
A Constraint Programming Approach to Conflict-
aware Optimal Scheduling of Prioritized Code

Clone Refactoring

Minhaz Fahim Zibran
PhD Student

Chanchal K. Roy
Assistant Professor

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

2

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

2

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

2

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

2

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

2

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

2

Minhaz Zibran, University of Saskatchewan

Background: effect of cloning

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);

//........ more statements	 	
writer.close();

} catch (IOException e) {
e.printStackTrace();	

}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

PrintWriter writer = null;
try {
	 writer = new PrintWriter(new FileWriter(file));
	 writer.write(...);
 //........ more statements	 	
 //writer.close();
} catch (IOException e) {
 e.printStackTrace();	
}	 	

2

Minhaz Zibran, University of Saskatchewan

The Problem

3

Minhaz Zibran, University of Saskatchewan

The Problem

3

Minhaz Zibran, University of Saskatchewan

The Problem

3

effort

quality

priority

Minhaz Zibran, University of Saskatchewan

The Problem

3

effort

quality

priority

Minhaz Zibran, University of Saskatchewan

The Problem

3

effort

quality

priority

- order dependency
[Lee et al. 2010]

- mutual exclusion
[Liu et al. 2008]

- mutual inclusion
[Yoshida et al. 2005]

Minhaz Zibran, University of Saskatchewan

Mathematical Model

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, CanadaDefinition 2 (Mutual exclusion): Two refactorings ri and

rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Subject to,

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

4

Minhaz Zibran, University of Saskatchewan

Mathematical Model

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, CanadaDefinition 2 (Mutual exclusion): Two refactorings ri and

rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Subject to,

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

4

Objective function

Minhaz Zibran, University of Saskatchewan

Mathematical Model

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, CanadaDefinition 2 (Mutual exclusion): Two refactorings ri and

rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Subject to,

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

Definition 2 (Mutual exclusion): Two refactorings ri and
rj are said to be mutually exclusive, if both ri � rj and
ri � rj holds. The mutual exclusion between ri and rj is
denoted as, ri � rj or rj � ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj

are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [20], [21], [31].

VI. FORMULATION OF REFACTORING SCHEDULE

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [19], [20]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and thus, a feasible optimal
(near-optimum) solution is desired. However, the problem is
by nature a CSOP. We thus model the problem as a CSOP
and solve it by applying constraint programming technique,
which no one attempted before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
�

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
�

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.
We also define a |R|×|R| constraint matrix Z to capture the

constraints and sequential dependencies between refactorings
ri and rj , such that,

Zij =






0 if ri⊥rj

1 if ri � rj

+2 if rj � ri and ri ↔ rj

−2 if ri � rj and ri ↔ rj

+3 if rj � ri, but neither ri ↔ rj nor ri � rj

−3 if ri � rj , but neither ri ↔ rj nor ri � rj

Also note that, Zij = −Zji or Zij = Zji = 1, for all �i, j�.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be defined as follows.

maximize
�

r∈R
Xrρr(Qr − E(gr)) (1)

subject to,

Xr + Yr �= 1, ∀ r ∈ R (2)
Xri + Xrj = 2 ⇒ Yri �= Yrj , ∀ ri, rj ∈ R (3)
Zij − Zji > 0 ⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij − Zji < 0 ⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1 ⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2 ⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)
�

r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri � rj) on feasible sched-
ules. Mutual exclusion (i.e., ri � rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization

Studio 12.2. Constraint programming is a recent
methodology that combines techniques from AI and OR,
and it has been proved to be very effective in solving
combinatorial optimization problems, specially in the area of
scheduling and planning [4], [35]. Over the past decade, a
separate conference series1 is held in quest of the scopes to
integrate and combine AI and OR techniques in CP.

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software
research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling
of refactorings?

1International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR)

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

4

Objective function

Constraints

Minhaz Zibran, University of Saskatchewan

Implementation

• Constraint Programming

• OPL Implementation

• IBM ILOG CPLEX Optimization Studio
12.2

5

Minhaz Zibran, University of Saskatchewan

Effort Estimation

• Refactoring Effort Model

- Understanding the Context

‣ method delegation

‣ inheritance hierarchy

- Code Modification Effort

‣ token modification

‣ code relocation

- Navigation Effort

‣ Dispersion of source files

6

Minhaz Zibran, University of Saskatchewan

Effect EstimationHere, DCH(g) refers to the dispersion of class hierarchy

having ∂(Ci, Cj) denoting the distance between class Ci

and class Cj in the inheritance hierarchy. More detail about
DCH(g) can be found elsewhere [11]. DFH(g) is a similar
metric that captures the dispersion of files, and ð(Fi, Fj)
denotes the distance between files Fi and Fj in the file-system
hierarchy.

Thus, the total effort E(g) needed to refactor clone-group
g is estimated as,

E(g) = wd × Ed(g) + wh × Eh(g)
+ wt × Et(g) + wr × Er(g) + wn × En(g)

where wd, wh, wt, wr, and wn are respectively the wights on
the efforts for understanding method delegation, understanding
inheritance hierarchy, token modification, code relocation, and
navigation. By default, they are set to one, but the software
engineer may assign different weights to penalize certain types
of efforts.

IV. PREDICTION OF REFACTORING EFFECTS

The expected benefit from code clone refactoring is the
structural improvement in the code base, which should also
enhance the software design quality. Obvious expected benefits
include reduced source lines of code (SLOC), less redundant
code, and so on. For procedural code, procedural metrics
(e.g., SLOC, Cyclomatic Complexity) as well as structural
metrics (e.g., fan-in, fan-out, and information flow) can be
used to estimate software quality after refactoring. For object-
oriented systems, these metrics can be supplemented by object-
oriented design metrics, such as QMOOD [3] and Chidamber-

Kemerer [6] metric suites. Quantitative or qualitative estima-
tion of the effect of refactoring on the quality metrics can be
possible before the actual application of the refactoring [5],
[20], [26], [29], [30].

Having chosen a suitable set of quality attributes, let, Q =
{q1, q2, q3, . . . , qη} be the set of quality attribute values before
refactoring, and Qr = {q�

1, q
�
2, q

�
3, . . . , q

�
η} be the estimated

values of those quality attributes after applying refactoring r.
The improvement in quality can be assessed by comparing the
quality before and after refactoring. Hence, the total gain in
quality Qr from refactoring r can be estimated as,

Qr =
η�

j=1

ϑj × (q�
j − qj)

where ϑj is the weight on the j
th quality attribute. By default,

ϑj = 1, but the software practitioner can assign different
values to impose more or less emphasis on certain quality
attributes.

