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Problem:	  Source	  Code	  Search	  

•  Query:	  “add	  item”	  

•  Stemming	  used	  
to	  strip	  suffixes	  &	  
improve	  recall	  by	  	  
reducing	  words	  to	  root	  form,	  or	  stem	  
– Widely	  studied	  in	  Informa4on	  Retrieval	  (IR)	  

– Not	  so	  much	  for	  SE	  (very	  different	  document	  style)	  
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A	  Brief	  History	  of	  Stemming	  

•  Light	  Stemmers	  (tend	  not	  to	  stem	  across	  parts	  of	  speech)	  
–  Porter	  (1980):	  algorithmic	  (rule-‐based),	  simple	  &	  efficient	  

•  Most	  popular	  stemmer	  in	  IR	  &	  SE	  
•  Snowball	  (2001):	  minor	  rule	  improvements	  

–  KStem	  (1993):	  morphology-‐based	  
•  based	  on	  word’s	  structure	  &	  hand-‐tuned	  dic4onary	  
•  in	  experiments	  shown	  to	  outperform	  porter’s	  

•  Heavy	  Stemmers	  (can	  overstem,	  reducing	  precision)	  
–  Lovins	  (1968):	  algorithmic	  
–  Paice	  (1990):	  algorithmic	  
– MStem:	  morphological	  (PC-‐Kimmo),	  specialized	  for	  source	  
code	  using	  word	  frequencies	  



Our	  Contribu4on	  
Inves5gate	  use	  of	  stemming	  for	  2	  different	  types	  of	  Java	  
source	  code	  search	  tasks	  with	  various	  queries:	  

•  Bug	  Localiza4on:	  find	  methods	  in	  bug	  fix	  (IR:	  Unigram	  Model)	  
291	  bugs	  from	  iBugs	  dataset	  (ASPECTJ)	  with	  queries:	  

–  M291:	  all	  291	  bugs,	  with	  ini4al	  bug	  descrip4on	  as	  query	  (not	  4tle)	  

–  Medium:	  ini4al	  bug	  descrip4on	  of	  126	  bugs	  that	  contain	  both	  4tle	  &	  
comments	  (not	  much	  code)	  

–  Short:	  4tle	  of	  126	  bugs 	  −	  Long:	  4tle	  +	  full	  comments	  of	  126	  (some	  code)	  

•  Concern	  Loca4on:	  find	  methods	  implemen4ng	  a	  concept	  of	  
interest,	  given	  keyword-‐style	  queries	  (IR:	  c-‐idf)	  

–  8	  ac4on-‐oriented	  concerns	  from	  4	  programs	  (AOC),	  48	  queries	  

–  215	  documenta4on-‐based	  concerns	  from	  Rhino	  (Rhino),	  645	  queries	  



Analysis	  Methodology	  
•  MAP	  (Mean	  Average	  Precision):	  
AP	  =	  average	  precision	  at	  each	  relevant	  result	  

•  Rank	  Measure	  [Hull	  ’96]:	  	  
rank	  of	  relevant	  documents	  for	  each	  query	  

•  Qsets	  [Hull	  ’96]:	  par44on	  queries	  into	  sets:	  
– Q+:	  stemming	  helps	  	  

– Q-‐:	  stemming	  hurts	  
– Q=:	  stemming	  has	  no	  effect	  
– Qvary:	  effect	  depends	  on	  stemmer	  



Results:	  Bug	  Localiza4on	  

•  Stemming	  plays	  more	  of	  a	  role	  for	  shorter	  queries	  

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary ).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

of results [26], [7]. In this section, we investigate the impact
of stemming on an IR-based approach to bug localization.

A. Subject Bugs and Queries
Evaluating the stemmers for bug localization requires a

set of bug reports and related source code artifacts. In this
study, we use the iBUGS [27] dataset. iBUGS was created
by mining five years of version history of the ASPECTJ
software and its bug-tracking system. iBUGS contains 75
KLOC and over 350 bugs, 291 of which relate to program
elements in Java source files. These 291 bugs form the
ground-truths (i.e., gold set) for our study.

Bug reports contain multiple sources of textual informa-
tion that can be used as queries. Each bug typically has a
title, or short description, and one or more comment lines
in the main body of the bug description. To investigate the
effect of query length on stemmer effectiveness [12], we
use three different types of queries: the first comment line
in the bug description as used in the original iBugs dataset
(medium descriptions), the short descriptions (i.e., titles),
and the entire bug description text, which we refer to as
the long description. Because not all bugs contain short and
long descriptions, these sets contain just 126 bugs. Thus, we
have 4 categories of queries: Short (126 bugs), Medium (126
bugs), Long (126 bugs), and M291 (medium length queries
but all of the 291 bugs). The mean, median, min, and max
length of the query in each category is tabulated in Table I.

