
Improving Side-Effect Analysis
with Lazy Access Path Resolving

Ju Qian

jqian@nuaa.edu.cn

Nanjing University of Aeronautics and Astronautics

2

Side-Effect Analysis
Side-Effect Analysis determines the memory locations
modified or used by each program entity.

We concentrate on method-level side-effect analysis

Side-Effect Analysis –– the state-of-the-art
– Based on Pointer Analysis
– Location-Based Fashion

representing side-effects as abstract locations

3

Side-Effect Analysis
Pointer Analysis –– What we prefer?
– Inclusion-based + Context-Insensitive
– Benefits: Practical + acceptable precision
– Typical Example: Spark in Soot

Widely Preferred Side-Effect Analysis
– side-effect analysis based on inclusion-based context-

insensitive pointer analysis

4

Side-Effect Analysis: Problems

Problems of side-effect analysis based on
inclusion-based context-insensitive pointer analysis

Still no good enough precision due to the
context-insensitive nature

– Side-effects under different calling contexts are
not distinguished

– Thousands of abstract locations in a single
modification set

5

Side-Effect Analysis: What we want?

a lightweight approach to improve the precision of
side-effect analysis

Special Requirements
– Keep Scalable
– Prefer to not redesign the background pointer analysis

A new context-sensitive pointer analysis may affect
scalability
A pointer analysis is often shared to achieve many
different goals
building a separate pointer analysis merely for side-effect
collecting may introduce redundant computation.

6

Our Solution
Fix the background pointer analysis, just improve the
precision of side-effect analysis under inclusion-
based context-insensitive pointer analysis

Basic Idea

Inspired by the following observation

– In inclusion-based context-insensitive points-to
analysis, the points-to sets of variables in the callers
tend to be smaller than the ones in the callees

7

Method: lazy access path resolving

Inside a procedure: Partly represent the side-effects
of a method as access paths (e.g., p.x, p.y) on formal
parameters
– For a modification, if its effects can be described by a

formal access path with the help of interstatement must aliases
Then: represent it as access path
Else: represent it as abstract locations

Inter-procedure: Propagate side-effects from the
callees to the callers
– For access path, map from formal to actual
– For abstract locations, just merge to the caller

8

Method: lazy access path resolving

The meaning of LAZY
– During the bottom-up phase, a mod/use access path will

never be resolved to the accessed locations as long as it
could be propagated in access path form.

Source of precision improvement
– access paths in the caller can often be resolved to smaller

abstract location sets

(introducing some level of context-sensitivity)

9

How lightweight?

Do not demand a new pointer analysis
Do not use exhaustive access path
representation
Use must alias instead of backward tracing to
determine if a MOD/USE can be
represented with access path
Compute interstatement must alias based on
global value numbering

10

Experimental Results

Less improvement when no heuristics used.
Why?
– Some method in large call depth has huge

side-effect sets (due to Java library) that are
difficult to refine, but widely propagated

The improvement seems minor compared to these
huge side-effect sets

11

Experimental Results
Using Heuristics:
– Treat Integer, String and some other immutable types as

build-in types
– Ignore class initializations and finalize calls
This will still be safe for many applications, although not for all

In this case, the improvement is more significant
– > 26% more precision for MOD effect computation.
– > 25% of methods with side-effect sets reduced by more

than a half
The new method would be more beneficial for the applications
where safety is not critical.

12

For Discussion
It seems hard to largely improve the precision of
side-effect analysis in limited time. Can we use
heuristics to help the analysis? What other heuristics
can we use?

Many people spend a lot of time in analyzing the
same codes. Can we build a standard repository to
share the analysis results?

For Java programs, what kinds of pointer analysis
and side-effect analysis would be the most practical
ones for program slicing?

13

Thanks！

