Effective static analysis to find concurrency bugs
In Java

Zhi Da (Daniel) Luo, Linda Hillis, Raja Das, Yao Qi
IBM China Software Development Lab

© IBM Corporation 2010

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

Background

= Multicore processors have become mainstream
- Need to develop concurrent software to fully exploit hardware performance

= Difficult and error prone to write Java concurrent program

- Concurrency bugs often not reproducible, due to non-deterministic thread
scheduling

- Fundamental misconceptions about concurrency in Java
- Intentionally fragile code is created to improve performance

= Practical analysis techniques that identify concurrent bugs are
valuable!

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

Existing Analysis Techniques for Concurrency Bugs

= Dynamic analysis
- Can reveal most concurrent bugs, such as data races, deadlock
- Limited to finding bugs in the program paths that are actually executed
- Incurs runtime overhead, thus prevented from running frequently
= Model checking
- Systematically explores all possible thread schedules
- Depends on the construction of a good model
- Suffers from state-space explosion
= Static analysis

- Deep analysis based on graphs
- Gives fewer false negatives
- Reports many false positives (infeasible paths and imprecise program

information)
- Non-scalable to large real-world applications
- Bug patterns matching Area we focus
- Effective to find real bugs to improve

- Efficient analysis, scalable to large applications
- |naccurate, finds both false neqgatives and false positives

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

Our solution: Practical Static Concurrency Bug Patterns Detector
for Real-world Applications (RSAR)

SUMMARY OF BUG PATTERNS

= Define Concurrency Bug Patterns D] Descripiion

VF | Non-atomic Operations on Volatile Field Without A Lock
B e I i 1 Held
COde |d|0ms that VIOlate CorreCt ‘]ava mUItIthreaded IS Inconsistent Synchromized Monitor and Receiver of
H H wait()/notify(notify All()
programmlng praCtlseS LL | java.util.concurrent Lock Leak
DC | Double Checked Locking

- 7 commonly-seen Java multithreaded bug patterns SN | Synchronized and Null Check on The Same Ficld

SW | Spin Wait

. Bug pattern variants that cheat detectors SS | Synchronized Sctter Method Non-synchronized Similarly-

name Getter Method

= Approaches for Different Bug Patterns

- Syntactically match source code with Abstract
Syntax Tree

- Novel but simple heuristics and enhancements for
analysis precision and performance

- e.g. Estimate whether a class is multithreaded or not by
searching synchronization primitives

- Inter-procedural data flow analysis based on WALA
- For efficiency, prune call graph to include only a subset
of necessary methods

- Alias analysis using selective equality predicates
without whole-program alias analysis

doSomething() Lock.lock()

ArrayList.add(xx) myProcedure()

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

= Accuracy

Accuracy & Performance

- Tested with 4 large real-world applications.

- Over 65% warnings are harmful.

Warings

Analysis TIIIIE{IHE

= Performance
- Fast analysis, 16 sec to analyze 5M LOC for the slowest rule.
Experimental Environment:
Intel{R) Pentmi(E) 4 CPU 2.60GHz, 1.5 memory, Windows P Professional, REAR 7.1.0
1D Jetty-7.0.2 (160KLOC. 677 files) Derby-10.5 (542KLOC, 1950 files)
warnings | harmiul | harmless | false pos | analysis tune(mns) || warmings || hanniul | harmless || false pos || analysis tiune(is)
VF 2 100% 0% 0% 462 0 - . - 1,278
IS 0 - - - 684 0 - - - 1,282
DC | 100%% (10 %a 174 1 100% 0% 0% 521
SN 0 - - - b 0 - - - 8
SW 0 - - - 190 0 - 303
SS 1 100% 0% 137 20 100% 852
1D (lasstish- Commerci 19199 files

ANAlYS1S fimne

ms)

VF 1 0% 100%% 3,017 | 0,584
IS 0 - - - 4.400 16.586
DC 12 100% 0% 0% 1.401 4.793
SN 0 - - - 29 60
SW 0 g = = 635 3,011
55 3 2,147 7.605

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

Comparison with existing tool
= RSAR (IBM)

- Accurate and Efficient

- Experiment with 4 large real-world
applications

- Over 65% warnings are real bugs.

