
Reconstruction of Composite Types for 
Decompilation

K. Troshina
Y. Derevenets

A. Chernov
cher@unicorn.cmc.msu.ru

Moscow State University



Goals

 Explore possibilities of reconstructing 
“composite” data type (structures, 
arrays or their combinations) definitions 
from low-level representation:

 Executable file

 Assembly listing

 Execution trace

 Inside dynamic instrumentation framework 
(i.e. valgrind)



Assumptions

 The low-level input program was once 
written in a “good” C, and we deal with 
the result of its compilation

 No obfuscation, link-time optimizations



“Good” C

 No casts between pointers and integral 
values

 Limited casts between void*/char* and 
material pointers:

 Memory allocation (malloc,free…)

 Memory manipulation (memcpy, 
memset…)

 No casts between material pointers

 No unions



Decompilation stages

 Function interface reconstruction

 Structural analysis (reconstruction of 
control statements)

 Data type reconstruction

 Basic data type reconstruction

 Composite data type reconstruction

 Structures

 Arrays

 Combinations of structures and arrays



Composite type compilation

struct s {

int f1;

char f2;

void *f3;
};

void f(struct s *p1, struct s *p2, 
struct s *p3) {

p3->f1 = p1->f1 + p2->f1;

p3->f2 = p1->f2;

p3->f3 = p2->f3;

}

movl 8(%ebp), %ecx

movl 12(%ebp), %ebx

movl 16(%ebp), %edx

movl 0(%ebx), %eax

addl 0(%ecx), %eax

movl %eax, 0(%edx)

movzbl 4(%ecx), %eax

movb %al, 4(%edx)

movl 8(%ebx), %eax

movl %eax, 8(%edx)



General observations

 Field offsets are computed at compile 
time

 Array indices are computed at runtime 
(mostly)

 Combination of both is used in address 
calculations for composite types

 Base addresses are copied from mem to 
regs, between regs, back to memory…



Algorithm sketch

 Identify memory access operations 
corresponding to use of composite 
types

 Group memory accesses by classes 
corresponding to different composite 
type in the source code

 Reconstruct composite type templates



Basic memory access 
instructions

 Direct memory access instructions
movl var, %eax -> var – global

 Frame pointer-relative access
movl %eax, -8(%ebp) -> local vars

 Stack operations
movl %eax, 4(%esp) -> param push



Address expression

 Canonic form:

 B – base expression

 O – constant numeric offset

 C – constant numeric multipliers

 x – values



Address expression recovery

 Backward slicing in the assembly code

 Each composite memory access 
instruction has a computed address 
expression



Algorithm sketch

 Identify memory access operations 
corresponding to use of composite 
types

 Group memory accesses by classes 
corresponding to different 
composite type in the source code

 Reconstruct composite type templates



Label propagation

 A unique label is assigned to each 
composite memory load instruction 
result

 Some labels (non-pointer values) are later 
discarded

 Other labels are grouped into equivalence 
classes

 Disjoint-set data structure is maintained



Label assignment

movl 8(%ebp), %ecx ;; L1

movl 12(%ebp), %ebx ;; L2

movl 16(%ebp), %edx ;; L3

movl 0(%ebx), %eax ;; L4

addl 0(%ecx), %eax ;; L5

movl %eax, 0(%edx)

movzbl 4(%ecx), %eax

movb %al, 4(%edx)

movl 8(%ebx), %eax ;; L6

movl %eax, 8(%edx)



Label equiv. classes

 Forward iterative data-flow analysis

 Labels are grouped into equiv. classes

 Each equivalence class – future 
composite type

 Each equiv. class has an associated set 
of address expressions used to access 
the memory (offset and multiplicative 
component)



Equiv. class classification

 Offset = 0, no mult. part, matching size 
– a base type pointer (T*)

 Multiple offsets != 0, no mult. part – a 
structure type pointer

 Offset = 0, mult., matching size – a 
base type array

 Multiple offsets != 0, same mult. part, 
the least multiplier > the max offset –
an array of structures



Algorithm sketch

 Identify memory access operations 
corresponding to use of composite 
types

 Group memory accesses by classes 
corresponding to different composite 
type in the source code

 Reconstruct composite type 
templates



Example

struct t {

int f1; int f2;

};

struct s {

struct s *a;

int b;

char c;

struct t d[4];

char e[4];

};

 { e12 = addr(L11, 0, 0),
e15 = addr(L11, 4, 0),
e18 = addr(L11, 8, 0),
e28 = addr(L11, 44,mul(1)),
e20 = addr(L11,12,mul(8)),
e22 = addr(L11,16,mul(8))}

 Induced size of L11 > 8

 S1 = addr(L11, 12,mul(8))
- new AE term

 e20 = addr(S1, 0, 0),
e22 = addr(S1, 4, 0) –
reduced AE terms

 S2 = addr(L11, 44, mul(1)) –
another AE term



Structure skeleton

struct s2 {
t1 f1; /* at offset 0 */
t2 f2; /* at offset 4 */
t3 f3; /* at offset 8 */
struct s1 {/* sizeof(struct s1) == 8 */
t4 f1; /* at offset 0 */
t5 f2; /* at offset 4 */

} f4[]; /* at offset 12 */
t6 f5[]; /* at offset 44 */
};



Results



Thank You!



Controversial question

 Reverse engineering is diminished? 
Anybody may have as many virtual 
machines of different architectures with 
different setups as he/she wants?


