
A Metric Extraction

Framework
Based on a High-Level Description

Language

SCAM 2009, Edmonton, Alberta

El Hachemi Alikacem Houari Sahraoui

2

Introduction

Metrics are powerful support tools in
software development.

They are used in several fields in software
engineering.

3

Existing Tools Limitations

Existing tools are not flexible enough. This
is due to:

A lack in formalization
An inability of extension to new metrics

4

Proposition

We propose:
A generic tool to collect metrics from OO programs
An approach based on a language for metric description

Goals to be reached :
Multi-language capability
Easy way to define new metrics
Simple and easy to use metric description language

5

Architecture of the Metric Extraction
Framework

Metric
Descriptions

Code Representation

Metric
Results

Code capturing

Source

Code

Evaluator

Parsing
&

Mapping

6

Code Representation Meta-Model

Representation of the common concepts in OO
languages

Representation of a specific concept of languages
(e.g. Java, C++)

Explicit representation of the semantic of certain
concepts. Mainly, common concepts with
variation in semantic:

Inheritance,
Use/Def relationship,
Method invocation

7

Meta-Model

File

System

Module

ha
s

TypedStructure

Entity

Class Interface

ha
s

BasicType ArrayType
Feature

Method
Attribute

Parameter
Statement

has

has

has

ty
pe

of

ty
pe

of

re
tu

rn
ed

Ty
pe

IVarDeclarator

used

has

name

name

name

name

visibility=public|protected|private
modifier

name name

name
modifier

VarDeclatation

has

MethodUse
used

usedBy
CInheritance

VariableUse

8

Generation of the Source Code
Representation

The representation is
generated by the Parsing
& Mapping (P&M)
module

P&M module is language
specific. When a new
language is considered,
a corresponding P&M
module must be
implemented.

Code Representation

Code capturing

Source

Code

Parsing
&

Mapping

9

Description and Metric Gathering
Huge number of metrics have been
proposed in the literature.

We classified them in four categories :
Size/Complexity
Inheritance
Coupling
Cohesion

10

Examples
CLS Number of the classes in the system
NBTF Number of files
NIC Number of independent classes
NOC Number of children (sub-classes)
NOP Number of parents (super-classes)
NOA Number of Ancestors
NMA Number of new Method
CIS Class Interface Size
CLD Class to leaf depth
DIT Depth in inheritance tree
RFC Response for class
LCOM Lack in cohesion

11

Examples (2)
ACAIC: Ancestor class-attribute import coupling

DCAEC :Descendants class-attribute export
coupling

{ })()()()(cAncestorsaTcAaacACAIC I ∈∧∈=

{ }∑
∈

=∧∈=
)(

,

,

)()()(
csDescendentc

I caTcAaacDCAEC

12

Metric Gathering

Metrics are computed using data from the
representation model.

File

System

Module
TypedStructure

Entity

Class Interface

BasicType ArrayType
Feature

Method
Attribute

Parameter
Statement

has

has

IVarDeclarator

used

has

name

name

name

name

visibility=public|protected|private
modifier

name name

name
modifier

VarDeclatation

has

MethodUse
used

usedBy
CInheritance

VariableUse

13

Metric Description Language
A language that offers the ability to
manipulate data in the model using:

Primitives: Base sets extracted from the code
source representation, such as classes() and
methods(c).

Operations
Operations On numbers and sets (+, *, < , >, union,
intersection, etc.)
Common functions (min, max, sum, etc.)
Cardinality operation used to compute size of sets. The
notation of this operation is a set put between “|”
symbol.

14

Metric Description Language
Iterator: It enables the manipulation of set’s
elements. Simplified syntax is :

forAll (x : inputSet ; condition ; SET operator expression)

Property Access: Access to the object
properties defined in the meta-model

Access to an attribute. For example c.visibility

15

Examples
CLS : Number of classes
in the System

NIC : Number of
Independent Class

CIS(c): Class Interface
size

AID: Average
inheritance depth

ACAIC: Ancestor class-
attribute import
coupling

()classesCLS =

|);0)(

&&0)(;():(|

xSETxchildren

xparentclassexforAllNIC

=+==

===

CLS
xDITSETclassexforAllsumAID)))(;();:((=+

=

|)
;.;)(:(|)(

xSET
PUBLICvisibilityxcmethodsxforAllcCIS

=+
===

|);)()(&&)(
;)(:(|:):(

aSETcancestorsatypeofaisNew
cattributesaforAllclasscACAIC

=+∈

16

Conclusion
Characteristics of our description language:

It has very few syntactic constructions
It is simple and does not require any specific
knowledge
The metric description is close to its definition in
the specification

More than 35 metrics are currently collected
using the tool
Java language is completely supported.
Experimentation with C++ programs was
also performed.

17

For “Controversial”

Discussion

In many papers, people claim that their tools
are language-independent.

Is this realistic ? Feasible ?

Or, should we accept (restrictive) limitations !?

Finally, why not language-dependent tools?

	A Metric Extraction Framework Based on a High-Level Description �Language
	Introduction
	Existing Tools Limitations
	Proposition
	Architecture of the Metric Extraction Framework
	Code Representation Meta-Model
	Slide Number 7
	Generation of the Source Code Representation
	Description and Metric Gathering
	Examples
	Examples (2)
	Metric Gathering
	Metric Description Language
	Metric Description Language
	Examples
	Conclusion
	For “Controversial” Discussion

