On the Use of Stemming for
Concern Location and
Bug Localization in Java

Emily Hill Shivani Rao, Avinash Kak
Montclair State University ~ Purdue University

Problem: Source Code Search

adds added

* Query: “add item”
add adding

Source Code

* Stemming used item items
to strip suffixes &
improve recall by
reducing words to root form, or stem
— Widely studied in Information Retrieval (IR)

— Not so much for SE (very different document style)

A Brief History of Stemming

* Light Stemmers (tend not to stem across parts of speech)

— Porter (1980): algorithmic (rule-based), simple & efficient
* Most popular stemmer in IR & SE
* Snowball (2001): minor rule improvements

— KStem (1993): morphology-based
* based on word’s structure & hand-tuned dictionary
* in experiments shown to outperform porter’s

* Heavy Stemmers (can overstem, reducing precision)
— Lovins (1968): algorithmic
— Paice (1990): algorithmic

— MStem: morphological (PC-Kimmo), specialized for source
code using word frequencies

Our Contribution

Investigate use of stemming for 2 different types of Java
source code search tasks with various queries:
* Bug Localization: find methods in bug fix

291 bugs from iBugs dataset (ASPECTJ) with queries:

— M291: all 291 bugs, with initial bug description as query (not title)

— Medium: initial bug description of 126 bugs that contain both title &
comments (not much code)

— Short: title of 126 bugs - Long: title + full comments of 126 (some code)
* Concern Location: find methods implementing a concept of

interest, given keyword-style queries

— 8 action-oriented concerns from 4 programs (AOC), 48 queries

— 215 documentation-based concerns from Rhino (Rhino), 645 queries

Analysis Methodology

* MAP (Mean Average Precision):
AP = average precision at each relevant result

 Rank Measure [Hull "96]:
rank of relevant documents for each query

* Qsets [Hull '96]: partition queries into sets:

stemming helps

stemming hurts

stemming has no effect
effect depends on stemmer

Results: Bug Localization

MEAN M AP DIFFERENCE SCORES

Query

Paice

KStem

MStem

Snowball

Porter

Long

M291
Short

Medium

-0.02806
0.002638
-0.006703
-0.008479

-0.006090
0.007970
-0.002056
0.003343

-0.004199
0.01400

-0.003738
0.0004492

-0.008529
-0.003243
-0.008391
0.0003093

-0.01055
0.007280
-0.002462
-0.002758

Noner Noner PR Noner
Paice : 7 :
Paicef _— Paicef
KStemf -
: KStemr _— KStemr
MStem = 7 em em
Snowballr- P MStemf- — MStem
Porter|- = Snowball- — Snowball-
| | B B
300 400 Porterr _— Porter-
Ral : :

500 600 700
Rank of Relevant Documents

Stemming plays more of a role for shorter queries

400 500 600 400
Ranks of Relevant Document:

Results: Concern Location

MEAN M AP DIFFERENCE SCORES

Paice

KStem

MStem

Snowball

Porter

0.03072
0.002955

0.02619
0.0007937

0.02548
-0.0008919

0.01576
-0.0001163

0.01762
-0.0001374

Noner Nonel

Paicer Paice

KStemf KStem|

MStemr MStem|

Snowball- Snowballl

Porterr Porter-
0 100 200 300 400 SC 1000 1050 _ 1100 1150 1200 1250 1300

Rank of Relevant Documents Rank of Relevant Documents

e Paice significantly outperforms other stemmers

for Rhino, points to possible interaction with tf-idf

Results: Qsets

NUMBER OF QUERIES WHERE STEMMING HELPS (Q)+), HURTS (Q—),
HAS NO EFFECT (()=), AND WHERE PERFORMANCE VARIES (Quary)-

* Bug Localization

Query Type
Short 85
Medium 247
M291 320

LLong 770, code

Query Type
AOC 2, verbs
Rhino 4, nouns

Conclusion & Discussion

e So far, success of any particular stemmer
situation dependent (we can’t yet generalize)

— Stemmer success seems dependent on
guery nature & retrieval model

* Are there other variables missing from our

model of the problem, or is this due to the
nature of stemming/searching itself?

— Query length, presence of code/identifiers
— Query difficulty (how well matches code words)

* Future Work: explore the interaction between
retrieval model, query length/type, & stemmer