In our work, we use the QMOOD metric suite for estimating
the effect of refactoring on object-oriented codebase. QMOOD
is a prominent quality model for object-oriented systems,
which is widely used by many other researchers [5], [19],
[20]. We choose QMOOD, mainly because, this quality model
has the advantage that it defines six high level design quality

TABLE I
QMOOD FORMULA FOR QUALITY ATTRIBUTES [3]

Attribute Formula
Reusability = −0.25× DCC + 0.25× CAM + 0.5× CIS

+0.5× DSC
Flexibility = 0.25× DAM− 0.25× DCC + 0.5×MOA

+0.5× NOP
Understandability = −0.33× ANA + 0.33× DAM− 0.33× DCC

+0.33× CAM− 0.33× NOP− 0.33× NOM
−0.33× DSC

Functionality = 0.12× CAM + 0.22× NOP + 0.22× CIS
+0.22× DSC + 0.22× NOH

Extendability = 0.5× ANA− 0.5× DCC + 0.5×MFA
+0.5× NOP

Effectiveness = 0.2× ANA + 0.2× DAM + 0.2×MOA
+0.2×MFA + 0.2× NOP

TABLE II
QMOOD METRICS FOR DESIGN PROPERTIES [3]

Design Property Metric Description
Design size DSC Design size in classes
Complexity NOM Number of methods
Coupling DCC Direct class coupling
Polymorphism NOP Number of polymorphic methods
Hierarchies NOH Number of hierarchies
Cohesion CAM Cohesion among methods in class
Abstraction ANA Average number of ancestors
Encapsulation DAM Data access metric
Composition MOA Measure of aggregation
Inheritance MFA Measure of functional abstraction
Messaging CIS Class interface size

attributes (Table I) from the 11 lower level structural property
metrics (Table II).

V. REFACTORING CONSTRAINTS

Among the applicable refactoring activities, there may be
conflicts and dependencies [21]. The application of one refac-
toring may cause elements of other refactorings disappear, and
thus invalidate their applicability [5], [20], [21]. Besides such
mutual exclusion on conflicting refactorings, the application of
one refactoring may also reveal new refactoring opportunities,
as suggested by Lee et. al. [20]. We understand that this is
largely due to the composite structure of certain refactoring
patterns, where one larger refactoring is composed of several
smaller core refactorings [1]. For example, when extract su-

perclass refactoring is applied, pull-up method is also applied
as a part of it. In other words, pull-up method, at times, may
require extraction of new superclass.

There may also be sequential dependencies between refac-
toring activities [20], [21]. Constraints of mutual inclusion

may also arise when the application of one refactoring will
necessitate the operation of certain other refactorings [31].
Moreover, the organization’s management may also impose
priorities on certain refactoring activities [5], for example,
lower priorities on refactoring clones in the critical parts of
the system. We identify such priorities as soft constraints in
addition to the following three types of hard constraints.

Definition 1 (Sequential dependency): Two refactorings ri

and rj are said to have sequential dependency, if ri cannot be
applied after rj . This is denoted as, rj � ri or ri � rj .

QMOOD
[Bansiya and Davis, 2002]

Here, DCH(g) refers to the dispersion of class hierarchy

having ∂(Ci, Cj) denoting the distance between class Ci

and class Cj in the inheritance hierarchy. More detail about
DCH(g) can be found elsewhere [11]. DFH(g) is a similar
metric that captures the dispersion of files, and ð(Fi, Fj)
denotes the distance between files Fi and Fj in the file-system
hierarchy.

Thus, the total effort E(g) needed to refactor clone-group
g is estimated as,

E(g) = wd × Ed(g) + wh × Eh(g)
+ wt × Et(g) + wr × Er(g) + wn × En(g)

where wd, wh, wt, wr, and wn are respectively the wights on
the efforts for understanding method delegation, understanding
inheritance hierarchy, token modification, code relocation, and
navigation. By default, they are set to one, but the software
engineer may assign different weights to penalize certain types
of efforts.

IV. PREDICTION OF REFACTORING EFFECTS

The expected benefit from code clone refactoring is the
structural improvement in the code base, which should also
enhance the software design quality. Obvious expected benefits
include reduced source lines of code (SLOC), less redundant
code, and so on. For procedural code, procedural metrics
(e.g., SLOC, Cyclomatic Complexity) as well as structural
metrics (e.g., fan-in, fan-out, and information flow) can be
used to estimate software quality after refactoring. For object-
oriented systems, these metrics can be supplemented by object-
oriented design metrics, such as QMOOD [3] and Chidamber-

Kemerer [6] metric suites. Quantitative or qualitative estima-
tion of the effect of refactoring on the quality metrics can be
possible before the actual application of the refactoring [5],
[20], [26], [29], [30].

Having chosen a suitable set of quality attributes, let, Q =
{q1, q2, q3, . . . , qη} be the set of quality attribute values before
refactoring, and Qr = {q�

1, q
�
2, q

�
3, . . . , q

�
η} be the estimated

values of those quality attributes after applying refactoring r.
The improvement in quality can be assessed by comparing the
quality before and after refactoring. Hence, the total gain in
quality Qr from refactoring r can be estimated as,

Qr =
η�

j=1

ϑj × (q�
j − qj)

where ϑj is the weight on the j
th quality attribute. By default,

ϑj = 1, but the software practitioner can assign different
values to impose more or less emphasis on certain quality
attributes.

In our work, we use the QMOOD metric suite for estimating
the effect of refactoring on object-oriented codebase. QMOOD
is a prominent quality model for object-oriented systems,
which is widely used by many other researchers [5], [19],
[20]. We choose QMOOD, mainly because, this quality model
has the advantage that it defines six high level design quality

TABLE I
QMOOD FORMULA FOR QUALITY ATTRIBUTES [3]

Attribute Formula
Reusability = −0.25× DCC + 0.25× CAM + 0.5× CIS

+0.5× DSC
Flexibility = 0.25× DAM− 0.25× DCC + 0.5×MOA

+0.5× NOP
Understandability = −0.33× ANA + 0.33× DAM− 0.33× DCC

+0.33× CAM− 0.33× NOP− 0.33× NOM
−0.33× DSC

Functionality = 0.12× CAM + 0.22× NOP + 0.22× CIS
+0.22× DSC + 0.22× NOH

Extendability = 0.5× ANA− 0.5× DCC + 0.5×MFA
+0.5× NOP

Effectiveness = 0.2× ANA + 0.2× DAM + 0.2×MOA
+0.2×MFA + 0.2× NOP

TABLE II
QMOOD METRICS FOR DESIGN PROPERTIES [3]

Design Property Metric Description
Design size DSC Design size in classes
Complexity NOM Number of methods
Coupling DCC Direct class coupling
Polymorphism NOP Number of polymorphic methods
Hierarchies NOH Number of hierarchies
Cohesion CAM Cohesion among methods in class
Abstraction ANA Average number of ancestors
Encapsulation DAM Data access metric
Composition MOA Measure of aggregation
Inheritance MFA Measure of functional abstraction
Messaging CIS Class interface size

attributes (Table I) from the 11 lower level structural property
metrics (Table II).

