
Security Testing of Web Applications:
a Search Based Approach for XSS

Vulnerabilities
Andrea Avancini, Mariano Ceccato

FBK-Irst, Trento, Italy
{anavancini, ceccato}@fbk.eu

SCAM 2011
2011.09.25

Background
Web applications are critical in many

activities
Security of Web apps is also critical
Number of total vulnerabilities in web

applications is getting higher year by
year

SCAM 2011
2011.09.25

[IBM Internet Security Systems™ X-Force® 2009 Mid-Year Trend
and Risk Report]

One of the most prominent vuln class is:
Cross-Site Scripting (XSS)
XSS causes the attacker to inject malicious
code into the victim’s browser

These vulnerabilities are due to missing or
inadequate user input validation

Vulnerability Disclosures Affecting Web applications

[Cenzic Web Apps Security Trend Report 2009]

Web vulnerabilities by class

Background (II)

<A HREF=http://legitimateSite.com/registration.cgi?clientprofile=<SCRIPT>malicious code</SCRIPT>>Click here

Attacker sets the trap – craft malicious link

Application with reflected
XSS vulnerability

[ibm.com]

SCAM 2011
2011.09.25

Our Proposal

Three macro-blocks:
• Static analysis (vulnerabilities, target branches)
• Genetic algorithm (Global search: test case generation)
• Constraint solver (Local search: test case refinement)

SCAM 2011
2011.09.25

Static
Analysis

Candidate
vulnerabilities

Genetic
Search

<?php
?>

Constraint
Solver

Constraint set

Test
Suite

New values

Running Example
1 $user = $_GET[”username”] ;
2 $pass = $_GET[”password”] ;
3 $pass2 = $_GET[”password2”] ;
4 i f (strpos ($user , ”<script”))
5 $user = htmlspecialchars ($user) ;
6 i f ($user in $users)
7 echo ” username already taken ” ;
 e l s e
8 i f (strlen ($pass) < 5)
9 echo ” password too short ” ;
 e l s e
10 i f ($pass == $pass2)
11 new user ($user , $pass) ;
12 echo ”new account for ” ;
13 echo $user ; / / s i n k
 e l s e
14 echo ” passwords do not match ” ;

Tainted

Sink

Sanitization

SCAM 2011
2011.09.25

Static Analysis
Taint Analysis returns
 {$user@1, $user@13}
as assignment chain
This means that
• there exists an input vector that flows to a

sink without being sanitized (i.e. there is a
vulnerability)

• Statements 1, 13 must be executed to trigger
the vulnerability

On top of this information, we calculate control
dependencies of the statements in the AC

 {4-6, 6-8, 8-10, 10-11}
as target branches to execute

SCAM 2011
2011.09.25

Genetic Algorithm
1 population = generateRandomPopulation () ;
2 for (T in vulnerabilities) {
3 while (not covered (T) AND attempt < maxTry) {
4 selection = select (population) ;
5 offspring = crossOver (selection) ;
6 population = mutate (offspring) ;
7 attempt = attempt + 1 ;
 }

Fitness function is approach level:
– FV(i) = AL(i) = # of target branches

executed by individual i

{(user, john), (password, xsdsd), (password2, xxxxxx)}

{(user, mark), (password, dfsfa), (password2, zzzzzz)}

{(user, john), (password, xsdsd), (password2, zzzzzz)}

{(user, mark), (password, dfsfa), (password2, xxxxxx)}

Crossover

{(user, mark), (password, dfsfa), (password2, xxxxxx)}

{(user, mark), (password, dfsfa), (password2, xxxxTx)}

{(user, mark), (password, dfsfa), (password2, xxxxxxyyy)}

{(user, mark), (password, dfsfa)}
Mutation

Change parameter
value

Add pair
Remove pair

SCAM 2011
2011.09.25

Constraint Solving
 When GA is not able to find a solution, a constraint solver is resorted

 i = {(user, “ddeerer”), (password, “xxsdsed”), (password2, “dded33e”)}

 Diverging point is calculated (branch 10-14) and respective constraint is negated
 ! strpos(GETusername, ”<script”) AND ! strlen(GETusername) < 5 AND GETpassword == GET password2

 is passed to solver which could generate:
 i_1 = {(user, “ddeerer”), (password, “dsfnggg”), (password2, “dsfnggg”)}

Branch Condition Target Branch

4-6 ! strpos(GETusername, ”< script”) 4-6

6-8 false 6-8

8-10 ! strlen(GETuser) < 5 8-10

10-14 ! GETpassword == GETpassword2 10-11

SCAM 2011
2011.09.25

Empirical Results
Run the tool on a real world application
Case study:Yapig 0.95-b

– Open source image gallery app, 53 files, 9 kloc

 Page # Target Branches Covered

0% 38-46% 50-75% 100%

add_comment 1 1

add_gallery 6 4 1 1

admin 1 1

delete_gallery 4 2 1 1

modify_gallery 6 3 1 2

modify_phid 6 3 1 2

Slideshow 9 9

Upload 3 2 1

View 2 1 1

Total 38 10 6 6 16

Cardinality # Target Branches Covered

0% 38-46% 50-75% 100%

1-2 15 7 3 5

3 7 2 5

4 7 1 2 4

5-13 9 6 1 2

Total 38 10 6 6 16

SCAM 2011
2011.09.25

Advantages

• Static analysis is over-conservative
– No false negatives

• Search space is usually very large but GA
heuristic helps in reducing it (global search)

• With the reduced search space, resorting to a
constraint solver does not create scalability
issues (local search)

• Actual executable test cases are generated for
web applications

SCAM 2011
2011.09.25

Limitations

• Static analysis is over-conservative
– False positives

• GA does not always converge to a solution
• Constraint solving is limited by the use of

concrete values when:
– Symbolic value is not always available or
– Expressiveness of solver is limited

• Generated test cases are not actual attacks, they
do not try to inject malicious code in the final
page

SCAM 2011
2011.09.25

Thanks for your attention!

SCAM 2011
2011.09.25

	Security Testing of Web Applications:�a Search Based Approach for XSS Vulnerabilities
	Background
	Background (II)
	Our Proposal
	Running Example
	Static Analysis
	Genetic Algorithm
	Constraint Solving
	Empirical Results
	Advantages
	Limitations
	Thanks for your attention!

