
Arent Janszoon Ernststraat 595-H
NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

September 20, 2009

Static Estimation of Test Coverage
Tiago Alves & Joost Visser

2

Static estimation of test coverage

Motivation

Test Coverage in Software Quality assessment:
• NO full installation available (missing sources or libraries)
• NO execution (unavailable hardware, time constraints, no reproducible test environment)

• NO instrumentation of source/byte code

Research questions:
• Is it possible to determine test coverage without running tests?
• What trade-offs can be made between scalability and precision?

Requirements
• Use only static analysis
• Scale to large systems
• Robust against incomplete systems

3

Static estimation of test coverage

Solution sketch

1. Extract
• Extract structural and call information
• Determine set of test classes

2. Slice (modified)
• Slice graph starting from the test

methods
• Set of methods reached from test code
• Take into account class initializer calls

3. Count (per class)
• Determine number of defined methods
• Determine number of covered methods

4. Estimate method coverage
• Class level
• Package level
• System level

4

Static estimation of test coverage

Experimental design

Data set selection and characterization
• 12 Open-source and proprietary Java systems (1.6k - 267k LOC)

Execution of experiment
• SemmleCode execution (text file export + scripts for CSV conversion)
• XML Clover extraction (XSLT transformations to CSV conversion)
• Custom built java tool to read CSV files and XLS creation

Statistical analysis
• Histograms (distribution)
• Scatter charts (correlation)
• Spearman (correlation)
• Inter-quartile ranges (dispersion)

5

Static estimation of test coverage

Statistical analysis
(System coverage comparison)

-16.49%88.23%71.74%SIG Analyses

10.84%69.08%79.92%SIG DocGen

8.33%61.55%69.88%JFreeChart

-7.55%72.65%65.10%R System

System Static Clover Diff

JPacMan 88.06% 93.53% -5.47%

SIG Certification 92.82% 90.09% 2.73%

G System 89.61% 94.81% -5.19%

Dom4j 57.40% 39.37% 18.03%

SIG Utils 74.95% 70.47% 4.48%

JGAP 70.51% 50.99% 19.52%

Collections 82.62% 78.39% 4.23%

PMD 80.10% 70.76% 9.34%

Spearman correlation: 0.802**

Statistical analysis
(System coverage through time)

Static estimation of test coverage

Spearman correlation: 0.888**

7

Static estimation of test coverage

Statistical analysis
(Class and package coverage comparison)

0.486**0.391**SIG Analyses

0.459**0.397**SIG DocGen

0.694**0.632**JFreeChart

0.723**0.727**R System

System name
Spearman

Class Package

JPacMan 0.476* 1

SIG Certification 0.368** 0.520

G System 0.774** 0.694**

Dom4j 0.584** 0.620*

SIG Utils 0.825** 0.778**

JGAP 0.733** 0.786**

Collections 0.549** 0.776**

PMD 0.638** 0.655**

Collections

Why the values differ?
(Sources of imprecision)

Frameworks / Library call backs

Control flow

Identification of test cases

Failing tests
 (when comparing w/ Clover)

Overloading

Dynamic dispatch

UnderestimationOverestimation

9

Static estimation of test coverage

Conclusion

It is possible to determine test coverage without running tests!
• Spearman: high correlation between static and clover coverage
• In general static coverage identifies the same values as clover

Trade-offs between scalability and precision?
• Average absolute difference for system coverage: 9%
• Class and Package coverage needs further improvement

Future research
• Use LOC as weight for better estimation
• Merge with Kastrén “Towards a deeper understanding of test coverage”
• More heuristics: McCabe , #Tests, #asserts, Test(LOC) / Code(LOC)

10

Static estimation of test coverage

Questions?