- Slowest rule takes 16 sec to analyze
5MLOC application.

- Inter-procedural data flow analysis

= FindBugs (Open source)
- Rich set of multithreaded bug patterns
Fast analysis

- Intra-procedural data flow analysis

- Numerous false positives and false negatives
- Linear scan through the byte code,
- Coarse-grained code match
- Falil to consider bug pattern variants

ID Small test examples Derby-10.5 Jetty-7.0.2

Real Bugs | RSAR | FmdBugs || Real Bugs | RSAR | FmdBugs || Real Bugs | RSAR | FmdBugs
DC 7 7 6 1 1 2 1 1 4
SN 8 8 0 0 0 0 0 0 0
SW 11 11 2 0 0 0 0 0 0
SS 2 2 3 20 20 27 4 4 5

boolean pushStack = false;
try
{

False DCL alarms in FindBugs

IEEE SCAM10, Timisoara

setupContextStack();

EmbedConnection().isClosed();

Simple sync-null-check bug that is not reported in FindBugs

Typical spin wait that is not reported in FindBugs

Static Analysis for Concurrency Bug Patterns

Bugs found in real applications

= Jetty: Non-atomic self-increment operation on
volatile field _set in class SelectorManager
() is confirmed.

Ao Jerry 7.1.0,

/org.eclipse. jetty . io.nio,

/o SelectorManager. java, line 103
private volatile int _set;

public void register(SocketChannel channel, Object

att)
{

int s=_set++;

public void addChange({ Object point)
{

synchronized (_changes)

= Derby: Uses an instance lock to protect static
shared data in EmbedPooledConnection
() is fixed.

EmbedPooledConnection has the unsafe synchraonization as follow:
private static intidCounter = 0;

private synchronized int nextid(

i

return idCounter++;
I
Kristian Wwaanan added a comment - 2800l 0 0856 A

Attached patch 1a, which rermowves the code using incorrect synchronization.

Kristian Waagan added a comment - 2800uli10 1120 Ak

Committed patch 1a to trunk with revision 980089,
Regression tests passed (12836 tests executed).

IEEE SCAM10, Timisoara

Eclipse, Glassfish: Broken double checked
locking bugs are confirmed.

= 13 broken double checked locking bugs found in
Glassfish, confirmed by community developers (

)

= 1 bug found in Eclipse IDE source code, confirmed
and bug state was changed from “Unconfirmed” to

“NeW” ()
136= public static MarkerSupportRegistry getInstance() {
@137 if (singleton == null) {
38 synchronized (creationLock) {
139 if (singleton == null) {
140 Ll thread
141 singleton = new MarkersSupportRegistry().
142 b3
143
144 3}
145 return singleton;
146 }

Widely-used commercial concurrent software:
= Spin wait

124 appM.uninstallApplicationLocal(

125 appName, options, this,
126 opContext.getSessionID(});
127

128 while (waitTarget !'= null)

129 .. // walt for notification

1720

Static Analysis for Concurrency Bug Patterns

Conclusion

= Building an accurate and efficient Java concurrency bug patterns
detector is not so difficult.

- Combine simple code matching analysis with novel heuristics and enhancements
- Use inter-procedural data flow analysis with optimized techniques

= Bug patterns detector is very effective at finding real bugs.

= Concurrency bugs widely exist in real-world applications!

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

Controversial Statement

= Simple analysis tools (e.g. static concurrency bug patterns
detector) suffices to most software developers in practice.

Discussion

= Security vulnerabilities related to concurrency?

IEEE SCAM10, Timisoara

Static Analysis for Concurrency Bug Patterns

Questions?

IEEE SCAM10, Timisoara