V. REFACTORING CONSTRAINTS

Among the applicable refactoring activities, there may be
conflicts and dependencies [21]. The application of one refac-
toring may cause elements of other refactorings disappear, and
thus invalidate their applicability [5], [20], [21]. Besides such
mutual exclusion on conflicting refactorings, the application of
one refactoring may also reveal new refactoring opportunities,
as suggested by Lee et. al. [20]. We understand that this is
largely due to the composite structure of certain refactoring
patterns, where one larger refactoring is composed of several
smaller core refactorings [1]. For example, when extract su-

perclass refactoring is applied, pull-up method is also applied
as a part of it. In other words, pull-up method, at times, may
require extraction of new superclass.

There may also be sequential dependencies between refac-
toring activities [20], [21]. Constraints of mutual inclusion

may also arise when the application of one refactoring will
necessitate the operation of certain other refactorings [31].
Moreover, the organization’s management may also impose
priorities on certain refactoring activities [5], for example,
lower priorities on refactoring clones in the critical parts of
the system. We identify such priorities as soft constraints in
addition to the following three types of hard constraints.

Definition 1 (Sequential dependency): Two refactorings ri

and rj are said to have sequential dependency, if ri cannot be
applied after rj . This is denoted as, rj � ri or ri � rj .

7

Minhaz Zibran, University of Saskatchewan

Empirical Evaluation

• Validation with manual approach

• Comparison with variants of greedy
approach

TABLE III
SOFTWARE SYSTEMS SUBJECT TO THE CASE STUDY

Subject
SLOC Description

Systems

Mutation
Framework 2901

Ongoing extended implementation
of the mutation framework pro-
posed by Roy and Cordy [23]

LIME [33] 3494 A source code comparison engine
gCad [25] 4563 A clone genealogy extractor

VisCad [2] 9323 A tool for analysis and visualization
of code clones

TABLE IV
CODE CLONES IN THE SYSTEMS UNDER STUDY

Subject Systems
Clone Clone Total

Groups Fragments Refactorings

Mutation Framework 21 62 72
LIME 20 55 67
gCad 28 91 93
VisCad 57 136 166

RQ2: Is the code clone refactoring effort model (described
in Section III) useful in capturing and estimating the
efforts required for performing the refactorings?

Typically, it is difficult and risky for the practitioners to
refactor a codebase that they are not familiar with [19]. Rather,
it is the developers, who are likely to know the best about the
critical parts of the projects they develop, and thus they can
better assess both the efforts and effects of refactoring, and
prudently assign priorities on certain refactoring candidates.
Therefore, to evaluate our refactoring scheduler, we chose
projects (Table III) developed in our own research lab. This
not only facilitated manual verification for correctness but also
reduced the evaluation cost.

At the beginning of the case study, we described to the
developers the objectives of the study, and provided them our
refactoring effort model, as well as an initial list of refactoring
operators that can be used for code clone refactoring. Then
we demonstrated a catalog of common software refactoring
patterns [10] to them, and showed them how some of those can
be applied for code clone refactoring. We also described the
QMOOD design property metrics to them, and upon discus-
sion, came to a consensus to use the first six metrics (Table II)
in our study. We all agreed that the rest of the metrics were
too difficult to estimate through qualitative analysis, and even
if attempted, possibly those would not provide meaningful
values. Hence, we assumed that code clone refactoring will
not affect those metrics, and the total gain in code/design
quality (Section IV) was computed having values of changes
in those metrics set to zero. It should be noted that all the
developers were graduate students pursuing research in the
area of software clones, and thus possess some knowledge
and expertise in code clone analysis for refactoring.

A. Clone Detection
The first and foremost activity towards code clone refac-

toring is the detection of code clones from the underlying
codebase. We used NiCad-2.6.3 [7] for detecting near-miss
(code clones that are not exact duplicates, but share certain

TABLE V
EXAMPLE OF OPERATIONS AND EFFORTS FOR EXTRACT METHOD

Operations for extract method Efforts

Produce signature of the target method 15
Copy clone fragment to the body of target method 1
Perform necessary modifications in the body 5
Replace clone fragments by calls to the extracted
method

2

Total effort 23

level of similarities) block clones of at least five lines in
pretty-printed format. We used the ‘blind-rename’ option of
NiCad having UPIT set to 30%. The ‘blind-rename’ option
instructs NiCad to normalize the code snippets by renaming
the identifiers before the comparison of code fragments. UPIT
(Unique Percentage of Items Threshold) is a size-sensitive
dissimilarity threshold, that NiCad uses to find near-miss
code clones. For example, if UPIT is set to 0% without the
‘renaming’ option, NiCad detects only the exact clones; if the
UPIT is 30% having the ‘renaming’ option set, NiCad detects
two code fragments as clones if at least 70% of the normalized
pretty-printed text lines are identical (i.e., if they are at most
30% different). NiCad reports code clones clustered into clone-
groups based on their similarity.

B. Data Acquisition

The results of clone detection from the four subject systems
were provided to the concerned developers, who then further
analyzed the detected clones and re-arranged the groups when
necessary, based on the suitability for refactoring within the
context. For the analysis, the developers used VisCad [2], a
code clone analysis and visualization tool developed in our
research lab. For each of the systems, the number of clone-
groups and the number of distinct blocks of code involved in
those groups are presented in Table IV, which the developers
identified as the potential candidates for refactoring.

Having the code clones organized into groups, the devel-
opers carried out further qualitative analysis to determine the
strategies for refactoring each of those refactoring candidates.
The identification of refactoring strategy in particular involved
finding the appropriate refactoring operations, their order of
application, and mutual dependencies (if any). For each of
the clone-groups chosen for refactoring, the developers wrote
down the sequence of operations that they would perform to
refactor that clone-group. In determining the operations, the
developers were free to choose any operations beyond the list
of refactoring operators they were initially provided. The right-
most column of Table IV presents the total number of refac-
toring activities identified for each of the subject systems. The
developers also noted down any restrictions in the ordering of
the operations that must be followed to successfully refactor
a clone-group. Any such ordering restrictions between clone-
groups were recorded as well.

As an example, in Figure 1, we present a clone-pair (shaded
blocks on the left) with partial context (surrounding code).

