Equational Reasoning of x86
Assembly Code

Kevin Coogan and Saumya Debray
University of Arizona, Tucson, AZ




Assembly Code is Source Code

* Commercial libraries often do not come
with source code, but there security and
correctness influence the overall system.

* Operating system modules may include
hand-written assembly code to interface
to specific hardware.

* Malware is often written in assembly to
take advantage of security holes.




Assembly Code Issues

Xx86 assembly presents
interesting challenges
during analysis

1438:
14309:
1440:
14417

2017:
2039:
2314:
2315:

2316:
2317:

mov ecx, [esi]

sub ebp, 0x4

pushf

mov [ebp+0x0], eax

shr eax, cl

add [ebp+0x4], eax

mov al, [esi]

inc esi

movzx eax, al

jmp dword near [eax*4+0x405091]




Assembly Code Issues

Many instructions 1438: mov ecx, [esi]
have implicit 1439: sub ebp, Ox4
functionality, such as 1440: pushf

the subtract operation 1441 mov [ebprOxDl, eax
affecting the value of 2017: shr eax, cl

the eflags register, or
the push and pop

2039: add [ebp+0x4], eax

operations changing 2314: mov al, [esi]
the value of the stack 2315: inc esi
pointer. 2316: movzx eax, al

2317: jmp dword near [eax*4+0x405091]




Assembly Code Issues

User registers in x86
may be referenced by
different names. For
example, the “cl”
register is also the
lower 8 bits of the
“ecx” register. These
dependencies must be
handled in analysis.

1438:
1439:
1440:
1441

2017:
2039:
2314:
2315:

2316:
2317:

mov ecx, [esi]

sub ebp, 0x4

pushf

mov [ebp+0x0], eax

shr eax, cl

add [ebp+0x4], eax

mov al, [esi]

inc esi

movzx eax, al

jmp dword near [eax*4+0x405091]




Assembly Code Issues

* X86 assembly code is typically much
larger than source code, in terms of
number of instructions.

* When code is intentionally
obfuscated, the number of
instructions may be arbitrarily large.

* The example from VMProtect on the
next slide converted 2 instructions
Into over 800.




Obfuscated Malware

1438: mov ecx, [esi]
1439: sub ebp, 0x4
1440: pushf

1000: dec ebx - 1441: mov [ebp+0x0], eax
1001: jnz 0x01000 o1,

shr eax, cl
2039: add [ebp+0x4], eax

2314: mov al, [esi]

2315: inc esi

2316: movzx eax, al

2317: jmp dword near [eax*4+0x405091]




Solution must handle:

* Implicit functionality

* Dependencies due to accessing partial
values

* Increase in overall size of trace




Implicit Functionality

We handle implicit
functionality by converting
each instruction into an
equivalent set of equations

* push eax cesp:=esp—4
* valueAt(0x1000) := eax




Accessing Partial Values

There are several cases where partial
accesses of values can occur. Refer to
the paper for full details.

valueAt(esi) := 4
ecx := valueAt(esi)

eax := eax >> cl




Accessing Partial Values

In all cases, we instrument the
equations so that a unique and precise
definition for each use is available.

valueAt(esi) := 4
ecx := valueAt(esi)
cl := Restrict(ecx, Ox000000ff)

eax := eax >> cl




Simplification

If we want to know something about
the calculation of eax, we can look at
the values used to calculate it...

valueAt(esi) := 4
ecx := valueAt(esi)
cl := Restrict(ecx, 0Ox000000ff)

eax := eax >> cl




Simplification

... and substitute the right hand side of
the definition at that point.

valueAt(esi) := 4
ecx := valueAt(esi)

eax := eax >> Restrict(ecx, 0x000000ff)




Simplification

We can repeat this process for all
uses...

valueAt(esi) :=4
ecx := valueAt(esi)

eax := eax >> Restrict(ecx, 0x000000ff)




Simplification

...over and over...

valueAt(esi) :=4

eax := eax >> Restrict(valueAt(esi), 0x000000ff)




Simplification

valueAt(esi) := 4

eax := eax >> Restrict(valueAt(esi), 0x000000ff)




Simplification

...and simplify as we go...

eax := eax >> Restrict(4, 0x000000ff)




Simplification

Until we have calculated a simplified
expression for our variable of interest.

eax :=eax>>4




Uses for equational reasoning

* Our system is very general, but we had a
specific application in mind.
* For virtualization-obfuscated malware,

we wanted to find conditional control
flow statements in a dynamic trace.

* On next slide, we see one example of our
results. The original 800+ line example is
analyzed, and revealed to contain a
conditionally calculated target address.




Handling Indirection

By applying our reasoning to all memory accesses, we
identify conditional control flow hidden by multiple layers

of indirection.

1438

1439:
1440:
1441:

2017:
2039:
2314:
2315:

2316:
2317:

: mov ecx, [esi]
sub ebp, 0x4 ‘
pushf €aX,s6 := 0X0012ff74 + ...
mov [ebp+0x0], eax Flag(...atoi(0x003548€1)...
shr 0x04)
shr eax, cl
eSi,31, := 0x00405765
add [ebp+0x4], eax eax,3,, := 0x0000002d
mov al, [esi]
inc esi
movzx eax, al

jmp dword near [eax*4+0x405091]




Equational Reasoning

* Handles challenges of x86 assembly code
* Handles indirection in general

* Works well on obfuscated malware




Questions ?