B. Methodology
In a prior study of IR techniques for bug localization,

Rao and Kak [28] demonstrated that simple retrieval models,
in particular the Vector Space Model and the Unigram
Model, outperform the more complex models such as those
based on the Latent Semantic Analysis and Latent Dirichlet
Allocation. For the purposes of this study, we use the
Unigram Model (UM) because of its prior effectiveness [28]
and its scalability.

The Unigram Model (UM) represents each document with
a probability distribution [29]. This probability distribution
is smoothed using a collection-wide distribution of terms,
pc(w). Thus, the smoothed Unigram representation of the
mth document can be expressed as:

pm(w) = (1− µ)
tfm(w)�
w tfm(w)

+ µpc(w)

pc(w) =

�
m tfm(w)�

w

�
m tfm(w)

(1)

where tfm(w) represents the term frequency of the wth

word in the document m. Because queries are subject to
the same processing and smoothing steps as documents, a
query q can be represented by the probability distribution:

pq(w) = (1− µ)
tfq(w)�
w tfq(w)

+ µpc(w) (2)

Query None Paice KStem MStem Snowball Porter
Long 0.2236 0.1955 0.2175 0.2194 0.2151 0.2130
Medium 0.1419 0.1446 0.1499 0.1559 0.1387 0.1492
M291 0.1549 0.1482 0.1529 0.1512 0.1465 0.1525
Short 0.1133 0.1049 0.1167 0.1138 0.1137 0.1106

Table II
MEAN MAP SCORES FOR IBUGS

Query Paice KStem MStem Snowball Porter
Long -0.02806 -0.006090 -0.004199 -0.008529 -0.01055
Medium 0.002638 0.007970 0.01400 -0.003243 0.007280
M291 -0.006703 -0.002056 -0.003738 -0.008391 -0.002462
Short -0.008479 0.003343 0.0004492 0.0003093 -0.002758

Table III
MEAN MAP DIFFERENCE SCORES FOR IBUGS

With both the documents and the query being represented as
|V| dimensional probability vectors, we use KL divergence
to determine the “match” between a query and a document.
These similarity values are then ranked in decreasing order
to create a ranked list of documents for each query. Finally,
we calculate the MAP values and we perform the statistical
analyses described in Section III-A.

C. Results and Analysis
Tables II and III show the MAP and MAP Difference

results of each stemmer for the three different types of
queries. As can be seen from the second column of Table II,
retrieval effectiveness of no stemming improves in direct
proportion to query length. Since most information in the
comments are code snippets containing class names, they are
less impacted by stemming as compared to shorter queries.
Hence we see no improvement when using stemming for
long queries. However, stemming impacts shorter queries,
although Paice tends to reduce retrieval effectiveness.

To further explain these results, we investigate specific
cases where we can observe the relative strengths and
weaknesses of individual stemmers by comparing the query
subsets Q+, Q=, Q−, and Qvary , as defined in Section III-A.
Table IV shows the number of queries in each subset.
Figures 1(a), 1(b) and 1(c) show the mean and variance
rank measure for each type of query in the Qvary set.
The x-axis denotes the ranks of the relevant documents
and each horizontal line indicates the variance, centered
about the mean. The rank of relevant documents shows more
variability among stemmers as compared to Average Preci-
sion. Note stemming has a higher impact on shorter queries
than medium or long, although none of the differences are
statistically significant.

Stemming > No Stemming (Q+): There are some
queries that are loaded with verbs and their variants, and no
matter what stemming algorithm is employed, the conflation
significantly reduces the number of unique terms in the
query and hence improves the weight of each of the conflated
terms, which aids in better retrieval. For example, bug
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Results:	  Concern	  Loca4on	  

•  Paice	  significantly	  outperforms	  other	  stemmers	  
for	  Rhino,	  points	  to	  possible	  interac4on	  with	  c-‐idf	  

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary ).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

0 100 200 300 400 500 600 700

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents 1000 1050 1100 1150 1200 1250 1300

Porter

Snowball

MStem

KStem

Paice

None

Rank of Relevant Documents

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary ).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

AOC	   Rhino	  



Results:	  Qsets	  

•  Bug	  Localiza4on	  

•  Concern	  Loca4on	  

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary ).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.

