
On	
 the	
 Use	
 of	
 Stemming	
 for	

Concern	
 Loca4on	
 and	
 	

Bug	
 Localiza4on	
 in	
 Java	

Shivani	
 Rao,	
 Avinash	
 Kak	

Purdue	
 University	

Emily	
 Hill	

Montclair	
 State	
 University	

Problem:	
 Source	
 Code	
 Search	

•  Query:	
 “add	
 item”	

•  Stemming	
 used	

to	
 strip	
 suffixes	
 &	

improve	
 recall	
 by	
 	

reducing	
 words	
 to	
 root	
 form,	
 or	
 stem	

– Widely	
 studied	
 in	
 Informa4on	
 Retrieval	
 (IR)	

– Not	
 so	
 much	
 for	
 SE	
 (very	
 different	
 document	
 style)	

Source	
 Code	

add	

item	

adds	

adding	

added	

items	

A	
 Brief	
 History	
 of	
 Stemming	

•  Light	
 Stemmers	
 (tend	
 not	
 to	
 stem	
 across	
 parts	
 of	
 speech)	

–  Porter	
 (1980):	
 algorithmic	
 (rule-­‐based),	
 simple	
 &	
 efficient	

•  Most	
 popular	
 stemmer	
 in	
 IR	
 &	
 SE	

•  Snowball	
 (2001):	
 minor	
 rule	
 improvements	

–  KStem	
 (1993):	
 morphology-­‐based	

•  based	
 on	
 word’s	
 structure	
 &	
 hand-­‐tuned	
 dic4onary	

•  in	
 experiments	
 shown	
 to	
 outperform	
 porter’s	

•  Heavy	
 Stemmers	
 (can	
 overstem,	
 reducing	
 precision)	

–  Lovins	
 (1968):	
 algorithmic	

–  Paice	
 (1990):	
 algorithmic	

– MStem:	
 morphological	
 (PC-­‐Kimmo),	
 specialized	
 for	
 source	

code	
 using	
 word	
 frequencies	

Our	
 Contribu4on	

Inves5gate	
 use	
 of	
 stemming	
 for	
 2	
 different	
 types	
 of	
 Java	

source	
 code	
 search	
 tasks	
 with	
 various	
 queries:	

•  Bug	
 Localiza4on:	
 find	
 methods	
 in	
 bug	
 fix	
 (IR:	
 Unigram	
 Model)	

291	
 bugs	
 from	
 iBugs	
 dataset	
 (ASPECTJ)	
 with	
 queries:	

–  M291:	
 all	
 291	
 bugs,	
 with	
 ini4al	
 bug	
 descrip4on	
 as	
 query	
 (not	
 4tle)	

–  Medium:	
 ini4al	
 bug	
 descrip4on	
 of	
 126	
 bugs	
 that	
 contain	
 both	
 4tle	
 &	

comments	
 (not	
 much	
 code)	

–  Short:	
 4tle	
 of	
 126	
 bugs 	
 −	
 Long:	
 4tle	
 +	
 full	
 comments	
 of	
 126	
 (some	
 code)	

•  Concern	
 Loca4on:	
 find	
 methods	
 implemen4ng	
 a	
 concept	
 of	

interest,	
 given	
 keyword-­‐style	
 queries	
 (IR:	
 c-­‐idf)	

–  8	
 ac4on-­‐oriented	
 concerns	
 from	
 4	
 programs	
 (AOC),	
 48	
 queries	

–  215	
 documenta4on-­‐based	
 concerns	
 from	
 Rhino	
 (Rhino),	
 645	
 queries	

Analysis	
 Methodology	

•  MAP	
 (Mean	
 Average	
 Precision):	

AP	
 =	
 average	
 precision	
 at	
 each	
 relevant	
 result	

•  Rank	
 Measure	
 [Hull	
 ’96]:	
 	

rank	
 of	
 relevant	
 documents	
 for	
 each	
 query	

•  Qsets	
 [Hull	
 ’96]:	
 par44on	
 queries	
 into	
 sets:	

– Q+:	
 stemming	
 helps	
 	

– Q-­‐:	
 stemming	
 hurts	

– Q=:	
 stemming	
 has	
 no	
 effect	

– Qvary:	
 effect	
 depends	
 on	
 stemmer	

Results:	
 Bug	
 Localiza4on	

•  Stemming	
 plays	
 more	
 of	
 a	
 role	
 for	
 shorter	
 queries	

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

of results [26], [7]. In this section, we investigate the impact
of stemming on an IR-based approach to bug localization.

A. Subject Bugs and Queries
Evaluating the stemmers for bug localization requires a

set of bug reports and related source code artifacts. In this
study, we use the iBUGS [27] dataset. iBUGS was created
by mining five years of version history of the ASPECTJ
software and its bug-tracking system. iBUGS contains 75
KLOC and over 350 bugs, 291 of which relate to program
elements in Java source files. These 291 bugs form the
ground-truths (i.e., gold set) for our study.

