
Chopping Concurrent Programs

Dennis Giffhorn

Universität Karlsruhe (TH), Germany

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 1 / 8

Chopping

May statement s influence statement t?

chop(s, t) contains all statements which may convey effects from s to t

Example: chop(1, 5)
1 int a = input();
2 int b = input();
3 b = b * a;
4 if (b < 0)
5 print(b);

Intuitively: chop(s, t) = forward slice(s) ∩ backward slice(t)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 2 / 8

Chopping

May statement s influence statement t?

chop(s, t) contains all statements which may convey effects from s to t

Example: chop(1, 5)
1 int a = input();
2 int b = input();
3 b = b * a;
4 if (b < 0)
5 print(b);

Intuitively: chop(s, t) = forward slice(s) ∩ backward slice(t)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 2 / 8

Chopping

Main application: preprocessing step
The more precise the chop,

I the more precise is the main analysis
I the faster is the main analysis

When we started our work
I Precise chopping algorithms for seq. programs
I No algorithm for conc. programs at all

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 3 / 8

Chopping

Main application: preprocessing step
The more precise the chop,

I the more precise is the main analysis
I the faster is the main analysis

When we started our work
I Precise chopping algorithms for seq. programs
I No algorithm for conc. programs at all

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 3 / 8

Context-sensitive chopping

Distinguish different calls of the same procedure

Example: chop(2, 3)
1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

Solved for sequential programs [Reps and Rosay, FSE 1995]
⇒ Extension to concurrent programs

Resulting algorithm has same asymptotic running time:
O(|Edges| ∗MaxParams)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 4 / 8

Context-sensitive chopping

Distinguish different calls of the same procedure

Example: forward slice(2)
1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

Solved for sequential programs [Reps and Rosay, FSE 1995]
⇒ Extension to concurrent programs

Resulting algorithm has same asymptotic running time:
O(|Edges| ∗MaxParams)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 4 / 8

Context-sensitive chopping

Distinguish different calls of the same procedure

Example: backward slice(3)
1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

Solved for sequential programs [Reps and Rosay, FSE 1995]
⇒ Extension to concurrent programs

Resulting algorithm has same asymptotic running time:
O(|Edges| ∗MaxParams)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 4 / 8

Context-sensitive chopping

Distinguish different calls of the same procedure

Example: chop(2, 3)
1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

Solved for sequential programs [Reps and Rosay, FSE 1995]
⇒ Extension to concurrent programs

Resulting algorithm has same asymptotic running time:
O(|Edges| ∗MaxParams)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 4 / 8

Context-sensitive chopping

Distinguish different calls of the same procedure

Example: chop(2, 3)
1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

Solved for sequential programs [Reps and Rosay, FSE 1995]
⇒ Extension to concurrent programs

Resulting algorithm has same asymptotic running time:
O(|Edges| ∗MaxParams)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 4 / 8

Time-sensitive chopping

Distinguish different interleavings between threads

Example: chop(4, 3)
1 int x,y;
2 void thread1()
3 int a = y;
4 x = a;

5 void thread2()
6 int p = x;
7 y = p;

Extension of time-sensitive slicing ([Krinke, FSE ’03], [Nanda and
Ramesh, TOPLAS ’06]) to time-sensitive chopping

Same asymptotic running time as time-sensitive slicing:
O(|Nodes|(maximal call depth) |threads|)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 5 / 8

Time-sensitive chopping

Distinguish different interleavings between threads

Example: forward slice(4)
1 int x,y;
2 void thread1()
3 int a = y;
4 x = a;

5 void thread2()
6 int p = x;
7 y = p;

Extension of time-sensitive slicing ([Krinke, FSE ’03], [Nanda and
Ramesh, TOPLAS ’06]) to time-sensitive chopping

Same asymptotic running time as time-sensitive slicing:
O(|Nodes|(maximal call depth) |threads|)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 5 / 8

Time-sensitive chopping

Distinguish different interleavings between threads

Example: backward slice(3)
1 int x,y;
2 void thread1()
3 int a = y;
4 x = a;

5 void thread2()
6 int p = x;
7 y = p;