8

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Clone
detection

NiCad

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Clone
detection

NiCad

Effort
Estimation

Effort model

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Clone
detection

NiCad

Effort
Estimation

Effort model
Effect

Estimation

QMOOD

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Clone
detection

NiCad

Effort
Estimation

Effort model
Effect

Estimation

QMOOD

Scheduling

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Clone
detection

NiCad

Effort
Estimation

Effort model
Effect

Estimation

QMOOD

Scheduling

CPManual Greedy

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Validation

Clone
detection

NiCad

Effort
Estimation

Effort model
Effect

Estimation

QMOOD

Scheduling

CPManual Greedy

9

Minhaz Zibran, University of Saskatchewan

Evaluation Procedure

Code base

Validation Comparison

Clone
detection

NiCad

Effort
Estimation

Effort model
Effect

Estimation

QMOOD

Scheduling

CPManual Greedy

9

Minhaz Zibran, University of Saskatchewan

Results

Manual CP Manual CP Manual CP Manual CP

21.90

9.5814.9413.38

7.976.83

10.46
9.16

15.78

10.36

13.19
14.00

4.71
9.39

6.93
8.18

15.33
10.04

5.016.147.48
2.15

8.93
5.73

VisCad

Mutation framework

LIME

gCad

Priority Effort Quality gain

10

Minhaz Zibran, University of Saskatchewan

Results
TABLE VI

COMPARISON OF CP AND GREEDY SCHEDULING APPROACHES

Subject Scheduling Values at dimensions Refac.
systems approaches Prior. Effort Quality chosen

Mutation
Frame-
work

Greedyp 20.06 21.94 18.53 40
Greedye 9.63 6.06 10.04 20
Greedyq 18.16 21.82 19.64 42

CP 9.34 7.86 11.48 20

LIME

Greedyp 22.42 21.12 19.93 47
Greedye 13.00 8.28 13.61 33
Greedyq 16.29 23.49 26.07 51

CP 11.04 12.32 16.12 33

gCad

Greedyp 19.65 21.62 20.00 41
Greedye 9.61 9.53 11.57 28
Greedyq 12.05 23.48 25.98 44

CP 6.69 15.19 17.99 28

VisCad

Greedyp 36.14 32.57 25.71 66
Greedye 16.12 18.63 13.20 40
Greedyq 29.02 33.81 34.32 72

CP 15.33 15.78 21.90 40
Here, Greedyp = approach greedy towards priority satisfaction

Greedye = approach greedy towards effort minimization
Greedyq = approach greedy towards quality gain

at all. Thus, in the application of the approach greedy towards
refactoring efforts, we set a minimum number of refactorings
that must be scheduled, which was equal to the number
of refactorings scheduled by our CP scheduler. The values
along all the three dimensions obtained from these scheduling
approaches are presented in Table VI.

In the second phase of the evaluation, our goal was set to
schedule roughly the 25% of the total number of refactor-
ings for each of the subject systems. The developers of the
concerned systems were instructed to do it manually (or, in
the way they would do it without help from any automated
scheduler). With the same goal, we executed our refactoring
scheduler. The values along the three optimization dimensions,
obtained from our CP scheduling and manual scheduling, are
presented in Figure 2.

Manual CP Manual CP Manual CP Manual CP

21.90

9.5814.9413.38

7.976.83

10.46
9.16

15.78

10.36

13.19
14.00

4.71
9.39

6.93
8.18

15.33
10.04

5.016.147.48
2.15

8.93
5.73

VisCad

Mutation framework

LIME

gCad

Priority Effort Quality gain

Fig. 2. Automated CP vs. manual scheduling

E. Findings
From our observations during the case study and the devel-

opers feedback, as well as the results presented in Table VI and
Figure 2, we now can confidently answer the the two research
questions formulated before.

Answer to RQ1: Yes. Given a set of refactoring
activities and constraints among them, our refactor-
ing scheduler can effectively compute a conflict-free
optimal schedule of refactorings.

For all the subject systems, as seen in Table VI, our
CP scheduler computes the optimal refactoring schedule by
efficiently making balance among the three optimization di-
mensions (i.e., effort, quality, and priority). For the smaller
systems (Mutation Framework, LIME, and gCad) the greedy
approaches, especially the approach greedy towards refactor-
ing efforts, closely competes with our CP approach. As the
sizes of the systems in terms of SLOC and the number of
candidate refactorings increases, our CP scheduler outperforms
the greedy schedulers, which is vivid for the largest system,
VisCad.

The risks of refactorings can be best estimated by sub-
jective analysis by the individuals who are familiar with the
underlying codebase. Quantitative measurement of such risks
would be very difficult, if not impossible. However, the risks
of refactorings can be expected to be positively proportional
to the number of refactorings. In this sense, our CP scheduler
also minimizes the risks of refactorings, as seen in the right-
most column of Table VI, the optimal schedule obtained from
our scheduler always includes the least number of refactorings,
compared to those from the greedy scheduling.

As expected, our CP scheduler always outperformed manual
scheduling for all the four subject systems (Figure 2). The
superiority in the optimality of the schedules (in terms of
efforts, quality gain, and priorities) obtained from our CP
scheduler compared to manual scheduling, gradually increased
as the sizes of the systems and the number of candidate
refactorings increased. Our CP scheduler took no more than
five seconds in computing any of the refactoring schedules
presented in this paper, whereas, for manual scheduling the
developers had to spend several hours depending on the
number of refactoring candidates and the constraints involved.

Answer to RQ2: Yes. The code clone refactoring
effort model (described in Section III) is useful in
capturing and estimating the efforts required for
performing the refactorings.

Regarding the refactoring effort model, the developers’
direct feedback was that the model was useful, and it guided
them in the estimation of the efforts. Moreover, the developers
expressed that an automated tool offering accurate calculations
according to the model, would be of immense help in this
regard. Our observations on the developers (while they were
estimating the refactoring efforts), also support this proposi-
tion. Some of the developers argued that the effort model was
useful for quantitative estimation of refactoring efforts, but
it alone could not capture the risks involved in code clone
refactoring. However, everyone agreed in the matter that the
effort model and the priority scheme in combination were
effective in capturing both the efforts and the risks. The first
author of this paper also worked as one of the developers and
experienced that the model was effective in general.

11

Minhaz Zibran, University of Saskatchewan

Related Work

TABLE VII
COMPARISON OF SOFTWARE REFACTORING SCHEDULERS

Refactoring Scheduling Refactoring Quality Sequential Mutual Mutual Priorities
scheduler approach effort gain dependency exclusion inclusion satisfaction
Bouktif et. al. [5] GA

√ √

Lee et. al. [20] OmeGA
√ √ √

Liu et. al. [19] Heuristic
√ √ √

Our Scheduler CP
√ √ √ √ √ √

OO code corpus, and our CP approach is a unique technique
that no one in the past reported to have applied in this
regard. Having been equipped with the strengths from both
AI and OR, the CP approach has been proved to be very
effective in solving scheduling problems [4], [35]. Our CP
scheduler computes the conflict-free schedule making optimal
balance among the three optimization dimensions: minimized
refactoring effort, maximized quality gain, and satisfaction of
higher priorities.