Bug reports contain multiple sources of textual informa-
tion that can be used as queries. Each bug typically has a
title, or short description, and one or more comment lines
in the main body of the bug description. To investigate the
effect of query length on stemmer effectiveness [12], we
use three different types of queries: the first comment line
in the bug description as used in the original iBugs dataset
(medium descriptions), the short descriptions (i.e., titles),
and the entire bug description text, which we refer to as
the long description. Because not all bugs contain short and
long descriptions, these sets contain just 126 bugs. Thus, we
have 4 categories of queries: Short (126 bugs), Medium (126
bugs), Long (126 bugs), and M291 (medium length queries
but all of the 291 bugs). The mean, median, min, and max
length of the query in each category is tabulated in Table I.

B. Methodology
In a prior study of IR techniques for bug localization,

Rao and Kak [28] demonstrated that simple retrieval models,
in particular the Vector Space Model and the Unigram
Model, outperform the more complex models such as those
based on the Latent Semantic Analysis and Latent Dirichlet
Allocation. For the purposes of this study, we use the
Unigram Model (UM) because of its prior effectiveness [28]
and its scalability.

The Unigram Model (UM) represents each document with
a probability distribution [29]. This probability distribution
is smoothed using a collection-wide distribution of terms,
pc(w). Thus, the smoothed Unigram representation of the
mth document can be expressed as:

pm(w) = (1− µ)
tfm(w)�
w tfm(w)

+ µpc(w)

pc(w) =

�
m tfm(w)�

w

�
m tfm(w)

(1)

where tfm(w) represents the term frequency of the wth

word in the document m. Because queries are subject to
the same processing and smoothing steps as documents, a
query q can be represented by the probability distribution:

pq(w) = (1− µ)
tfq(w)�
w tfq(w)

+ µpc(w) (2)

Query None Paice KStem MStem Snowball Porter
Long 0.2236 0.1955 0.2175 0.2194 0.2151 0.2130
Medium 0.1419 0.1446 0.1499 0.1559 0.1387 0.1492
M291 0.1549 0.1482 0.1529 0.1512 0.1465 0.1525
Short 0.1133 0.1049 0.1167 0.1138 0.1137 0.1106

Table II
MEAN MAP SCORES FOR IBUGS

Query Paice KStem MStem Snowball Porter
Long -0.02806 -0.006090 -0.004199 -0.008529 -0.01055
Medium 0.002638 0.007970 0.01400 -0.003243 0.007280
M291 -0.006703 -0.002056 -0.003738 -0.008391 -0.002462
Short -0.008479 0.003343 0.0004492 0.0003093 -0.002758

Table III
MEAN MAP DIFFERENCE SCORES FOR IBUGS

With both the documents and the query being represented as
|V| dimensional probability vectors, we use KL divergence
to determine the “match” between a query and a document.
These similarity values are then ranked in decreasing order
to create a ranked list of documents for each query. Finally,
we calculate the MAP values and we perform the statistical
analyses described in Section III-A.

C. Results and Analysis
Tables II and III show the MAP and MAP Difference

results of each stemmer for the three different types of
queries. As can be seen from the second column of Table II,
retrieval effectiveness of no stemming improves in direct
proportion to query length. Since most information in the
comments are code snippets containing class names, they are
less impacted by stemming as compared to shorter queries.
Hence we see no improvement when using stemming for
long queries. However, stemming impacts shorter queries,
although Paice tends to reduce retrieval effectiveness.

To further explain these results, we investigate specific
cases where we can observe the relative strengths and
weaknesses of individual stemmers by comparing the query
subsets Q+, Q=, Q−, and Qvary , as defined in Section III-A.
Table IV shows the number of queries in each subset.
Figures 1(a), 1(b) and 1(c) show the mean and variance
rank measure for each type of query in the Qvary set.
The x-axis denotes the ranks of the relevant documents
and each horizontal line indicates the variance, centered
about the mean. The rank of relevant documents shows more
variability among stemmers as compared to Average Preci-
sion. Note stemming has a higher impact on shorter queries
than medium or long, although none of the differences are
statistically significant.