Extension of time-sensitive slicing ([Krinke, FSE ’03], [Nanda and
Ramesh, TOPLAS ’06]) to time-sensitive chopping

Same asymptotic running time as time-sensitive slicing:
O(|Nodes|(maximal call depth) |threads|)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 5 / 8

Time-sensitive chopping

Distinguish different interleavings between threads

Example: chop(4, 3)
1 int x,y;
2 void thread1()
3 int a = y;
4 x = a;

5 void thread2()
6 int p = x;
7 y = p;

Extension of time-sensitive slicing ([Krinke, FSE ’03], [Nanda and
Ramesh, TOPLAS ’06]) to time-sensitive chopping

Same asymptotic running time as time-sensitive slicing:
O(|Nodes|(maximal call depth) |threads|)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 5 / 8

Time-sensitive chopping

Distinguish different interleavings between threads

Example: chop(4, 3)
1 int x,y;
2 void thread1()
3 int a = y;
4 x = a;

5 void thread2()
6 int p = x;
7 y = p;

Extension of time-sensitive slicing ([Krinke, FSE ’03], [Nanda and
Ramesh, TOPLAS ’06]) to time-sensitive chopping

Same asymptotic running time as time-sensitive slicing:
O(|Nodes|(maximal call depth) |threads|)

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 5 / 8

Evaluation – Average number of nodes per chop

Name (nodes, edges, threads) I CS TS
Logger (9576, 50800, 2) 985 967 796
Maza (10590, 60021, 2) 1543 1153 798
Barcode (11025, 67849, 2) 711 541 469
Guitar (13459, 89724, 2) 1734 1606 1476
J2MESafe (15666, 127922, 2) 4027 3611 2423
Podcast (23399, 191849, 3) 10423 10400 2310

Context-sensitive chops up to 25% smaller, on average 10%

Time-sensitive chops up to 80% smaller, on average 35%

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 6 / 8

Evaluation – Average number of nodes per chop

Name (nodes, edges, threads) I CS TS
Logger (9576, 50800, 2) 985 967 796
Maza (10590, 60021, 2) 1543 1153 798
Barcode (11025, 67849, 2) 711 541 469
Guitar (13459, 89724, 2) 1734 1606 1476
J2MESafe (15666, 127922, 2) 4027 3611 2423
Podcast (23399, 191849, 3) 10423 10400 2310

Context-sensitive chops up to 25% smaller, on average 10%

Time-sensitive chops up to 80% smaller, on average 35%

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 6 / 8

Evaluation – Average number of nodes per chop

Name (nodes, edges, threads) I CS TS
Logger (9576, 50800, 2) 985 967 796
Maza (10590, 60021, 2) 1543 1153 798
Barcode (11025, 67849, 2) 711 541 469
Guitar (13459, 89724, 2) 1734 1606 1476
J2MESafe (15666, 127922, 2) 4027 3611 2423
Podcast (23399, 191849, 3) 10423 10400 2310

Context-sensitive chops up to 25% smaller, on average 10%

Time-sensitive chops up to 80% smaller, on average 35%

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 6 / 8

Evaluation – Average time per chop in msec.

Name (nodes, edges, threads) I CS TS
Logger (9576, 50800, 2) 14.5 31.6 77.9
Maza (10590, 60021, 2) 25.9 53.6 2568.0
Barcode (11025, 67849, 2) 14.8 16.6 88.2
Guitar (13459, 89724, 2) 37.7 59.9 551.2
J2MESafe (15666, 127922, 2) 60.4 180.0 7637.8
Podcast (23399, 191849, 3) 56.1 283.7 9039.2

CS chops up to 5 times slower, on average 3 times slower

TS chops up to 161 times slower, on average 95 times slower

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 7 / 8

Future work ?

There is even more precision to gain (e.g. synchronization)

Costs would further explode

Algorithms are difficult to implement by now

⇒ People tend to use intersection-based chopping

How can we benefit from this huge increase of precision in practice?

D. Giffhorn (Univ. Karlsruhe) Chopping Concurrent Programs SCAM’09 8 / 8