Set None Paice KStem MStem Snowball Porter
AOC 0.2122 0.2429 0.2384 0.2377 0.2279 0.2298
Rhino 0.09301 0.09597 0.09381 0.09212 0.09290 0.09288

Table VIII
MEAN MAP SCORES FOR CONCERN LOCATION

Set Paice KStem MStem Snowball Porter
AOC 0.03072 0.02619 0.02548 0.01576 0.01762
Rhino 0.002955 0.0007937 -0.0008919 -0.0001163 -0.0001374

Table IX
MEAN MAP DIFFERENCE SCORES FOR CONCERN LOCATION

Java programming to read the documentation for a subset
of 80-81 concerns. The developers had varying levels of
programming and industry experience, shown in Table VII.
The subjects were asked to formulate a query containing
words they thought were relevant to the feature and would
be the first query they would type into a search engine such
as Google when searching. They could include specific iden-
tifiers as keywords if those were listed in the documentation.
The developers were randomly assigned blocks of concerns
such that 3 different subjects formulated queries for each
concern, yielding a total of 645 concern-query combinations.

C. Methodology

Each stemmer (and no stemming) was used with tf-idf
to search for each query. Both the queries and the source
code documents (methods and fields) are processed using the
same identifier splitting and stemming techniques. Formally,
given a query q, stemmed query word w, and a method m,
we use the following equation to calculate tf-idf:

tf − idf(m) =
�

w∈q

(1 + ln(tfm(w))) ∗ ln(idf(w))

where tfm(w) is the term frequency of stemmed word w in
the method m, and ln is the natural log. Because idf is re-
calculated for each stemmer, the tf-idf scores can widely
vary between stemmers that are heavy and light. Unlike
bug localization, the textual queries for concern location are
typically short, just 2 or 4 words on average for our data
sets (see Table I).

D. Results and Analysis

Tables VIII and IX show the mean MAP and MAP
Difference results for each stemmer and no stemming for the
AOC and Rhino concern sets. It should be noted that none of
the differences are statistically significant. Table X shows the
number of queries where stemming helps (Q+), hurts (Q−),
has no effect (Q=) and where performance varies (Qvary).

From Table IX we observe that for AOC, stemming ranks
relevant results more highly than irrelevant ones. Taking a
closer look at the distribution for MAP Difference, we find
that Paice, MStem, and KStem outperform no stemming for

Query Type Q+ Q− Q= Qvary

AOC 18 9 3 18
Rhino 112 239 70 224

Table X
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary ).

75% of the queries, whereas light Porter and Snowball out-
perform no stemming for just 50% of the queries. In contrast,
Tables IX and X illustrates that for Rhino, stemming seems
to hurt as often as it helps. From Table IX we see modest
MAP Differences, with Paice and KStem offering slight
improvements over stemming, while MStem, Snowball, and
Porter perform slightly worse. From Table X we observe that
stemming hurts (Q−) or has variable performance (Qvary)
for twice as many queries as it helps (Q+).

In terms of aggregate results, stemming clearly improves
retrieval effectiveness for AOC, but not necessarily for
Rhino. Given the median number of words in each query
(2 for AOC, 4 for Rhino), it is possible that stemming plays
more of a role when there are few query terms. We also
hypothesize that stemming plays less of a role in Rhino’s
feature-based concerns than for the action-oriented concerns
in the AOC set because of the importance verbs play in
the queries. The documentation-based Rhino concern set
is similar to the problem of documentation to source code
traceability link recovery, where using nouns alone has been
demonstrated to improve retrieval accuracy [35]. In contrast,
the action-oriented concerns have a strong reliance on verbs
in retrieving relevant methods. Since verbs have many forms
that lend themselves to stemming, stemming may play a
greater role in searching for concerns where an action, or
verb, in the query has an impact on retrieval effectiveness.

Given the Qvary column in Table X, we see that whether
or not stemming improves performance depends on the par-
ticular stemmer for more than 35% of the queries. Hence, we
further investigated the relative effectiveness of the stemmers
on the Qvary set. Table V shows the relative ordering of
stemmer performance on the Qvary set, using the Rank
Measure F-tests described in Section III-A. Figures 2(a)
and 2(b) show the mean and variance rank measure for each
type of query in the Qvary set. The x-axis denotes the ranks
of the relevant documents and each horizontal line indicates
the variance, centered about the mean. Figure 2(a) shows
that for AOC, Paice and MStem rank relevant methods more
than 100 ranks higher on average than KStem, Snowball,
and Porter. For Rhino, Figure 2(b) illustrates that Paice
significantly outperforms the other stemmers for this subset.

