
Reconstruction of Composite Types for 
Decompilation

K. Troshina
Y. Derevenets

A. Chernov
cher@unicorn.cmc.msu.ru

Moscow State University



Goals

 Explore possibilities of reconstructing 
“composite” data type (structures, 
arrays or their combinations) definitions 
from low-level representation:

 Executable file

 Assembly listing

 Execution trace

 Inside dynamic instrumentation framework 
(i.e. valgrind)



Assumptions

 The low-level input program was once 
written in a “good” C, and we deal with 
the result of its compilation

 No obfuscation, link-time optimizations



“Good” C

 No casts between pointers and integral 
values

 Limited casts between void*/char* and 
material pointers:

 Memory allocation (malloc,free…)

 Memory manipulation (memcpy, 
memset…)

 No casts between material pointers

 No unions



Decompilation stages

 Function interface reconstruction

 Structural analysis (reconstruction of 
control statements)

 Data type reconstruction

 Basic data type reconstruction

 Composite data type reconstruction

 Structures

 Arrays

 Combinations of structures and arrays



Composite type compilation

struct s {

int f1;

char f2;

void *f3;
};

void f(struct s *p1, struct s *p2, 
struct s *p3) {

p3->f1 = p1->f1 + p2->f1;

p3->f2 = p1->f2;

p3->f3 = p2->f3;

}

movl 8(%ebp), %ecx

movl 12(%ebp), %ebx

movl 16(%ebp), %edx

movl 0(%ebx), %eax

addl 0(%ecx), %eax

movl %eax, 0(%edx)

movzbl 4(%ecx), %eax

movb %al, 4(%edx)

movl 8(%ebx), %eax

movl %eax, 8(%edx)



General observations

 Field offsets are computed at compile 
time

 Array indices are computed at runtime 
(mostly)

 Combination of both is used in address 
calculations for composite types

 Base addresses are copied from mem to 
regs, between regs, back to memory…



Algorithm sketch

 Identify memory access operations 
corresponding to use of composite 
types

 Group memory accesses by classes 
corresponding to different composite 
type in the source code

 Reconstruct composite type templates



Basic memory access 
instructions

 Direct memory access instructions
movl var, %eax -> var – global

 Frame pointer-relative access
movl %eax, -8(%ebp) -> local vars

 Stack operations
movl %eax, 4(%esp) -> param push



Address expression

 Canonic form:

 B – base expression

 O – constant numeric offset

 C – constant numeric multipliers

 x – values



Address expression recovery

 Backward slicing in the assembly code

 Each composite memory access 
instruction has a computed address 
expression



Algorithm sketch

 Identify memory access operations 
corresponding to use of composite 
types

 Group memory accesses by classes 
corresponding to different 
composite type in the source code

 Reconstruct composite type templates



Label propagation

 A unique label is assigned to each 
composite memory load instruction 
result

 Some labels (non-pointer values) are later 
discarded

 Other labels are grouped into equivalence 
classes

 Disjoint-set data structure is maintained



Label assignment

movl 8(%ebp), %ecx ;; L1

movl 12(%ebp), %ebx ;; L2

movl 16(%ebp), %edx ;; L3

movl 0(%ebx), %eax ;; L4

addl 0(%ecx), %eax ;; L5

movl %eax, 0(%edx)

movzbl 4(%ecx), %eax

movb %al, 4(%edx)

movl 8(%ebx), %eax ;; L6

movl %eax, 8(%edx)



Label equiv. classes

 Forward iterative data-flow analysis

 Labels are grouped into equiv. classes

 Each equivalence class – future 
composite type

 Each equiv. class has an associated set 
of address expressions used to access 
the memory (offset and multiplicative 
component)



Equiv. class classification

 Offset = 0, no mult. part, matching size 
– a base type pointer (T*)

 Multiple offsets != 0, no mult. part – a 
structure type pointer

 Offset = 0, mult., matching size – a 
base type array

 Multiple offsets != 0, same mult. part, 
the least multiplier > the max offset –
an array of structures



Algorithm sketch

 Identify memory access operations 
corresponding to use of composite 
types

 Group memory accesses by classes 
corresponding to different composite 
type in the source code

 Reconstruct composite type 
templates



Example

struct t {

int f1; int f2;

};

struct s {

struct s *a;

int b;

char c;

struct t d[4];

char e[4];

};

 { e12 = addr(L11, 0, 0),
e15 = addr(L11, 4, 0),
e18 = addr(L11, 8, 0),
e28 = addr(L11, 44,mul(1)),
e20 = addr(L11,12,mul(8)),
e22 = addr(L11,16,mul(8))}

 Induced size of L11 > 8

 S1 = addr(L11, 12,mul(8))
- new AE term

 e20 = addr(S1, 0, 0),
e22 = addr(S1, 4, 0) –
reduced AE terms

 S2 = addr(L11, 44, mul(1)) –
another AE term



Structure skeleton

struct s2 {
t1 f1; /* at offset 0 */
t2 f2; /* at offset 4 */
t3 f3; /* at offset 8 */
struct s1 {/* sizeof(struct s1) == 8 */
t4 f1; /* at offset 0 */
t5 f2; /* at offset 4 */

} f4[]; /* at offset 12 */
t6 f5[]; /* at offset 44 */
};



Results



Thank You!



Controversial question

 Reverse engineering is diminished? 
Anybody may have as many virtual 
machines of different architectures with 
different setups as he/she wants?


