
© IBM Corporation 2010IEEE SCAM10, Timisoara

Effective static analysis to find concurrency bugs Effective static analysis to find concurrency bugs 
in Javain Java

Zhi Da (Daniel) Luo, Linda Hillis, Raja Das, Yao Qi
IBM China Software Development Lab



IEEE SCAM10, Timisoara2

Static Analysis for Concurrency Bug Patterns

Background

� Multicore processors have become mainstream
- Need to develop concurrent software to fully exploit hardware performance

� Difficult and error prone to write Java concurrent program
- Concurrency bugs often not reproducible, due to non-deterministic thread 

scheduling

- Fundamental misconceptions about concurrency in Java

- Intentionally fragile code is created to improve performance

� Practical analysis techniques that identify concurrent bugs are 
valuable!



IEEE SCAM10, Timisoara3

Static Analysis for Concurrency Bug Patterns

Existing Analysis Techniques for Concurrency Bugs

� Dynamic analysis
- Can reveal most concurrent bugs, such as data races, deadlock

- Limited to finding bugs in the program paths that are actually executed

- Incurs runtime overhead, thus prevented from running frequently

� Model checking
- Systematically explores all possible thread schedules

- Depends on the construction of a good model

- Suffers from state-space explosion

� Static analysis
- Deep analysis based on graphs

- Gives fewer false negatives

- Reports many false positives (infeasible paths and imprecise program 
information)

- Non-scalable to large real-world applications

- Bug patterns matching
- Effective to find real bugs

- Efficient analysis, scalable to large applications

- Inaccurate, finds both false negatives and false positives

Area we focus 
to improve



IEEE SCAM10, Timisoara4

Static Analysis for Concurrency Bug Patterns

Our solution: Practical Static Concurrency Bug Patterns Detector
for Real-world Applications (RSAR)

� Approaches for Different Bug Patterns
- Syntactically match source code with Abstract 

Syntax Tree
- Novel but simple heuristics and enhancements for 

analysis precision and performance

- e.g. Estimate whether a class is multithreaded or not by 
searching synchronization primitives

- Inter-procedural data flow analysis based on WALA
- For efficiency, prune call graph to include only a subset 

of necessary methods

- Alias analysis using selective equality predicates 
without whole-program alias analysis

� Define Concurrency Bug Patterns
- Code idioms that violate correct Java multithreaded 

programming practises

- 7 commonly-seen Java multithreaded bug patterns

- Bug pattern variants that cheat detectors

M4

M3 M5 M6

M2 Lock.lock()

ArrayList.add(xx) myProcedure()

M1

doSomething()



IEEE SCAM10, Timisoara5

Static Analysis for Concurrency Bug Patterns

Accuracy & Performance

Experimental Environment:

� Accuracy
- Tested with 4 large real-world applications.

- Over 65% warnings are harmful.

� Performance
- Fast analysis, 16 sec to analyze 5M LOC for the slowest rule.



IEEE SCAM10, Timisoara6

Static Analysis for Concurrency Bug Patterns

Comparison with existing tool

� FindBugs (Open source)
- Rich set of multithreaded bug patterns

- Fast analysis

- Intra-procedural data flow analysis

- Numerous false positives and false negatives
- Linear scan through the byte code, 
- Coarse-grained code match
- Fail to consider bug pattern variants

� RSAR (IBM)
- Accurate and Efficient

- Experiment with 4 large real-world 
applications

- Over 65% warnings are real bugs.

- Slowest rule takes 16 sec to analyze 
5MLOC application.

- Inter-procedural data flow analysis

False DCL alarms in FindBugs

Typical spin wait that is not reported in FindBugs

Simple sync-null-check bug that is not reported in FindBugs



IEEE SCAM10, Timisoara7

Static Analysis for Concurrency Bug Patterns

Bugs found in real applications

� Jetty: Non-atomic self-increment operation on 
volatile field _set in class SelectorManager 
(JETTY-1187) is confirmed.

� Eclipse, Glassfish: Broken double checked 
locking bugs are confirmed.

� 13 broken double checked locking bugs found in 
Glassfish, confirmed by community developers (Bug-
11383)

� 1 bug found in Eclipse IDE source code, confirmed 
and bug state was changed from “Unconfirmed” to 
“New” (Bug 302536)

� Derby: Uses an instance lock to protect static 
shared data in EmbedPooledConnection 
(DERBY-4723) is fixed.

� Widely-used commercial concurrent software: 
� Spin wait



IEEE SCAM10, Timisoara8

Static Analysis for Concurrency Bug Patterns

Conclusion

� Building an accurate and efficient Java concurrency bug patterns
detector is not so difficult.
- Combine simple code matching analysis with novel heuristics and enhancements

- Use inter-procedural data flow analysis with optimized techniques

� Bug patterns detector is very effective at finding real bugs.

� Concurrency bugs widely exist in real-world applications!



IEEE SCAM10, Timisoara9

Static Analysis for Concurrency Bug Patterns

Controversial Statement

� Simple analysis tools (e.g. static concurrency bug patterns 
detector) suffices to most software developers in practice.

Discussion

� Security vulnerabilities related to concurrency?



IEEE SCAM10, Timisoara10

Static Analysis for Concurrency Bug Patterns

Questions?


