguity in metric definitions

Metric definitions use high-level concepts that leave
room for different interpretations
* e.g. “class c uses class d”

Even attempts to formalize metric definitions usually
result in ambiguity
* e.g. “methods from class ¢”

The same metric definition can lead to different tool
implementations

Different choices to resolve ambiguity can lead to
wide variations in metric values

Example - Coupling Between Objects (CBO)

= Two distinct classes c and d are coupled if either

e cusesd, or
* dusesc

= A class c uses a class d if either
* ccalls at least one method from d, or
* creads or writes at least one field from d

Q: How to compute the set of classes used by ¢ without
executing the program?

How existing tools compute CBO

Considers method invocations?

Together v Uses declared targets
CKIM v Uses declared targets
MASU v Uses declared targets
POM v Uses declared targets
Aivosto v Uses declared types
Jhawk X Counts referenced types
Powertools X Counts association types
McCabe 1Q X Counts external references

The tools exhibit a wide number of
variations on the same definition

Goals

= Study several factors that can vary between metric
implementations for a sample of existing metrics
* In this talk, we use CBO as a running example

= Evaluate the impact of these factors on computed
metric result

* We focus on two factors: polymorphism and dynamic class
loading (other factors are fixed)

" Formalization of CBO definition for dynamic language
features

" Empirical study
= Related work & conclusions

A more precise definition of CBO

= Recall that two distinct classes ¢ and d are coupled if
either
° cusesd, or
* dusesc

= A class c uses a class d if either

* ¢ polymorphically invokes at least one method
implemented in d, or

* creads or writes at least one field implemented in d

(Note: « implemented in d » excludes superclasses)

Polymorphically invoked methods

= Given a call in method m, how to determine the set
of all methods that can be invoked at runtime?

* This is a well-studied problem in program analysis, i.e. call
graph construction

* Several algorithms exist that make various tradeoffs
between cost and precision

Call graph construction

void main() { void useA(A a) {
B bl = new B(); a.m();
C ¢ = new C(); }
useA(bl); void useB(B b2) {
useB(c); b2.m()
} }
i)
B | m) p. y,

Call graph construction

void main() { void useA(A a) {
B bl = new B(); a.m();
C c = new C(); ¥
user(bl); void useB(B b2) {
useB(c); b2.m()

} }

G

(o) Gt
wE) (D @D G5

Declared Target (DT)

Call graph construction

void main() { void useA(A a) {
B bl = new B(); a.m();
C c = new C(); ¥
useA(bl); void useB(B b2) {
useB(c); b2.m()

} }

G

) <>
»

*
mofc] [ofmo Cam) Com) Cem) ComD
Class Hierarchy Analysis (CHA)

Call graph construction

void main() { void useA(A a) {
B bl = new B(); a.m();
C c = new C(); ¥
user(bl); void useB(B b2) {
useB(c); b2.m()

} }

G

Jro SIS
e
(@ [Gad Cen

Rapid Type Analysis (RTA)

Call graph construction

void main() { void useA(A a) {
B bl = new B(); a.m();
C c = new C(); ¥
user(bl); void useB(B b2) {
useB(c); b2.m()

} }

SIS
W@ B G G

Variable Type Analysis (VTA)

Dynamic class loading

void foo() {
Class ¢ = Class.forName("MyClass");

MyClass obj = (MyClass) c.newInstance();
obj.m();
// Use the object ...

= Two main strategies:
* lgnore dynamic class loading
* Assume all application classes can be loaded reflectively

= To avoid imprecision, we ignore calls to no-arg
constructors from newInstance

Experiments

Experimental setting

Benchmark Classes M

ArgoUML 0.18.1 1237
Azureus 2.1.0.0 1232 250

= 5 call graph algorithms implemented using Soot:
* DT, CHA, RTA
* VTA (no dynamic class loading)
* VTAd (supports dynamic class loading)

= [BM JVM 6.0, Opteron 2Ghz, 8GB RAM, FC7 Linux

Call graph sizes

T A | mress
igoriim | Nodes | cages | odes | _iges

CHA 36872 1113377 27 825 384 330
RTA 36642 1102549 27749 383 650
VTA 32 085 715 109 25377 279 392

VTAd 36632 1858348 27076 613 025

500
|

—— dt

—A— cha
—— rta
—%— via
—&— vtad

400
|

Number of classes
300
|

200
|

100
|

0.0 0.5 1.0 1.5 2.0 25 3.0

log(CBO + 1)

= Conservative algorithms (CHA and VTAd) can underestimate
the amount of dead code

= Unsafe algorithms (DT) can both underapproximate and
overapproximate the amount of dead code

Polymorphism

500

—o— dt

—&— cha
—— rta
—%— via
—— vtad

400

300
|

Number of classes

0.0 0.5 1.0 1.5 2.0 2.5 3.0

log(CBO + 1)

= DT algorithm can underapproximate the coupling as
compared to VTAd for both CBO-In and CBO-Out

= CHA can mainly overapproximate CBO-In

Dynamic class loading

—— dt

—A— cha
—— rta
—%— via
—&— vtad

Number of classes

log(CBO + 1)

= Very significant difference in CBO between VTA and VTAd due
to a non-trivial use of dynamic loading

Related work

Static coupling metrics

* e.g. Chidamber and Kemerer, Briand et al., Briand & Wist
Dynamic coupling metrics

* e.g. Arisholm et al., Yacoub et al.

Metrics & program analysis
* e.g. Harman et al.,, Myers & Binkley

Comparing software metrics tools
* e.g. Lincke et al.

Conclusions

= Sophisticated computation methods are necessary

when capturing coupling in the presence of dynamic
features

" For programs with a non-trivial class hierarchy and a
significant use of polymorphism, the choice of CG
building algorithm can have an important impact on
the computed coupling

= When deciding how to implement a metric tool, one
needs to consider how the metrics will be used

* e.g. program understanding vs. change impact

Additional slides

Running times

T T o | awew
Cr R e R

0:00 0:49 0:49 0:00 0:48 0:48

CHA 5:11 3:59 9:10 3:15 2:28 5:43
RTA 35:43 4:03 39:46 23:46 2:21 26:07
VTA 12:42 2:31 15:13 7:30 0:50 8:20

VTAd 14:47 2:55 17:42 11:44 1:28 13:12