To further investigate the effect of stemming on concern
location, we manually inspected the results for any queries
that lead to different results between stemmers.

1) AOC: Of the 29 unique queries in the AOC set, 26
exhibited a difference between stemmers or no stemming.
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Figure 1. Distribution of Ranks for q ∈ Qvary for iBugs

50776 has terms like compiler, compiles, compiling, over-
riding, introduction, differing, throws, exception, exceptions,
redefining, and invocation, all of which can be pruned to a
more concise form. Hence these are the queries that contain
a lot of verbs and their variants. Another example is bug
129525, which contains terms like load, loader, loading,
message, messages, information, intention, exception, exe-
cution, circularity, dump, dumped, and dumping.

Stemming < No Stemming (Q−): In spite of the
presence of verbs and their variants, some otherwise well-
performing queries are negatively impacted by stemming.
This occurs when the relevant files contain the exact form
of the words in the query and conflation only adds noise by

Query Type Q+ Q− Q= Qvary

Short 29 46 4 47
Medium 25 34 6 61
M291 53 92 12 134
Long 25 36 5 60

Table IV
NUMBER OF QUERIES WHERE STEMMING HELPS (Q+), HURTS (Q−),
HAS NO EFFECT (Q=), AND WHERE PERFORMANCE VARIES (Qvary ).

retrieving irrelevant documents. An example is bug 34951,
where the relevant file and the query both contain compiling,
aspectjrt, and aspectjrt.jar. Stemming compiling → compile
allows unrelated documents containing terms like compilers,
compilation to out-score the relevant documents containing
unique terms like aspectjrt and aspectjrt.jar. Another exam-
ple is bug 128699, where the terms annotation, changed,
declarations, and dominates are present in the relevant file
in the exact form. In general, the change in rank is typically
small. For example, in the case of bug 128699, the rank of
the relevant document is pushed from 5 to the range 7–9.

Stemming = No Stemming (Q=): There are a few
queries for which the retrieval performance is unaffected by
stemming due to few words being subject to stemming in the
query and relevant documents. For example, in bug 49250
the terms that are conflated are not found in the relevant
documents, so stemming has no effect.

Stemmer-dependent (Qvary): Although the above three
sets give useful insights on the applicability of stemming for
bug localization, queries in the Qvary set are the “interest-
ing” cases where the relative strengths and weaknesses of
the stemmers are evident. From the rank-based F-tests for
the queries in Qvary , we find the ordering in Table V holds.

Paice and MStem > other stemmers: Paice and MStem
outperform other stemmers in some cases because they are
heavy. For example, bug 29934 contains the term pointer.
The source files relevant to this bug contain variants of the
word pointer such as points and point. While other stemmers
fail to conflate pointer to point, Paice and MStem are able
to find more matches between the relevant document and
the query. Another example is configuration → config for
bug 109016. The source files often contain the term config
instead of configuration. While other stemmers conflate
configuration to configur, Paice greedily, stems it to config,
increasing the degree of commonality between the query and
the relevant document.

Paice < other stemmers: However, Paice’s greediness
can also reduce retrieval effectiveness. For example, Paice
incorrectly conflates inter to int. Similarly, Paice conflates
outjar → outj and ajde → ajd, which reduces the utility of
the specific identifier outjar. Other greedy conflations that
are potentially harmful for retrieval are: accept→accieve,
compare → comp, after → aft, actual → act, only → on.
Although Paice is known to be a greedy stemmer prone to
over-stemming, it is sometimes unable to catch simple word
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Conclusion	  &	  Discussion	  
•  So	  far,	  success	  of	  any	  par4cular	  stemmer	  
situa4on	  dependent	  (we	  can’t	  yet	  generalize)	  
– Stemmer	  success	  seems	  dependent	  on	  	  
query	  nature	  &	  retrieval	  model	  

•  Are	  there	  other	  variables	  missing	  from	  our	  
model	  of	  the	  problem,	  or	  is	  this	  due	  to	  the	  
nature	  of	  stemming/searching	  itself?	  
– Query	  length,	  presence	  of	  code/iden4fiers	  
– Query	  difficulty	  (how	  well	  matches	  code	  words)	  

•  Future	  Work:	  explore	  the	  interac4on	  between	  
retrieval	  model,	  query	  length/type,	  &	  stemmer	  