To evaluate our approach, we conducted a case study with
four in-house software systems and their developers. Through
comparison with greedy and manual approaches, we showed
that our CP scheduler outperformed those techniques. Our
refactoring effort model was also found to be useful for
estimating the efforts required for code clone refactoring. Our
immediate future plan includes the evaluation of our scheduler
in larger context involving both diversified open-source and
industrial software systems written in different programming
languages, and finally integration of a smart scheduler with the
code clone management tool [33], we have been developing.

Acknowledgments: This work is supported in part by the
Natural Science and Engineering Research Council of Canada
(NSERC). The authors also acknowledge the contributions
of Ripon Saha, Muhammad Asaduzzaman, Sharif Uddin, and
Mohammad Khan for participating in the case study and help-
ing in the evaluation of our code clone refactoring scheduler
and the effort model.

REFERENCES

[1] D. Advani, Y. Hassoun, and S. Counsell. Understanding the complexity
of refactoring in software systems: a tool-based approach. Intl. J. Gen.

Sys., 35(3): 329–346, 2006.
[2] M. Asaduzzaman, C. K. Roy, and K. Schneider. VisCad: Flexible Code

Clone Analysis Support For NiCad. In IWSC, 2 pp., 2011 (to appear).
[3] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented

design quality assessment. IEEE Trans. Softw. Engg., 28(1): 4–17, 2002.
[4] R. Barták. Constraint programming: In pursuit of the holy grail. In WDS

(invited lecture), 10 pp., 1999.
[5] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A Novel Approach

to Optimize Clone Refactoring Activity. In GECCO, July 8 –12, 2006.
[6] S. Chidamber and C. Kemerer. A metric suite for object-oriented design.

IEEE Trans. Softw. Engg., 25(5): 476–493, 1994.
[7] J. R. Cordy and C. K. Roy. The NiCad Clone Detector. In ICPC, 2 pp.,

2011 (tool demo to appear).
[8] S. Ducasse, M. Rieger, and G. Golomingi. Tool Support for Refactoring

Duplicated OO Code. In WOOT, pp. 177–178, 1999.
[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:

Improving the Design of Existing Code. Addison Wesley Professional,
1999.

[10] M. Fowler. Refactoring Catalog, http://refactoring.com/catalog/, (last
access: 12 April, 2011).

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring
Support Tool Code Clone. In 3-WoSQ, pp. 1 – 4, 2005.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring Support
Based on Code Clone Analysis. PROFES, LNCS 3009, pp. 220–233,
Springer-Verlag, 2004.

[13] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modifica-
tion Support based on Code Clone Analysis. In APSEC. pp. 262–269,
2007.

[14] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for
the proactive management of copy-and-paste programming. In ICPC,
pp. 238–242, 2009.

[15] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do Code
Clones Matter? In ICSE, pp. 485-495, 2009.

[16] C. Kapser and M. W. Godfrey. “Cloning Considered Harmful” Consid-
ered Harmful: Patterns of Cloning in Software. Emp. Soft. Engg. 13(6):
645–692, 2008.

[17] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B.Kanagaraj.
Method Level Detection and Removal of Code Clones in C and Java
Programs using Refactoring. In IJJCET, pp. 93 – 95, 2010.

[18] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical
study. J. Softw. Maint. Evol.: Res. Pract., 20: 345 – 364, 2008.

[19] H. Liu, G. Li, Z. Ma, and W. Shao. Conflict-aware schedule of software
refactorings. IET Softw., 2(5): 446–460, 2008.

[20] S. Lee, G. Bae, H. S. Chae, and D. Bae, and Yong Rae Kwon. Automated
scheduling for clone-based refactoring using a competent GA. Softw.

Pract. Exper., Wiley Online Library, 2010.
[21] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies

using graph transformation. J. Softw. and Syst. Modeling, 6(3): 269–285,
2007.

[22] J. Pérez, Y. Crespo, B. Hoffmann, and Tom Mens. A case study
to evaluate the suitability of graph transformation tools for program
refactoring. Intl. J. Softw. Tools Tech. Transfer, 12: 183–199, 2010.

[23] C. K. Roy and J. R. Cordy. A Mutation/Injection-based Automatic
Framework for Evaluating Clone Detection Tools. In Mutation, pp. 157–
166, 2009.

[24] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-wide Code
Duplication. In WCRE, pp. 100–109, 2004.

[25] R. K. Saha, C. K. Roy, and K. A. Schneider. An Automatic Framework
for Extracting and Classifying Near-Miss Clone Genealogies. In ICSM,
10 pp., 2011 (submitted for review).

[26] H. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the
gap between the improvement of OO design quality and its automation?.
In ICSM, pp. 154–162, 2000.

[27] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a Refactoring
Guideline Using Code Clone Classification. In WRT, pp. 6:1–6:4, 2008.

[28] S. Schulze and M. Kuhlemann. Advanced Analysis for Code Clone
Removal. In WSR, 2009.

[29] F. Simon, F. Steinbrucker, and C. Lewerentz. Metrics based refactoring.
In CSMR, pp. 30–38, 2001.

[30] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformations. In CSMR, pp. 183–
192, 2003.

[31] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refac-
toring support based on code clone dependency relation. In METRICS,
10 pp., 2005.

[32] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing
and Forecasting Near-miss Clones in Evolving Software: An Empirical
Study. In ICECCS, 10 pp., 2011 (to appear).

[33] M. F. Zibran and C. K. Roy. Towards Flexible Code Clone Detection,
Management, and Refactoring in IDE. In IWSC, 2 pp., 2011 (to appear).

[34] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of
Code Clone Refactoring: A Constraint Programming Approach. In ICPC

(Student Symposium), 4 pp., 2011 (to appear).
[35] M. F. Zibran. A Multi-phase Approach to University Course

Timetabling. M.Sc. Thesis, Department of Mathematics and Computer
Science, University of Lethbridge, Canada, 125 pp., 2007.

TABLE VII
COMPARISON OF SOFTWARE REFACTORING SCHEDULERS

Refactoring Scheduling Refactoring Quality Sequential Mutual Mutual Priorities
scheduler approach effort gain dependency exclusion inclusion satisfaction
Bouktif et. al. [5] GA

√ √

Lee et. al. [20] OmeGA
√ √ √

Liu et. al. [19] Heuristic
√ √ √

Our Scheduler CP
√ √ √ √ √ √

OO code corpus, and our CP approach is a unique technique
that no one in the past reported to have applied in this
regard. Having been equipped with the strengths from both
AI and OR, the CP approach has been proved to be very
effective in solving scheduling problems [4], [35]. Our CP
scheduler computes the conflict-free schedule making optimal
balance among the three optimization dimensions: minimized
refactoring effort, maximized quality gain, and satisfaction of
higher priorities.