Stemming > No Stemming (Q+): There are some
queries that are loaded with verbs and their variants, and no
matter what stemming algorithm is employed, the conflation
significantly reduces the number of unique terms in the
query and hence improves the weight of each of the conflated
terms, which aids in better retrieval. For example, bug

300 400 500 600 700 800

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents

300 400 500 600 700 800

Porter

Snowball

MStem

KStem

Paice

None

Ranks of Relevant Documents
300 400 500 600 700 800

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents

Long	
 M291	
 Short	

Results:	
 Concern	
 Loca4on	

•  Paice	
 significantly	
 outperforms	
 other	
 stemmers	

for	
 Rhino,	
 points	
 to	
 possible	
 interac4on	
 with	
 c-­‐idf	

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

0 100 200 300 400 500 600 700

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents 1000 1050 1100 1150 1200 1250 1300

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

AOC	
 Rhino	

Results:	
 Qsets	

•  Bug	
 Localiza4on	

•  Concern	
 Loca4on	

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

300 400 500 600 700 800

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents

(a) Short Queries

300 400 500 600 700 800

Porter

Snowball

MStem

KStem

Paice

None

Ranks of Relevant Documents

(b) Medium Queries (M291)

300 400 500 600 700 800

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents

(c) Long Queries

Figure 1. Distribution of Ranks for q ∈ Qvary for iBugs

50776 has terms like compiler, compiles, compiling, over-
riding, introduction, differing, throws, exception, exceptions,
redefining, and invocation, all of which can be pruned to a
more concise form. Hence these are the queries that contain
a lot of verbs and their variants. Another example is bug
129525, which contains terms like load, loader, loading,
message, messages, information, intention, exception, exe-
cution, circularity, dump, dumped, and dumping.

Stemming < No Stemming (Q−): In spite of the
presence of verbs and their variants, some otherwise well-
performing queries are negatively impacted by stemming.
This occurs when the relevant files contain the exact form
of the words in the query and conflation only adds noise by

Query Type Q+ Q− Q= Qvary

Short 29 46 4 47
Medium 25 34 6 61
M291 53 92 12 134
Long 25 36 5 60

Table IV
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary).

retrieving irrelevant documents. An example is bug 34951,
where the relevant file and the query both contain compiling,
aspectjrt, and aspectjrt.jar. Stemming compiling → compile
allows unrelated documents containing terms like compilers,
compilation to out-score the relevant documents containing
unique terms like aspectjrt and aspectjrt.jar. Another exam-
ple is bug 128699, where the terms annotation, changed,
declarations, and dominates are present in the relevant file
in the exact form. In general, the change in rank is typically
small. For example, in the case of bug 128699, the rank of
the relevant document is pushed from 5 to the range 7–9.

Stemming = No Stemming (Q=): There are a few
queries for which the retrieval performance is unaffected by
stemming due to few words being subject to stemming in the
query and relevant documents. For example, in bug 49250
the terms that are conflated are not found in the relevant
documents, so stemming has no effect.

Stemmer-dependent (Qvary): Although the above three
sets give useful insights on the applicability of stemming for
bug localization, queries in the Qvary set are the “interest-
ing” cases where the relative strengths and weaknesses of
the stemmers are evident. From the rank-based F-tests for
the queries in Qvary , we find the ordering in Table V holds.

Paice and MStem > other stemmers: Paice and MStem
outperform other stemmers in some cases because they are
heavy. For example, bug 29934 contains the term pointer.
The source files relevant to this bug contain variants of the
word pointer such as points and point. While other stemmers
fail to conflate pointer to point, Paice and MStem are able
to find more matches between the relevant document and
the query. Another example is configuration → config for
bug 109016. The source files often contain the term config
instead of configuration. While other stemmers conflate
configuration to configur, Paice greedily, stems it to config,
increasing the degree of commonality between the query and
the relevant document.

Paice < other stemmers: However, Paice’s greediness
can also reduce retrieval effectiveness. For example, Paice
incorrectly conflates inter to int. Similarly, Paice conflates
outjar → outj and ajde → ajd, which reduces the utility of
the specific identifier outjar. Other greedy conflations that
are potentially harmful for retrieval are: accept→accieve,
compare → comp, after → aft, actual → act, only → on.
Although Paice is known to be a greedy stemmer prone to
over-stemming, it is sometimes unable to catch simple word

4,	
 nouns	

2,	
 verbs	

770,	
 code	

Mean	
 number	
 of	
 words	
 in	
 query,	
 notes	

8.5	

247	

320	

Conclusion	
 &	
 Discussion	

•  So	
 far,	
 success	
 of	
 any	
 par4cular	
 stemmer	

situa4on	
 dependent	
 (we	
 can’t	
 yet	
 generalize)	

– Stemmer	
 success	
 seems	
 dependent	
 on	
 	

query	
 nature	
 &	
 retrieval	
 model	

•  Are	
 there	
 other	
 variables	
 missing	
 from	
 our	

model	
 of	
 the	
 problem,	
 or	
 is	
 this	
 due	
 to	
 the	

nature	
 of	
 stemming/searching	
 itself?	

– Query	
 length,	
 presence	
 of	
 code/iden4fiers	

– Query	
 difficulty	
 (how	
 well	
 matches	
 code	
 words)	

•  Future	
 Work:	
 explore	
 the	
 interac4on	
 between	

retrieval	
 model,	
 query	
 length/type,	
 &	
 stemmer	

