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Static Analysis for Concurrency Bug Patterns

Background

� Multicore processors have become mainstream
- Need to develop concurrent software to fully exploit hardware performance

� Difficult and error prone to write Java concurrent program
- Concurrency bugs often not reproducible, due to non-deterministic thread 

scheduling

- Fundamental misconceptions about concurrency in Java

- Intentionally fragile code is created to improve performance

� Practical analysis techniques that identify concurrent bugs are 
valuable!
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Static Analysis for Concurrency Bug Patterns

Existing Analysis Techniques for Concurrency Bugs

� Dynamic analysis
- Can reveal most concurrent bugs, such as data races, deadlock

- Limited to finding bugs in the program paths that are actually executed

- Incurs runtime overhead, thus prevented from running frequently

� Model checking
- Systematically explores all possible thread schedules

- Depends on the construction of a good model

- Suffers from state-space explosion

� Static analysis
- Deep analysis based on graphs

- Gives fewer false negatives

- Reports many false positives (infeasible paths and imprecise program 
information)

- Non-scalable to large real-world applications

- Bug patterns matching
- Effective to find real bugs

- Efficient analysis, scalable to large applications

- Inaccurate, finds both false negatives and false positives

Area we focus 
to improve
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Static Analysis for Concurrency Bug Patterns

Our solution: Practical Static Concurrency Bug Patterns Detector
for Real-world Applications (RSAR)

� Approaches for Different Bug Patterns
- Syntactically match source code with Abstract 

Syntax Tree
- Novel but simple heuristics and enhancements for 

analysis precision and performance

- e.g. Estimate whether a class is multithreaded or not by 
searching synchronization primitives

- Inter-procedural data flow analysis based on WALA
- For efficiency, prune call graph to include only a subset 

of necessary methods

- Alias analysis using selective equality predicates 
without whole-program alias analysis

� Define Concurrency Bug Patterns
- Code idioms that violate correct Java multithreaded 

programming practises

- 7 commonly-seen Java multithreaded bug patterns

- Bug pattern variants that cheat detectors

M4

M3 M5 M6

M2 Lock.lock()

ArrayList.add(xx) myProcedure()

M1

doSomething()
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Static Analysis for Concurrency Bug Patterns

Accuracy & Performance

Experimental Environment:

� Accuracy
- Tested with 4 large real-world applications.

- Over 65% warnings are harmful.

� Performance
- Fast analysis, 16 sec to analyze 5M LOC for the slowest rule.
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Static Analysis for Concurrency Bug Patterns

Comparison with existing tool

� FindBugs (Open source)
- Rich set of multithreaded bug patterns

- Fast analysis

- Intra-procedural data flow analysis

- Numerous false positives and false negatives
- Linear scan through the byte code, 
- Coarse-grained code match
- Fail to consider bug pattern variants

� RSAR (IBM)
- Accurate and Efficient

- Experiment with 4 large real-world 
applications

- Over 65% warnings are real bugs.

- Slowest rule takes 16 sec to analyze 
5MLOC application.

- Inter-procedural data flow analysis

False DCL alarms in FindBugs

Typical spin wait that is not reported in FindBugs

Simple sync-null-check bug that is not reported in FindBugs
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Static Analysis for Concurrency Bug Patterns

Bugs found in real applications

� Jetty: Non-atomic self-increment operation on 
volatile field _set in class SelectorManager 
(JETTY-1187) is confirmed.

� Eclipse, Glassfish: Broken double checked 
locking bugs are confirmed.

� 13 broken double checked locking bugs found in 
Glassfish, confirmed by community developers (Bug-
11383)

� 1 bug found in Eclipse IDE source code, confirmed 
and bug state was changed from “Unconfirmed” to 
“New” (Bug 302536)

� Derby: Uses an instance lock to protect static 
shared data in EmbedPooledConnection 
(DERBY-4723) is fixed.

� Widely-used commercial concurrent software: 
� Spin wait
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Static Analysis for Concurrency Bug Patterns

Conclusion

� Building an accurate and efficient Java concurrency bug patterns
detector is not so difficult.
- Combine simple code matching analysis with novel heuristics and enhancements

- Use inter-procedural data flow analysis with optimized techniques

� Bug patterns detector is very effective at finding real bugs.

� Concurrency bugs widely exist in real-world applications!
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Static Analysis for Concurrency Bug Patterns

Controversial Statement

� Simple analysis tools (e.g. static concurrency bug patterns 
detector) suffices to most software developers in practice.

Discussion

� Security vulnerabilities related to concurrency?
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Static Analysis for Concurrency Bug Patterns

Questions?