To evaluate our approach, we conducted a case study with
four in-house software systems and their developers. Through
comparison with greedy and manual approaches, we showed
that our CP scheduler outperformed those techniques. Our
refactoring effort model was also found to be useful for
estimating the efforts required for code clone refactoring. Our
immediate future plan includes the evaluation of our scheduler
in larger context involving both diversified open-source and
industrial software systems written in different programming
languages, and finally integration of a smart scheduler with the
code clone management tool [33], we have been developing.

Acknowledgments: This work is supported in part by the
Natural Science and Engineering Research Council of Canada
(NSERC). The authors also acknowledge the contributions
of Ripon Saha, Muhammad Asaduzzaman, Sharif Uddin, and
Mohammad Khan for participating in the case study and help-
ing in the evaluation of our code clone refactoring scheduler
and the effort model.

REFERENCES

[1] D. Advani, Y. Hassoun, and S. Counsell. Understanding the complexity
of refactoring in software systems: a tool-based approach. Intl. J. Gen.

Sys., 35(3): 329–346, 2006.
[2] M. Asaduzzaman, C. K. Roy, and K. Schneider. VisCad: Flexible Code

Clone Analysis Support For NiCad. In IWSC, 2 pp., 2011 (to appear).
[3] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented

design quality assessment. IEEE Trans. Softw. Engg., 28(1): 4–17, 2002.
[4] R. Barták. Constraint programming: In pursuit of the holy grail. In WDS

(invited lecture), 10 pp., 1999.
[5] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A Novel Approach

to Optimize Clone Refactoring Activity. In GECCO, July 8 –12, 2006.
[6] S. Chidamber and C. Kemerer. A metric suite for object-oriented design.

IEEE Trans. Softw. Engg., 25(5): 476–493, 1994.
[7] J. R. Cordy and C. K. Roy. The NiCad Clone Detector. In ICPC, 2 pp.,

2011 (tool demo to appear).
[8] S. Ducasse, M. Rieger, and G. Golomingi. Tool Support for Refactoring

Duplicated OO Code. In WOOT, pp. 177–178, 1999.
[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:

Improving the Design of Existing Code. Addison Wesley Professional,
1999.

[10] M. Fowler. Refactoring Catalog, http://refactoring.com/catalog/, (last
access: 12 April, 2011).

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring
Support Tool Code Clone. In 3-WoSQ, pp. 1 – 4, 2005.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring Support
Based on Code Clone Analysis. PROFES, LNCS 3009, pp. 220–233,
Springer-Verlag, 2004.

[13] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modifica-
tion Support based on Code Clone Analysis. In APSEC. pp. 262–269,
2007.

[14] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for
the proactive management of copy-and-paste programming. In ICPC,
pp. 238–242, 2009.

[15] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do Code
Clones Matter? In ICSE, pp. 485-495, 2009.

[16] C. Kapser and M. W. Godfrey. “Cloning Considered Harmful” Consid-
ered Harmful: Patterns of Cloning in Software. Emp. Soft. Engg. 13(6):
645–692, 2008.

[17] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B.Kanagaraj.
Method Level Detection and Removal of Code Clones in C and Java
Programs using Refactoring. In IJJCET, pp. 93 – 95, 2010.

[18] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical
study. J. Softw. Maint. Evol.: Res. Pract., 20: 345 – 364, 2008.

[19] H. Liu, G. Li, Z. Ma, and W. Shao. Conflict-aware schedule of software
refactorings. IET Softw., 2(5): 446–460, 2008.

[20] S. Lee, G. Bae, H. S. Chae, and D. Bae, and Yong Rae Kwon. Automated
scheduling for clone-based refactoring using a competent GA. Softw.

Pract. Exper., Wiley Online Library, 2010.
[21] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies

using graph transformation. J. Softw. and Syst. Modeling, 6(3): 269–285,
2007.

[22] J. Pérez, Y. Crespo, B. Hoffmann, and Tom Mens. A case study
to evaluate the suitability of graph transformation tools for program
refactoring. Intl. J. Softw. Tools Tech. Transfer, 12: 183–199, 2010.

[23] C. K. Roy and J. R. Cordy. A Mutation/Injection-based Automatic
Framework for Evaluating Clone Detection Tools. In Mutation, pp. 157–
166, 2009.

[24] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-wide Code
Duplication. In WCRE, pp. 100–109, 2004.

[25] R. K. Saha, C. K. Roy, and K. A. Schneider. An Automatic Framework
for Extracting and Classifying Near-Miss Clone Genealogies. In ICSM,
10 pp., 2011 (submitted for review).

[26] H. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the
gap between the improvement of OO design quality and its automation?.
In ICSM, pp. 154–162, 2000.

[27] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a Refactoring
Guideline Using Code Clone Classification. In WRT, pp. 6:1–6:4, 2008.

[28] S. Schulze and M. Kuhlemann. Advanced Analysis for Code Clone
Removal. In WSR, 2009.

[29] F. Simon, F. Steinbrucker, and C. Lewerentz. Metrics based refactoring.
In CSMR, pp. 30–38, 2001.

[30] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformations. In CSMR, pp. 183–
192, 2003.

[31] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refac-
toring support based on code clone dependency relation. In METRICS,
10 pp., 2005.

[32] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing
and Forecasting Near-miss Clones in Evolving Software: An Empirical
Study. In ICECCS, 10 pp., 2011 (to appear).

[33] M. F. Zibran and C. K. Roy. Towards Flexible Code Clone Detection,
Management, and Refactoring in IDE. In IWSC, 2 pp., 2011 (to appear).

[34] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of
Code Clone Refactoring: A Constraint Programming Approach. In ICPC

(Student Symposium), 4 pp., 2011 (to appear).
[35] M. F. Zibran. A Multi-phase Approach to University Course

Timetabling. M.Sc. Thesis, Department of Mathematics and Computer
Science, University of Lethbridge, Canada, 125 pp., 2007.

