Chopping Concurrent Programs

Dennis Giffhorn

Universitat Karlsruhe (TH), Germany

O

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 1/8

Chopping
May statement s influence statement t?

@ chop(s,t) contains all statements which may convey effects from s to t

Example: chop(1,5)
1 int a = input();

2 int b = inputQ;
3 b=Db * a;

4 if (b < 0)

5 print(b);

@ Intuitively: chop(s, t) = forward slice(s) N backward slice(t)

o

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 2/8

Chopping

May statement s influence statement t?
@ chop(s,t) contains all statements which may convey effects from s to t

Example: chop(1,5)
1 int a = input();

2 int b = inputQ;
3 b=Db* a;

4 if (b < 0©)

5 print(b);

@ Intuitively: chop(s, t) = forward slice(s) N backward slice(t)

o

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 2/8

Chopping

@ Main application: preprocessing step
@ The more precise the chop,

» the more precise is the main analysis
> the faster is the main analysis

o

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 3/8

Chopping

@ Main application: preprocessing step
@ The more precise the chop,

» the more precise is the main analysis
> the faster is the main analysis

@ When we started our work

» Precise chopping algorithms for seq. programs
> No algorithm for conc. programs at all

o

D. Giffhorn (Univ. Karlsruhe) SCAM'09 3/8

Context-sensitive chopping

@ Distinguish different calls of the same procedure

Example: chop(2,3)
1 void main() 4 int foo()

2 int m = foo(Q); 5 return 1;
3 int n = foo();

o

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 4/8

Context-sensitive chopping

@ Distinguish different calls of the same procedure

Example: forward slice(2)

1 void main() 4 int foo()
2 int m = foo(Q); 5 return 1;
3 int n = foo(Q);

o

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 4/8

Context-sensitive chopping

@ Distinguish different calls of the same procedure

Example: backward slice(3)
1 void main() 4 int foo()
2 int m = foo(Q); 5 return 1;
3 int n = foo(Q;

O

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 4/8

Context-sensitive chopping

@ Distinguish different calls of the same procedure

Example: chop(2,3)

1 void main() 4 int foo()
2 int m = foo(Q); 5 return 1;
3 int n = foo();

o

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM'09 4/8

Context-sensitive chopping

@ Distinguish different calls of the same procedure

Example: chop(2,3)

1 void main(Q) 4 int foo()
2 int m = foo(); 5 return 1;
3 int n = foo();

@ Solved for sequential programs [Reps and Rosay, FSE 1995]
= Extension to concurrent programs

@ Resulting algorithm has same asymptotic running time:
O(|Edges| * MaxParams)

o

D. Giffhorn (Univ. Karlsruhe) SCAM'09 4/8

Time-sensitive chopping

@ Distinguish different interleavings between threads

Example: chop(4,3)

1 int x,y;

2 void threadl() 5 void thread2()
3 int a = y; 6 int p = x;

4 x=a 7 Y =0p;

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs

SCAM'09

o

5/8

Time-sensitive chopping

@ Distinguish different interleavings between threads

Example: forward slice(4)

1 int x,y;

2 void threadl() 5 void thread2()
3 int a = y; 6 int p = x;

4 x=a; 7y =0p;

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs

SCAM'09

o

5/8

Time-sensitive chopping

@ Distinguish different interleavings between threads

Example: backward slice(3)

1 int x,y;

2 void threadl() 5 void thread2()
3 int a = y; 6 int p = x;

4 x=a 7y =0p;

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs

SCAM'09

o

5/8

Time-sensitive chopping

@ Distinguish different interleavings between threads

Example: chop(4,3)

1 int x,y;

2 void threadl() 5 void thread2()
3 int a = y; 6 int p = x;

4 x=a 7 Y =0p;

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs

SCAM'09

o

5/8

Time-sensitive chopping

@ Distinguish different interleavings between threads

Example: chop(4, 3)
1 int x,y;
2 void threadl() 5 void thread2()
3 int a = y; 6 int p = x;
4 X = a; 7 y = P;

@ Extension of time-sensitive slicing ([Krinke, FSE 03], [Nanda and
Ramesh, TOPLAS ’06]) to time-sensitive chopping

@ Same asymptotic running time as time-sensitive slicing:
; hread
O(|N0desl(maxlmal call depth)lt rea Sl)

o

D. Giffhorn (Univ. Karlsruhe) SCAM'09 5/8

Evaluation — Average number of nodes per chop

Name (nodes, edges, threads) | CS TS
Logger (9576, 50800, 2) 985 967 | 796
Maza (10590, 60021, 2) 1543 | 1153 | 798
Barcode (11025, 67849, 2) 711 541 | 469
Guitar (13459, 89724, 2) 1734 1606 | 1476
J2MESafe (15666, 127922, 2) 4027 | 3611 | 2423
Podcast (23399, 191849, 3) 10423 | 10400 | 2310

@ Context-sensitive chops up to 25% smaller, on average 10%

@ Time-sensitive chops up to 80% smaller, on average 35%

D. Giffhorn (Univ. Karlsruhe)

SCAM'09

o

6/8

Evaluation — Average number of nodes per chop

Name (nodes, edges, threads) | CS TS
Logger (9576, 50800, 2) 985 967 | 796
Maza (10590, 60021, 2) 1543 | 1153 | 798
Barcode (11025, 67849, 2) 711 541 | 469
Guitar (13459, 89724, 2) 1734 1606 | 1476
J2MESafe (15666, 127922, 2) 4027 | 3611 | 2423
Podcast (23399, 191849, 3) 10423 | 10400 | 2310

@ Context-sensitive chops up to 25% smaller, on average 10%

@ Time-sensitive chops up to 80% smaller, on average 35%

D. Giffhorn (Univ. Karlsruhe)

SCAM'09

o

6/8

Evaluation — Average number of nodes per chop

Name (nodes, edges, threads) | CS TS
Logger (9576, 50800, 2) 985 967 | 796
Maza (10590, 60021, 2) 1543 | 1153 | 798
Barcode (11025, 67849, 2) 711 541 | 469
Guitar (13459, 89724, 2) 1734 1606 | 1476
J2MESafe (15666, 127922, 2) 4027 | 3611 | 2423
Podcast (23399, 191849, 3) 10423 | 10400 | 2310

@ Context-sensitive chops up to 25% smaller, on average 10%

@ Time-sensitive chops up to 80% smaller, on average 35%

D. Giffhorn (Univ. Karlsruhe)

SCAM'09

o

6/8

Evaluation — Average time per chop in msec.

Name (nodes, edges, threads) | CS TS
Logger (9576, 50800, 2) 145 | 31.6 77.9
Maza (10590, 60021, 2) 25.9 | 53.6 | 2568.0
Barcode (11025, 67849, 2) 148 | 16.6 88.2
Guitar (13459, 89724, 2) 37.7 | 59.9| 551.2
J2MESafe (15666, 127922, 2) 60.4 | 180.0 | 7637.8
Podcast (23399, 191849, 3) 56.1 | 283.7 | 9039.2

@ CS chops up to 5 times slower, on average 3 times slower

@ TS chops up to 161 times slower, on average 95 times slower

D. Giffhorn (Univ. Karlsruhe)

SCAM'09

o

7/8

Future work ?

There is even more precision to gain (e.g. synchronization)
@ Costs would further explode
@ Algorithms are difficult to implement by now
= People tend to use intersection-based chopping
@ How can we benefit from this huge increase of precision in practice?

o

D. Giffhorn (Univ. Karlsruhe) SCAM'09 8/8

