
Cross-Language Program Understanding,
Code Analysis and Refactoring

Philip Mayer and Andreas Schroeder

Programming & Software Engineering Group

Ludwig-Maximilians-Universität München, Germany

SCAM 2012

Riva del Garda, Italy

Context, Situation & Remedy

• Context: MLSAs (Multi-Language Software Applications)
– ...are systems written using different programming languages and

– …involve artifacts in different languages which are linked together

– …only work (properly) if the links are intact

• Situation: MLSAs are badly supported by tools leading to
productivity loss
– No compiler help / error marking => might forget links while coding

– No refactoring support => might break links => more bugs

– No code navigation / visualization => program understanding is harder

• Remedy: Explicit description of links & tools

27.09.2012 Dr. Philip Mayer 2

XLL

• Our approach: A framework (XLL) for handling cross-language links
– Allows explicitly declaring link types

– Performs live link monitoring (for established and broken links)

– Plugs into refactorings (to keep links intact)

• Support three use cases
– Program Understanding: Code Navigation & Code Visualization

– Code Analysis: Indicate Errors or Possible Problems / Perform Complexity
Analysis

– Refactoring & Code Generation: Propagate Changes (with additional
refactorings) / Generate Code

27.09.2012 Dr. Philip Mayer 3

What do we need?

27.09.2012 Dr. Philip Mayer 4

.___.__._....__....._....__

._..__.._..___.____.._._

___.__._....__....._....__

.___.__._....__....._....__

._..__.._..___.____.._._

___.__._....__....._....__

Language A Language B

1) Artifact Specification & Access

2) Link Type Specification

._..__.._..___._

___.__._....__..

._..__.._..___.____.._._.....____.__._

___.__._....__....._....____..._.._....__

3) Resolving Links

4) Exploiting Links (for the three use cases)

Cross-Link Specification

XLL: The Solution

27.09.2012 Dr. Philip Mayer 5

.___.__._....__....._....__

._..__.._..___.____.._._

___.__._....__....._....__

.___.__._....__....._....__

._..__.._..___.____.._._

___.__._....__....._....__

Language A Language B

1) Artifact Specification & Access

2) Link Type Specification

._..__.._..___._

___.__._....__..

._..__.._..___.____.._._.....____.__._

___.__._....__....._....____..._.._....__

3) Resolving Links

4) Exploiting Links (for the three use cases)

Cross-Link Specification

EMF-based Metamodels
& Language Adapters

QVT/R (Patterns,
Templates, Relations)

QVT/R Evaluation (Logical
Formulas)

Plugging into Eclipse

Example: Android

• Example: Android Java vs. UI XML in QVT/R

27.09.2012 Dr. Philip Mayer 6

What we found

• XLL (EMF/QVT/Constraints/Eclipse) has been implemented on top
of Eclipse and applied to three software systems (a few kloc to
100kloc) with a total of five languages

• The good:
– It works  (for simple link types)

– EMF-based metamodels make sense

– Eclipse-integration (including refactoring reuse) is relatively painless

• The bad:
– QVT/R is not expressive enough for more complicated links

– Logic-based evaluation is very hard to debug

– High coupling between language metamodels and link specifications

27.09.2012 Dr. Philip Mayer 7

Current & Future Work

• Current Work: Working on a better linking language
– Looking at Query/Addressing Languages

– Minimize coupling between link specification and metamodels

• Future Work: Evaluation of usefulness claims
– How does it affect productivity? (i.e. is it worth it?)

27.09.2012 Dr. Philip Mayer 8

Thank You.

27.09.2012 Dr. Philip Mayer 9

www.xllsrc.net

http://www.xllsrc.net/