TABLE VII
COMPARISON OF SOFTWARE REFACTORING SCHEDULERS

Refactoring Scheduling Refactoring Quality Sequential Mutual Mutual Priorities
scheduler approach effort gain dependency exclusion inclusion satisfaction
Bouktif et. al. [5] GA

√ √

Lee et. al. [20] OmeGA
√ √ √

Liu et. al. [19] Heuristic
√ √ √

Our Scheduler CP
√ √ √ √ √ √

OO code corpus, and our CP approach is a unique technique
that no one in the past reported to have applied in this
regard. Having been equipped with the strengths from both
AI and OR, the CP approach has been proved to be very
effective in solving scheduling problems [4], [35]. Our CP
scheduler computes the conflict-free schedule making optimal
balance among the three optimization dimensions: minimized
refactoring effort, maximized quality gain, and satisfaction of
higher priorities.

To evaluate our approach, we conducted a case study with
four in-house software systems and their developers. Through
comparison with greedy and manual approaches, we showed
that our CP scheduler outperformed those techniques. Our
refactoring effort model was also found to be useful for
estimating the efforts required for code clone refactoring. Our
immediate future plan includes the evaluation of our scheduler
in larger context involving both diversified open-source and
industrial software systems written in different programming
languages, and finally integration of a smart scheduler with the
code clone management tool [33], we have been developing.

Acknowledgments: This work is supported in part by the
Natural Science and Engineering Research Council of Canada
(NSERC). The authors also acknowledge the contributions
of Ripon Saha, Muhammad Asaduzzaman, Sharif Uddin, and
Mohammad Khan for participating in the case study and help-
ing in the evaluation of our code clone refactoring scheduler
and the effort model.

REFERENCES

[1] D. Advani, Y. Hassoun, and S. Counsell. Understanding the complexity
of refactoring in software systems: a tool-based approach. Intl. J. Gen.

Sys., 35(3): 329–346, 2006.
[2] M. Asaduzzaman, C. K. Roy, and K. Schneider. VisCad: Flexible Code

Clone Analysis Support For NiCad. In IWSC, 2 pp., 2011 (to appear).
[3] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented

design quality assessment. IEEE Trans. Softw. Engg., 28(1): 4–17, 2002.
[4] R. Barták. Constraint programming: In pursuit of the holy grail. In WDS

(invited lecture), 10 pp., 1999.
[5] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A Novel Approach

to Optimize Clone Refactoring Activity. In GECCO, July 8 –12, 2006.
[6] S. Chidamber and C. Kemerer. A metric suite for object-oriented design.

IEEE Trans. Softw. Engg., 25(5): 476–493, 1994.
[7] J. R. Cordy and C. K. Roy. The NiCad Clone Detector. In ICPC, 2 pp.,

2011 (tool demo to appear).
[8] S. Ducasse, M. Rieger, and G. Golomingi. Tool Support for Refactoring

Duplicated OO Code. In WOOT, pp. 177–178, 1999.
[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:

Improving the Design of Existing Code. Addison Wesley Professional,
1999.

[10] M. Fowler. Refactoring Catalog, http://refactoring.com/catalog/, (last
access: 12 April, 2011).

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring
Support Tool Code Clone. In 3-WoSQ, pp. 1 – 4, 2005.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring Support
Based on Code Clone Analysis. PROFES, LNCS 3009, pp. 220–233,
Springer-Verlag, 2004.

[13] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modifica-
tion Support based on Code Clone Analysis. In APSEC. pp. 262–269,
2007.

[14] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for
the proactive management of copy-and-paste programming. In ICPC,
pp. 238–242, 2009.

[15] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do Code
Clones Matter? In ICSE, pp. 485-495, 2009.

[16] C. Kapser and M. W. Godfrey. “Cloning Considered Harmful” Consid-
ered Harmful: Patterns of Cloning in Software. Emp. Soft. Engg. 13(6):
645–692, 2008.

[17] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B.Kanagaraj.
Method Level Detection and Removal of Code Clones in C and Java
Programs using Refactoring. In IJJCET, pp. 93 – 95, 2010.

[18] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical
study. J. Softw. Maint. Evol.: Res. Pract., 20: 345 – 364, 2008.

[19] H. Liu, G. Li, Z. Ma, and W. Shao. Conflict-aware schedule of software
refactorings. IET Softw., 2(5): 446–460, 2008.

[20] S. Lee, G. Bae, H. S. Chae, and D. Bae, and Yong Rae Kwon. Automated
scheduling for clone-based refactoring using a competent GA. Softw.

Pract. Exper., Wiley Online Library, 2010.
[21] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies

using graph transformation. J. Softw. and Syst. Modeling, 6(3): 269–285,
2007.

[22] J. Pérez, Y. Crespo, B. Hoffmann, and Tom Mens. A case study
to evaluate the suitability of graph transformation tools for program
refactoring. Intl. J. Softw. Tools Tech. Transfer, 12: 183–199, 2010.

[23] C. K. Roy and J. R. Cordy. A Mutation/Injection-based Automatic
Framework for Evaluating Clone Detection Tools. In Mutation, pp. 157–
166, 2009.

[24] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-wide Code
Duplication. In WCRE, pp. 100–109, 2004.

[25] R. K. Saha, C. K. Roy, and K. A. Schneider. An Automatic Framework
for Extracting and Classifying Near-Miss Clone Genealogies. In ICSM,
10 pp., 2011 (submitted for review).

[26] H. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the
gap between the improvement of OO design quality and its automation?.
In ICSM, pp. 154–162, 2000.

[27] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a Refactoring
Guideline Using Code Clone Classification. In WRT, pp. 6:1–6:4, 2008.

[28] S. Schulze and M. Kuhlemann. Advanced Analysis for Code Clone
Removal. In WSR, 2009.

[29] F. Simon, F. Steinbrucker, and C. Lewerentz. Metrics based refactoring.
In CSMR, pp. 30–38, 2001.

[30] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformations. In CSMR, pp. 183–
192, 2003.

[31] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refac-
toring support based on code clone dependency relation. In METRICS,
10 pp., 2005.

[32] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing
and Forecasting Near-miss Clones in Evolving Software: An Empirical
Study. In ICECCS, 10 pp., 2011 (to appear).

[33] M. F. Zibran and C. K. Roy. Towards Flexible Code Clone Detection,
Management, and Refactoring in IDE. In IWSC, 2 pp., 2011 (to appear).

[34] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of
Code Clone Refactoring: A Constraint Programming Approach. In ICPC

(Student Symposium), 4 pp., 2011 (to appear).
[35] M. F. Zibran. A Multi-phase Approach to University Course

Timetabling. M.Sc. Thesis, Department of Mathematics and Computer
Science, University of Lethbridge, Canada, 125 pp., 2007.

