
Recovering the Memory Behavior
of Executable Programs

Alain KETTERLIN Philippe CLAUSS

Université de Strasbourg (France)

INRIA CAMUS team

SCAM 2010, 12th–13th September
Timişoara (Romania)



Motivation

Research topics

I How does that program access memory?
I Decompiling x86-64 executables

I We use libraries, and multi-language applications
I We need some dynamic capabilities

I Dynamic analysis/optimization/parallelization

Client applications

I Prediction for local adjustments (e.g., prefetching)
I Optimize memory tracing (e.g., for cache simulation)
I Evaluate memory consumption
I Detect parallel sections (and parallelize them)

(Anything related to high-performance computing.)



Loop Nests, Access Functions, and Polyhedra

The target model

I loops, accessing arrays (or memory):
I with linear access functions fn, fm, . . .
I on loop counters i0, i1, . . .
I and parameters~r

for i0 = 0 to u0(~r)
...

for ip = 0 to up(i0, . . . , ip−1,~r)
...
M[f8(i0, . . . , ip,~r)]

= g3(M[f6(i0, . . . , ip,~r)],M[f7(. . .)],. . .)
...

I We know how to deal with such loop nests, i.e., with
polyhedral (linear programming) techniques



Preliminary Analysis

Parsing binaries

I With Pin (for parsing and instrumentation)
I Per-routine analysis
I Rebuild control-flow graph
I Compute dominator tree
I Extract a loop hierarchy

Traps

I Some indirect branches
(→ compiler-specific heuristics)

I Some irreducible loops
(→ technical complications)

calc1_

0x400ab0.1

(exit)

0x400cd4.1

0x400ae8.1

0x400d5b.1

0x400ce0.1

0x400b0a.1

0x400d01.1

0x400d57.1

0x400c4c.1

0x400b13.1

0x400dd1.1 0x400c57.1

0x400b3b.1

0x400c60.1

0x400c44.1



Static Single Assignment

Variables

I GP registers: rsp, rax, rbx, . . .
I SSE registers: xmm1, xmm2, . . .
I Flag register: rflags
I Memory: M, as a whole, with weak updates

Instructions

I use some registers (i.e., versions) and define new registers
I for instance: sub rax, 0x10 really means:

(rax.7,rflags.19) ⇐ SUB(rax.6,0x10)

I memory stores use the previous version of memory
for instance: mov [rsp-0x4], rax really means:

M.9 ⇐ MOV(M.8,rax.3,rsp.8)



Symbolic Expansion

Follow use-def links
...

0x400af5 mov eax, 0x603140 rax.8 ⇐

...

0x400b1d sub r13, 0xedb r13.7 ⇐ r13.6

...

—— rsi.9 = ϕ(rsi.8, rsi.10)

0x400b3b lea r11d, [rsi+0x1] r11.6 ⇐ rsi.9

0x400b3f movsxd r10, r11d r10.9 ⇐ r11.6

0x400b42 lea rdx, [r10+r13*1] rdx.15 ⇐ r10.9, r13.7

...

0x400b4e lea r9, [rdx+0x...] r9.9 ⇐ rdx.15

...

0x400b5c movsd xmm0, [rax+r9*8] xmm0.6 ⇐ M.22, rax.8, r9.9



Example

Expansion stops at

I initial values (routine entry block)
I ϕ-functions (but see below)
I memory accesses (internal data-flow only)
I any instruction beyond the linear integer model

Example
movsd xmm0,[rax+r9*8] @ 0xe28d4b0+8*rsi.9+30416*r15.6
addsd xmm0,[rax+rbx*8] @ 0xe28d4a8+8*rsi.9+30416*r15.6
...
mulsd xmm0,[rax+rdx*8] @ 0x5fba70+8*rsi.9+30416*r15.6
...
movsd xmm0,[rax+r8*8] @ 0xe294b78+8*rsi.9+30416*r15.6
addsd xmm0,[rax+rbx*8] @ 0xe28d4a8+8*rsi.9+30416*r15.6
...



Induction Variable Resolution

Induction variables

I ϕ-functions on loop-heads
I expand external variants→ initial value α

I expand internal variants→ recurrence
I match recurrence with ϕ +β

I introduce a normalized counter: α +I ·β

r.0 = α

r.1 = φ(r.0,r.2)

r.2 = r.1 + β

Example
mov r15d, 0x1 r15.5 ⇐ 0x1

r15.6 = φ(r15.7, r15.5) (0x1) + I*(0x1)

mov esi, 0x1 rsi.8 ⇐ 0x1
rsi.9 = φ(rsi.8, rsi.10) (0x1) + J*(0x1)

lea r11d, [rsi+0x1] r11.6 ⇐ rsi.9 = 0x1+rsi.9
...
mov esi, r11d rsi.10 ⇐ r11.6 = 0x1+rsi.9

add r15d, 0x1 r15.7, rf.29 ⇐ r15.6 = 0x1+r15.6



Loops

After register expansion

for I = 0 to ?
for J = 0 to ?

...
@ 0xe294b88 + 8*J + 30416*I
@ 0xe294b80 + 8*J + 30416*I
@ 0x603148 + 8*J + 30416*I
...
@ 0xe29c250 + 8*J + 30416*I
@ 0xe294b80 + 8*J + 30416*I

Recovering the bounds

I Derive symbolic branching conditions
I Control-flow analysis combines conditions, define trip counts



Evaluation (static)

Methodology

I SPEC programs
I compiled with regular gcc
I measure:

instrumentation ratio =
number of registers needed

number of memory accesses

I results:

Suite Progs -O1 -O3

SPEC OMP-2001 11 0.19 0.16
SPEC CPU-2006 (FP) 17 0.22 0.20
SPEC CPU-2006 (INT) 11 0.32 0.30

(a total of 39 programs)



Tracing

Problem statement
I all memory accesses of the program, for, e.g.,

I cache simulation
I dependence analysis
I ...

I incurs massive slowdowns (≈ 1
3 accesses per inst.)

I but completely accurate

Principle

I Use symbolic expansion to extract:
I memory addresses
I branch conditions

I Instrument register definitions instead of memory accesses
I Let the profiler track the execution and compute effective

addresses



Evaluation (dynamic)

Results

I same program set, two data sets
I measure:

dynamic instrumentation ratio =
number of registers set

number of memory accesses

I results:

Data Suite -O1 -O3

te
st

SPEC OMP-2001 0.16 0.12
SPEC CPU-2006 (FP) 0.28 0.24
SPEC CPU-2006 (INT) 0.78 0.77

re
f SPEC OMP-2001 0.16 0.13

SPEC CPU-2006 (FP) 0.24 0.19
SPEC CPU-2006 (INT) 0.78 0.79



Conclusion

On Tracing

I Surprisingly effective
I Divides tracing time by 2 to 3000 on data-intensive progs
I Pathological cases are easy to detect/handle

On Extracting Usable Models

I Almost perfect on “leaf” loop
(→ vectorization)

I Limited by stack access/spills/...
(→ requires primitive points-to analysis to resolve locals)



Controversial statement(s)

I Source code is not the right level for parallelism detection,
parallelization, . . . , memory consumption, . . .
(anything related to performance re. memory)

I Leave more work for run time
(the compiler should provide alternatives/parameters only)


