
Refactoring Support for Modularity
Maintenance in Erlang

Simon Thompson, Huiqing Li
School of Computing, University of Kent, UK

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

Clone detection
+ removal

Improve module
structure

Design philosophy

Automate the simple actions …

 …as by hand they are tedious and error-prone.

Decision support for more complex tasks …

 … donʼt try to make them “push button”.

Clone detection experience validates this.

Maintaining modularity

Cyclic module
dependencies.

Export of functions that
are “really” internal.

Modules with multiple
purposes.

Very large modules.

Modularity tends to
deteriorate over time.

Repair with incremental
modularity maintenance.

Four modularity “bad
smells”.

Refactoring: move functions

Move a group of functions from
one module to another.

Which functions to move? Move to where? How?
Wrangler provides:
1. Modularity smell detection
2. Refactoring suggestions
3. Refactoring

“Dogfooding” Wrangler

Case study of Wrangler-0.8.7

56 Erlang modules, 40 kloc (inc. comments).

• Improper dependencies: sharing
implementation between refactorings.

• Cyclic dependencies: need to split modules.

• Multiple goals: refac_syntax_lib 7 clusters.

Inter-layer cyclic module dependency found:
 [refac_prettypr, refac_util, refac_prettypr]

Refactoring suggestion:
move_fun(refac_util, [{refac_util,write_refactored_files,1},
 {refac_util,write_refactored_files,3},
 {refac_util,write_refactored_files,4}],
 user_supplied_target_mod).

refac_util

Inter-layer dependency
refac_prettypr

concat_toks/1
get_toks/1
get_range/1

print_ast/2

refac_util

Intra-layer dependency

refac_type_annotation

full_buTP/3
parse_annotate_file/3

rewrite/2
stop_tdTP/3

test_framework_used/1

type_ann_ast/2

Identifying "API" functions

• Identify by examining call graph.
• API functions are those …

• … not used internally,
• … "close to" other API functions.

• Others are seen as internal, external calls
to these are deemed improper.

refac_register_pid

Improper dependency

refac_add_a_tag refac_rename_processrefac_annotate_pid

spawn_funs/0 is_spawn_app/0 evaluate_expr/5

refac_syntax_lib.erl

Report on multi-goal
modules: 12/56.

Agglomerative
hierarchical algorithm.

Functions represented
by feature lists … fed
into Jaccard metric.

Module: refac_syntax_lib
Cluster 1, Indegree:25, OutDegree:1,
[{map,2}, {map_subtrees,2},
 {mapfold,3},{mapfold_subtrees,3},
 {fold,3}, {fold_subtrees,3}]

Cluster 2, Indegree:0, OutDegree:0,
[{foldl_listlist,3},{mapfoldl_listlist,3}]

Cluster 3, Indegree:0, OutDegree:0,
[{new_variable_name,1},{new_variable_names,2},
 {new_variable_name,2},{new_variable_names,3}]

Cluster 4, Indegree:4, OutDegree:1,
[{annotate_bindings,2},{annotate_bindings,3},
 {var_annotate_clause,4},{vann_clause,4},
 {annotate_bindings,1}]

 …

Future work

Incremental detection of module bad smells,
e.g. in overnight builds.

Partition module exports according to client
modules.

Case studies.

Conclusions

Identify and solve existing modularity flaws in
an incremental way.

Code smell detection and refactoring
suggestions help to improve the usability of
refactoring tools.

Questions?

Statement

100% automation of source
code analysis and manipulation

is unlikely ever to deliver
anything useful.