TABLE VII
COMPARISON OF SOFTWARE REFACTORING SCHEDULERS

Refactoring Scheduling Refactoring Quality Sequential Mutual Mutual Priorities
scheduler approach effort gain dependency exclusion inclusion satisfaction
Bouktif et. al. [5] GA

√ √

Lee et. al. [20] OmeGA
√ √ √

Liu et. al. [19] Heuristic
√ √ √

Our Scheduler CP
√ √ √ √ √ √

OO code corpus, and our CP approach is a unique technique
that no one in the past reported to have applied in this
regard. Having been equipped with the strengths from both
AI and OR, the CP approach has been proved to be very
effective in solving scheduling problems [4], [35]. Our CP
scheduler computes the conflict-free schedule making optimal
balance among the three optimization dimensions: minimized
refactoring effort, maximized quality gain, and satisfaction of
higher priorities.

To evaluate our approach, we conducted a case study with
four in-house software systems and their developers. Through
comparison with greedy and manual approaches, we showed
that our CP scheduler outperformed those techniques. Our
refactoring effort model was also found to be useful for
estimating the efforts required for code clone refactoring. Our
immediate future plan includes the evaluation of our scheduler
in larger context involving both diversified open-source and
industrial software systems written in different programming
languages, and finally integration of a smart scheduler with the
code clone management tool [33], we have been developing.

Acknowledgments: This work is supported in part by the
Natural Science and Engineering Research Council of Canada
(NSERC). The authors also acknowledge the contributions
of Ripon Saha, Muhammad Asaduzzaman, Sharif Uddin, and
Mohammad Khan for participating in the case study and help-
ing in the evaluation of our code clone refactoring scheduler
and the effort model.

REFERENCES

[1] D. Advani, Y. Hassoun, and S. Counsell. Understanding the complexity
of refactoring in software systems: a tool-based approach. Intl. J. Gen.

Sys., 35(3): 329–346, 2006.
[2] M. Asaduzzaman, C. K. Roy, and K. Schneider. VisCad: Flexible Code

Clone Analysis Support For NiCad. In IWSC, 2 pp., 2011 (to appear).
[3] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented

design quality assessment. IEEE Trans. Softw. Engg., 28(1): 4–17, 2002.
[4] R. Barták. Constraint programming: In pursuit of the holy grail. In WDS

(invited lecture), 10 pp., 1999.
[5] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A Novel Approach

to Optimize Clone Refactoring Activity. In GECCO, July 8 –12, 2006.
[6] S. Chidamber and C. Kemerer. A metric suite for object-oriented design.

IEEE Trans. Softw. Engg., 25(5): 476–493, 1994.
[7] J. R. Cordy and C. K. Roy. The NiCad Clone Detector. In ICPC, 2 pp.,

2011 (tool demo to appear).
[8] S. Ducasse, M. Rieger, and G. Golomingi. Tool Support for Refactoring

Duplicated OO Code. In WOOT, pp. 177–178, 1999.
[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:

Improving the Design of Existing Code. Addison Wesley Professional,
1999.

[10] M. Fowler. Refactoring Catalog, http://refactoring.com/catalog/, (last
access: 12 April, 2011).

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring
Support Tool Code Clone. In 3-WoSQ, pp. 1 – 4, 2005.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring Support
Based on Code Clone Analysis. PROFES, LNCS 3009, pp. 220–233,
Springer-Verlag, 2004.

[13] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modifica-
tion Support based on Code Clone Analysis. In APSEC. pp. 262–269,
2007.

[14] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for
the proactive management of copy-and-paste programming. In ICPC,
pp. 238–242, 2009.

[15] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do Code
Clones Matter? In ICSE, pp. 485-495, 2009.

[16] C. Kapser and M. W. Godfrey. “Cloning Considered Harmful” Consid-
ered Harmful: Patterns of Cloning in Software. Emp. Soft. Engg. 13(6):
645–692, 2008.

[17] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B.Kanagaraj.
Method Level Detection and Removal of Code Clones in C and Java
Programs using Refactoring. In IJJCET, pp. 93 – 95, 2010.

[18] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical
study. J. Softw. Maint. Evol.: Res. Pract., 20: 345 – 364, 2008.

[19] H. Liu, G. Li, Z. Ma, and W. Shao. Conflict-aware schedule of software
refactorings. IET Softw., 2(5): 446–460, 2008.

[20] S. Lee, G. Bae, H. S. Chae, and D. Bae, and Yong Rae Kwon. Automated
scheduling for clone-based refactoring using a competent GA. Softw.

Pract. Exper., Wiley Online Library, 2010.
[21] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies

using graph transformation. J. Softw. and Syst. Modeling, 6(3): 269–285,
2007.

[22] J. Pérez, Y. Crespo, B. Hoffmann, and Tom Mens. A case study
to evaluate the suitability of graph transformation tools for program
refactoring. Intl. J. Softw. Tools Tech. Transfer, 12: 183–199, 2010.

[23] C. K. Roy and J. R. Cordy. A Mutation/Injection-based Automatic
Framework for Evaluating Clone Detection Tools. In Mutation, pp. 157–
166, 2009.

[24] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-wide Code
Duplication. In WCRE, pp. 100–109, 2004.

[25] R. K. Saha, C. K. Roy, and K. A. Schneider. An Automatic Framework
for Extracting and Classifying Near-Miss Clone Genealogies. In ICSM,
10 pp., 2011 (submitted for review).

[26] H. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the
gap between the improvement of OO design quality and its automation?.
In ICSM, pp. 154–162, 2000.

[27] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a Refactoring
Guideline Using Code Clone Classification. In WRT, pp. 6:1–6:4, 2008.

[28] S. Schulze and M. Kuhlemann. Advanced Analysis for Code Clone
Removal. In WSR, 2009.

[29] F. Simon, F. Steinbrucker, and C. Lewerentz. Metrics based refactoring.
In CSMR, pp. 30–38, 2001.

[30] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformations. In CSMR, pp. 183–
192, 2003.

[31] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refac-
toring support based on code clone dependency relation. In METRICS,
10 pp., 2005.

[32] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing
and Forecasting Near-miss Clones in Evolving Software: An Empirical
Study. In ICECCS, 10 pp., 2011 (to appear).

[33] M. F. Zibran and C. K. Roy. Towards Flexible Code Clone Detection,
Management, and Refactoring in IDE. In IWSC, 2 pp., 2011 (to appear).

[34] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of
Code Clone Refactoring: A Constraint Programming Approach. In ICPC

(Student Symposium), 4 pp., 2011 (to appear).
[35] M. F. Zibran. A Multi-phase Approach to University Course

Timetabling. M.Sc. Thesis, Department of Mathematics and Computer
Science, University of Lethbridge, Canada, 125 pp., 2007.

12

Minhaz Zibran, University of Saskatchewan

Contributions

• Novel Effort Model

• Novel Approach (CP)

• Wide Range of Constraints

• Captures Risks

13

